Photo-Identification of Melon-Headed Whales (Peponocephala Electra) in the Marquesas Islands: Creation of the First Photo-Identification Catalog and Estimation of Group Size and Minimum

Total Page:16

File Type:pdf, Size:1020Kb

Photo-Identification of Melon-Headed Whales (Peponocephala Electra) in the Marquesas Islands: Creation of the First Photo-Identification Catalog and Estimation of Group Size and Minimum AN ABSTRACT OF THE THESIS OF John Ralph McClung II for the degree of Master of Science in Wildlife Science presented on March 9, 2017. Title: Photo-identification of Melon-headed Whales (Peponocephala electra) in the Marquesas Islands: Creation of the First Photo-identification Catalog and Estimation of Group Size and Minimum Abundance in a Remote Archipelago Abstract approved: ________________________________________________________ C. Scott Baker For many species of oceanic dolphins, photo-identification and genetic data indicate that these island-associated populations are demographically isolated from pelagic populations and that island-associated populations exhibit very different patterns of movement and habitat use. Melon-headed whales (Peponocephala electra) are generally considered a pelagic dolphin, but have been documented around oceanic islands where deep water occurs close to shore. In the main Hawaiian Islands, for example, analysis of ten years of photo-identification data shows that melon-headed whales form a relatively small and apparently isolated population. Melon-headed whales have also been documented around several islands in the Marquesas archipelago of French Polynesia, but no information on their population structure in the islands exists. To better understand this population of melon-headed whale, I analyzed over 6,000 photographs collected during Expedition Marquesas, a series of small-boat sampling surveys conducted around six islands – Hiva Oa, Tahuata, Mohotani, Ua Huka, Ua Pou and Nuku Hiva – in March and April of 2012. Photographs and biopsy samples were collected during 14 encounters with melon-headed whales at four of the islands; Mohotani, Ua Huka, Ua Pou, and Nuku Hiva. In this thesis, I compiled the first photo-identification catalog for melon-headed whales in the islands by analyzing photographs to identify individual dolphins based on distinctive markings to their dorsal fins (referred to as distinctively marked individuals or DMIs). In total, 393 DMIs were identified and sightings were reconciled within encounters, between encounters, and between islands to construct sighting histories for each DMI. This information was then used to improve upon visual counts of the number of individuals in encountered groups, to investigate inter-island movement of DMIs, and to provide a minimum abundance of melon-headed whales in the islands. Estimates of the number of individuals in resting groups were obtained by incorporating information on the number of quality images of each DMI and the total number of quality non-DMI images collected within an encounter into the Poisson log- normal mark-resight model (PNE). The PNE estimates were then compared to visual counts of the number of melon-headed whales in encountered groups obtained by observers in the field. Using the PNE to estimate group size is novel since most studies determine group size by estimating the number of visible individuals. Investigations into the accuracy of observer estimates have found that estimates can vary widely between observers and tend to underestimate group size, especially as group size increases. Here, I found that the sizes of resting groups in the Marquesas Islands were large (median = 458) and that, on average, the mark-resight model estimated the true group size to be 1.5 times greater than the visual counts. By comparing sightings of DMIs between islands, I found evidence of limited movement of DMIs between the surveyed islands. Eight DMIs first seen at Ua Pou were resighted from 3 to 13 days later at Nuku Hiva, a distance of approximately 50 kilometers. No DMIs first documented at Mohotani or Ua Huka were resighted at any of the other islands. While the short time between surveys limits the conclusions that can be made, these results suggest an interesting pattern of habitat use within the islands, especially given the similar distance between encounters at Ua Huka and Nuku Hiva. The minimum abundance of melon-headed whales in the Marquesas Islands was estimated using the Lincoln-Petersen, two-sample, mark-recapture model. I first compared DMI images from pairs of resting-group encounters at each island to identify resightings of DMIs between encounters. Information on the number of DMI images per encounter and the number of DMIs seen in the first encounter and subsequently resighted in the second encounter were incorporated into the model to derive an estimate of the total number of DMIs for each island. Since only information on DMIs was incorporated into the model, the minimum abundance at each island was calculated by adjusting the estimate of the total number of DMIs by the proportion of quality DMI images in each data set. The minimum abundance at each island ranged from 300 (95% CL 188-412; CV = 0.19) at Ua Pou to 631 (95% CL 475-788; CV = 0.13) at Mohotani. Summing the estimates obtained at each island resulted in a minimum abundance estimate of 1,785 (95% CL 1506-2065; CV = 0.36) melon-headed whales in the Marquesas Islands during the study period. The establishment of the first melon-headed whale photo-identification catalog for melon-headed whales in the Marquesas Islands lays a foundation for future investigation into the population structure of this enigmatic species in the islands. The waters around the Marquesas Islands supports a diverse marine community, including several species of small cetaceans, and represents an area of high productivity in an otherwise oligotrophic region of the South Pacific. French Polynesia has taken steps to protect this important habitat by designating the entirety of the French Polynesia EEZ as a Marine Mammal Sanctuary and by petitioning UNESCO to designate the Marquesas Islands as a World Heritage Site. The baseline information provided by this thesis is an important step in understanding the population structure and habitat use of melon-headed whales – information crucial to effective conservation of this species in the Marquesas Islands. ã Copyright by John Ralph McClung II March 9, 2017 All Rights Reserved Photo-identification of Melon-headed Whales (Peponocephala electra) in the Marquesas Islands: Creation of the First Photo-identification Catalog and Estimation of Group Size and Minimum Abundance in a Remote Archipelago by John Ralph McClung II A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science Presented March 9, 2017 Commencement June 2017 Master of Science thesis of John Ralph McClung II presented on March 9, 2017. APPROVED: ________________________________________________________________ Major professor, representing Wildlife Science ________________________________________________________________ Head of the Department of Fisheries and Wildlife ________________________________________________________________ Dean of the Graduate School I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request. ________________________________________________________________ John Ralph McClung II, Author ACKNOWLEDGEMENTS I would like to express my appreciation to the faculty and staff at OSU’s Hatfield Marine Science Center and all those in OSU’s Department of Fisheries and Wildlife. Your consistent optimism and selfless support kept me going. This thesis would not have been possible without several Graduate Teaching Assistantships, often outside my area of focus, that not only paid my tuition but also supported my eating habit. Project funding was also provided by the Ministry of the Environment of French Polynesia, the South Pacific Whale Research Consortium, and from the Pew Marine Conservation fellowship to C. S. Baker for ‘A pattern of dolphins’, or aPOD, a study of insular populations in the Pacific. Thanks also to my advisor, C. Scott Baker. You set me on my course and offered encouragement when I needed it most. I doubted myself many times but you always provided focus and direction when I wanted to abandon ship. Thank you also for taking me on as a student employee so I could finish my last term. And a special thank you to the people of the United States. Without the support provided by the Post 9-11 GI Bill, this thesis would not have been possible. I only hope that I may live long enough to see that access to free, or at least affordable, education is available to all Americans. I would also like to express my gratitude to my graduate committee, Drs. Julia Jones, Daniel Palacios, and Emily Shroyer. I truly appreciate your comments and perspectives that challenged me to step outside my own little bubble and think within a broader context. Your flexibility and patience made completion of this project possible. Data for this project was collected during Expedition Marquesas, a series of small-boat surveys of cetaceans conducted in March and April of 2012 around six islands. Special thanks to M. Michael Poole whose decades of research of cetaceans and efforts to ensure their conservation in French Polynesia made this work possible. Michael collected and provided the data for this thesis and was willing to support someone he’s never met. Thanks Michael. May we meet soon. Also, my appreciation to Marc Oremus, Renee Albertson, and Scott Baker for conducting the surveys and collecting the data that forms the backbone of this thesis. I would also like to thank Robin Baird, Jessica Aschettino, and Sabre Mahaffy from Cascadia Research Collective. You freely shared your
Recommended publications
  • The Hakaea Beach Site, Marquesan Colonisation, and Models of East Polynesian Settlement
    Archaeol. Oceania 45 (2010) 54 –65 The Hakaea Beach site, Marquesan colonisation, and models of East Polynesian settlement MELINDA S. ALLEN and ANDREW J. M cALISTER Keywords: Polynesia, settlement models, coastal geodynamics, climate change, colonisation process, sea level fall Abstract Field explorations at the newly recorded Hakaea Beach site, Nuku also the processes and mechanisms which might account for Hiva, Marquesas Islands were spread across a 12,500 m 2 area on regional patterns of mobility and settlement, is emphasized. the western coastal flat. The site’s geomorphic and cultural history is reconstructed based on nine strata and ten radiocarbon determinations. The Hakaea record illustrates the range of Hakaea Valley powerful environmental processes, including sea level fall, climate change, tsunamis, and tropical storm surges, which have operated Hakaea is a long narrow valley on the windward coast of on Marquesan shorelines for the last 800 years, and the ease with Nuku Hiva (Figure 1). It opens onto a ca. 300 m wide which past human activity can be obscured or erased. The results coralline sand beach (Figure 2) and a deep narrow bay. This highlight the need to systematically search for protected coastal coastline has a dynamic and complex geomorphic history, contexts and geomorphic settings where older surfaces might be with the narrow topography of both the valley and the bay preserved. Radiocarbon assemblages from the 13th century potentially aggravating the impact of terrestrial and marine Hakaea Beach site and seven other early Marquesan sites are forces, both of which have left dramatic signatures on the considered in light of three models of East Polynesian dispersal: 1) contemporary landscape.
    [Show full text]
  • Abundance of Marine Mammals in Waters of the U.S. Southeastern Atlantic During Summer 2016
    Southeast Fisheries Science Center Reference Document PRD-2020-04 Abundance of Marine Mammals in waters of the U.S. Southeastern Atlantic During Summer 2016 Lance P. Garrison U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Southeast Fisheries Science Center 75 Virginia Beach Drive Miami, FL 33149 [email protected] April 2020 1. BACKGROUND AND STUDY OBJECTIVES In this report, we describe the results of a large vessel, visual line-transect survey conducted by the NMFS, Southeast Fisheries Science Center in U.S. waters of the U.S. Atlantic coast during the summer of 2016. The primary objective of the survey was to collect data and samples to support assessment of the abundance, habitats, and spatial distribution of cetaceans within U.S. waters. These data and resulting abundance estimates support the assessment of marine mammal stocks as required under the Marine Mammal Protection Act (MMPA) The MMPA requires that stocks of marine mammal species in U.S. waters be maintained at or above their optimum sustainable population level (OSP), defined as the number of animals which results in the maximum net productivity. To meet this requirement, the National Marine Fisheries Service (NMFS) conducts research to define stock structure, and for each stock, estimates annual human-caused mortality and potential biological removal (PBR), the maximum number of animals that may be removed from a stock due to human activities (e.g., fisheries bycatch) while allowing the stock to reach or maintain its OSP. PBR is calculated following specific criteria using the estimated minimum abundance of the stock, its maximum net productivity rate (theoretical or estimated), and a recovery factor (Barlow et al., 1995; Wade and Angliss, 1997).
    [Show full text]
  • Download Full Article in PDF Format
    A new marine vertebrate assemblage from the Late Neogene Purisima Formation in Central California, part II: Pinnipeds and Cetaceans Robert W. BOESSENECKER Department of Geology, University of Otago, 360 Leith Walk, P.O. Box 56, Dunedin, 9054 (New Zealand) and Department of Earth Sciences, Montana State University 200 Traphagen Hall, Bozeman, MT, 59715 (USA) and University of California Museum of Paleontology 1101 Valley Life Sciences Building, Berkeley, CA, 94720 (USA) [email protected] Boessenecker R. W. 2013. — A new marine vertebrate assemblage from the Late Neogene Purisima Formation in Central California, part II: Pinnipeds and Cetaceans. Geodiversitas 35 (4): 815-940. http://dx.doi.org/g2013n4a5 ABSTRACT e newly discovered Upper Miocene to Upper Pliocene San Gregorio assem- blage of the Purisima Formation in Central California has yielded a diverse collection of 34 marine vertebrate taxa, including eight sharks, two bony fish, three marine birds (described in a previous study), and 21 marine mammals. Pinnipeds include the walrus Dusignathus sp., cf. D. seftoni, the fur seal Cal- lorhinus sp., cf. C. gilmorei, and indeterminate otariid bones. Baleen whales include dwarf mysticetes (Herpetocetus bramblei Whitmore & Barnes, 2008, Herpetocetus sp.), two right whales (cf. Eubalaena sp. 1, cf. Eubalaena sp. 2), at least three balaenopterids (“Balaenoptera” cortesi “var.” portisi Sacco, 1890, cf. Balaenoptera, Balaenopteridae gen. et sp. indet.) and a new species of rorqual (Balaenoptera bertae n. sp.) that exhibits a number of derived features that place it within the genus Balaenoptera. is new species of Balaenoptera is relatively small (estimated 61 cm bizygomatic width) and exhibits a comparatively nar- row vertex, an obliquely (but precipitously) sloping frontal adjacent to vertex, anteriorly directed and short zygomatic processes, and squamosal creases.
    [Show full text]
  • Marine Mammal Conservation from Local to Global
    MARINE MAMMAL CONSERVATION FROM LOCAL TO GLOBAL 29TH CONFERENCE OF THE EUROPEAN CETACEAN SOCIETY 23rd to 25th March, 2015 Intercontinental Hotel, St Julian’s Bay, MALTA USEFUL INFORMATION VENUE – INTERCONTIMENTAL MALTA HOTEL, ST JULIANS Conference Hall, Cettina De Cesare (CDC), is in hotel. Paranga Beach Club is on the water edge in St George’s Bay. 29th ECS Conference, Malta i USEFUL INFORMATION CONTACT NUMBERS Direct Dialling Code for Malta: +356 International Code (to make an overseas call): 00 Emergency number: 112 Police: 21 22 40 01 … 21 22 40 07 Mater-Dei Hospital (Malta): 25 45 00 00 Malta International Airport (General Inquiries): 21 24 96 00 Malta International Airport (Flight Information): 52 30 20 00 (each call: € 1.00) Passport Office: 21 22 22 86 WEBSITES Malta International Airport (note one ‘a’ between Malta and Airport!) Malta’s weather www.maltairport.com/weather Arrivals www.maltairport.com/arrivals Departures www.maltairport.com/departures Activities in Malta www.visitmalta.com 29th ECS Conference, Malta ii ACKNOWLEDGEMENTS HOSTED BY The Biological Conservation Research Foundation (BICREF) The NGO BICREF was set-up in 1998 to promote conservation research and awareness in Malta. For this purpose it welcomes Internships in Malta; the next call starts immediately after the ECS conference 2015 and to last till the end of summer 2015. Options for taking up courses or training in marine conservation biology, cetacean and fisheries research are also possible. Dr. Adriana Vella, Ph.D (Cantab.), founder of BICREF, is a conservation biologist with experience in mammal and marine conservation research at local and regional level.
    [Show full text]
  • Extrapolating Cetacean Densities Beyond Surveyed Regions: Habitat
    Journal of Biogeography (J. Biogeogr.) (2015) 42, 1267–1280 ORIGINAL Extrapolating cetacean densities beyond ARTICLE surveyed regions: habitat-based predictions in the circumtropical belt Laura Mannocci1*, Pascal Monestiez1,2,Jerome^ Spitz3,4 and Vincent Ridoux1,3 1Centre d’Etudes Biologiques de Chize et La ABSTRACT Rochelle, UMR 7372 Universite de La Aim Our knowledge of cetacean distributions is impeded by large data-gaps Rochelle-CNRS, La Rochelle F-17000, France, 2 worldwide, particularly at tropical latitudes. This study aims to (1) find generic INRA, UR0546, Unite Biostatistiques et Processus Spatiaux, Domaine Saint-Paul relationships between cetaceans and their habitats in a range of tropical waters, 84914, Avignon, France, 3Observatoire and (2) extrapolate cetacean densities in a circumtropical belt extending far PELAGIS, UMS 3462 Universite de La beyond surveyed regions. Rochelle-CNRS, Systemes d’Observation pour Location Pelagic, circumtropical. la Conservation des Mammiferes et des Oiseaux Marins, La Rochelle 17000, France, Methods Aerial surveys were conducted over three regions in the tropical 2 2 2 4Marine Mammal Research Unit, Fisheries Atlantic (132,000 km ), Indian (1.4 million km ) and Pacific (1.4 million km ) Center, University of British Columbia, oceans. Three cetacean guilds were studied (Delphininae, Globicephalinae and Vancouver, British Columbia V6T 1Z4, sperm and beaked whales). For each guild, a generalized additive model was Canada fitted using sightings recorded in all three regions and 14 candidate environ- mental predictors. Cetacean densities were tentatively extrapolated over a cir- cumtropical belt, excluding waters where environmental characteristics departed from those encountered in the surveyed regions. Results Each cetacean guild exhibited a relationship with the primary produc- tion and depth of the minimum dissolved oxygen concentration.
    [Show full text]
  • Annexe 1 2 SOMMAIRE
    Plan DE Développement économique durable 2012-2027 AANNNNEEXXEE 11 SSTTRRUUCCTTUURRAATTIIOONN EETT DDEEVVEELLOOPPPPEEMMEENNTT DDUU TTOOUURRIISSMMEE Étude MaHoc- CREOCEAN - Archipelagoes PDEM 2013 – Annexe 1 2 SOMMAIRE Pages Rapport phase 1 : Diagnostic 5 Introduction 8 Les données de cadrage 13 L'offre touristique actuelle et les projets 25 Le diagnostic de la demande 57 L'organisation touristique et les outils marketing 75 Benchmarking de produits et de destinations 89 Conclusions du diagnostic 93 Annexes 95 Rapport phase 2 : Définition du positionnement de la destination et du produit 179 "Tourisme aux Marquises" Introduction 181 Rappel méthodologique 182 Rappel sur le potentiel de développement touristique des îles Marquises 185 Stratégie marketing du tourisme aux Marquises 188 Axes stratégiques du développement touristique 205 Rapport phase 3 : Plan d’actions opérationnel pour le développement 209 du tourisme aux Marquises Rappel méthodologique 212 Le plan d'actions opérationnel 213 ANNEXES 261 Complément au rapport phase 3 : réponses aux notes du Conseil Communautaire 262 des 31 août et 1er septembre 2012 Calendrier de mise en œuvre 266 Proposition de charte graphique identité Tourisme aux Marquises 268 Exemple de cahier des charges pour l’implantation d’une aire technique pour la 278 plaisance PDEM 2013 – Annexe 1 3 PDEM 2013 – Annexe 1 4 COMMUNAUTÉ DE COMMUNES DES ÎLES MARQUISES Structuration et développement du tourisme aux Marquises Rapport de phase 1 Diagnostic Mars 2012 PDEM 2013 – Annexe 1 5 SOMMAIRE Introduction ..........................................................................................................................................
    [Show full text]
  • Atlantic Spotted Dolphin (Stenella Frontalis) and Bottlenose Dolphin (Tursiops Truncatus) Nearshore Distribution, Bimini, the Bahamas
    Nova Southeastern University NSUWorks HCNSO Student Theses and Dissertations HCNSO Student Work 4-29-2020 Atlantic Spotted Dolphin (Stenella frontalis) and Bottlenose Dolphin (Tursiops truncatus) Nearshore Distribution, Bimini, The Bahamas Skylar L. Muller Nova Southeastern University Follow this and additional works at: https://nsuworks.nova.edu/occ_stuetd Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Share Feedback About This Item NSUWorks Citation Skylar L. Muller. 2020. Atlantic Spotted Dolphin (Stenella frontalis) and Bottlenose Dolphin (Tursiops truncatus) Nearshore Distribution, Bimini, The Bahamas. Master's thesis. Nova Southeastern University. Retrieved from NSUWorks, . (530) https://nsuworks.nova.edu/occ_stuetd/530. This Thesis is brought to you by the HCNSO Student Work at NSUWorks. It has been accepted for inclusion in HCNSO Student Theses and Dissertations by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Thesis of Skylar L. Muller Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science M.S. Marine Biology Nova Southeastern University Halmos College of Natural Sciences and Oceanography April 2020 Approved: Thesis Committee Major Professor: Amy C. Hirons, Ph.D. Committee Member: Kathleen M. Dudzinski, Ph.D. Committee Member: Bernhard Riegl, Ph.D. This thesis is available at NSUWorks: https://nsuworks.nova.edu/occ_stuetd/530 NOVA SOUTHEASTERN UNIVERSITY HALMOS COLLEGE OF NATURAL SCIENCES
    [Show full text]
  • Mr. Hironui Johnston Thahiti French Polynesia
    Ministry of Tourism And Labor, In charge of International Transportation and Institutional relations Innovation and Digital transformation New opportunities in the the sustainable tourism era 31st March 2021 French Polynesia • Oversea collectivity of the French republic • 5.5 million km2 (as vast as western Europe or 49% of continental US ) • 118 islands, 5 archipelagoes, 67 islands inhabited • 278 400 people as of December 2019, 70% on 3 652 businesses (7.5%) Tahiti 11 897 employees (17.7%) • 43 airports About 2 000 self-employed • 25 main touristic islands 12% GDP (18% indirect and induced impacts) 2 Purposes: connect Tahiti to the world/connect the islands Honotua domestic: 5 islands/245 000 inhabitants/70% tourism traffic Natitua north: 20 islands/ 25 000 inhabitants/ 29% tourism traffic 3 Connecting the islands MANATUA, 2020, USD21 600 HONOTUA, 2010, USD 90 000 000: Tahiti-Rarotonga-Aitutaki- 000: Los Angeles-Hawaii-Tahiti Niue-Samoa HONOTUA domestic, 2010: NATITUA South, 2022, USD15 Tahiti-Moorea-Huahine-Raiatea- 000 000: Tahiti-Tubuai-Rurutu Bora Bora NATITUA North, 2018, USD 64 800 000: Tahiti-Kaukura- Asia-Tahiti-Rapa Nui-Chile Rangiroa-Fakarava-Manihi- Makemo-Hao-Takaroa-Hiva Oa- Nuku Hiva + 10 4 Tourism Forum USD200 000 Digital area: Youth, unemployed and entrepreneurs -Tourism contest winners - Workshops - Digital contest - Conferences winners - International - Polynesian tech speakers projects - 4 areas: Digital, - PRISM projects Creation, Training, jobs 5 Arioi Expérience: Tourism Sharing cultural business project expériences
    [Show full text]
  • Marquesan Adzes in Hawai'i: Collections, Provenance
    University of Hawai‘i at Hilo HOHONU 2015 Vol. 13 outside the Marquesas have never been found in the Marquesan Adzes in Hawai‘i: island group (Allen 2014:11), but this groundbreaking Collections, Provenance, and discovery was spoiled by the revelation that a yachtsman who had visited both places had donated the artifacts, Sourcing and apparently mixed them up before doing so (202). Hattie Le‘a Wheeler Gerrish Researchers with access to other sources of information Anthropology 484 can avoid possible pitfalls. Garanger (1967) laments, Fall 2014 “What amount of dispersed artifacts were illegally exported by the numerous voyagers drawn by the Abstract mirage of the “South Seas” and now irrevocably lost to In 1953, Jack and Leah Wheeler returned to science?” (390). It is my intent to honor the wishes of Hawai'i with 13 adze heads and one stone pounder my maternal grandparents, Jack and Leah Wheeler, that they had obtained during their travels in the Marquesas, the artifacts they (legally) brought home to Hawai'i from Tuamotus, and Society Islands. The rather general the East Pacific not be “irrevocably lost to science.” I provenance of these artifacts presents a challenge will attempt to source their stone artifacts, and discover that illustrates the benefits of combining XRF with what geochemistry can tell us of these tools of uncertain other sources of information, and the limits of current provenance. My experience strengthens my belief that knowledge of Pacific geochemistry. EDXRF reveals that combining non-destructive EDXRF with other sources five of the artifacts are likely made of stone from the of information such as oral history, written accounts, Eiao quarry, and the rest may represent five additional and morphological comparison, enhances the value of sources.
    [Show full text]
  • The Marquesas
    © Lonely Planet Publications 199 The Marquesas Grand, brooding, powerful and charismatic. That pretty much sums up the Marquesas. Here, nature’s fingers have dug deep grooves and fluted sharp edges, sculpting intricate jewels that jut up dramatically from the cobalt blue ocean. Waterfalls taller than skyscrapers trickle down vertical canyons; the ocean thrashes towering sea cliffs; sharp basalt pinnacles project from emerald forests; amphitheatre-like valleys cloaked in greenery are reminiscent of the Raiders of the Lost Ark; and scalloped bays are blanketed with desert arcs of white or black sand. This art gallery is all outdoors. Some of the most inspirational hikes and rides in French Polynesia are found here, allowing walkers and horseback riders the opportunity to explore Nuku Hiva’s convoluted hinterland. Those who want to get wet can snorkel with melon- headed whales or dive along the craggy shores of Hiva Oa and Tahuata. Bird-watchers can be kept occupied for days, too. Don’t expect sweeping bone-white beaches, tranquil turquoise lagoons, swanky resorts and THE MARQUESAS Cancun-style nightlife – the Marquesas are not a beach holiday destination. With only a smat- tering of pensions (guesthouses) and just two hotels, they’re rather an ecotourism dream. In everything from cuisine and dances to language and crafts, the Marquesas do feel different from the rest of French Polynesia, and that’s part of their appeal. Despite the trap- pings of Western influence (read: mobile phones), their cultural uniqueness is overwhelming. They also make for a mind-boggling open-air museum, with plenty of sites dating from pre-European times, all shrouded with a palpable historical aura.
    [Show full text]
  • Subpart X—Taking and Importing of Marine Mammals
    National Marine Fisheries Service/NOAA, Commerce § 218.230 without prior notification and an op- (Balaena mysticetus), Bryde’s whale portunity for public comment. Notifi- (Balaenoptera edeni), fin whale cation will be published in the FED- (Balaenoptera physalus), gray whale ERAL REGISTER within 30 days subse- (Eschrichtius robustus), humpback whale quent to the action. (Megaptera novaeangliae), minke whale (Balaenoptera acutorostrata), North At- Subparts S–W [Reserved] lantic right whale (Eubalaena glacialis), North Pacific right whale (Eubalena ja- Subpart X—Taking and Importing ponica), pygmy right whale of Marine Mammals; Navy (Caperamarginata), sei whale Operations of Surveillance (Balaenoptera borealis), southern right Towed Array Sensor System whale (Eubalaena australis), Low Frequency Active (2) Odontocetes–Andrew’s beaked (SURTASS LFA) Sonar whale (Mesoplodon bowdoini), Arnoux’s beaked whale (Berardius arnuxii), At- lantic spotted dolphin (Stenella fron- SOURCE: 77 FR 50316, Aug. 20, 2012, unless otherwise noted. talis), Atlantic white-sided dolphin (Lagenorhynchus acutus), Baird’s EFFECTIVE DATE NOTE: At 77 FR 50316, Aug. beaked whale (Berardius bairdii), Beluga 20, 2012, subpart X was added, effective Aug. 15, 2012, through Aug. 15, 2017. whale (Dephinapterus leucas), Blainville’s beaked whale (Mesoplodon § 218.230 Specified activity, level of densirostris), Chilean dolphin taking, and species. (Cephalorhynchus eutropia), Clymene Regulations in this subpart apply dolphin (Stenella clymene), only to the incidental taking of those Commerson’s dolphin (Cephalorhynchus marine mammal species specified in commersonii), common bottlenose dol- paragraph (b) of this section by the phin (Tursiops truncatus), Cuvier’s U.S. Navy, Department of Defense, beaked whale (Ziphiuscavirostris), Dall’s while engaged in the operation of no porpoise (Phocoenoides dalli), Dusky more than four SURTASS LFA sonar dolphin (Lagenorhynchus obscurus), systems conducting active sonar oper- dwarf sperm and pygmy sperm whales ations in areas specified in paragraph (Kogia simus and K.
    [Show full text]
  • Traditional Marquesan Agriculture and Subsistence: the Historical Evidence
    Rapa Nui Journal: Journal of the Easter Island Foundation Volume 20 | Issue 2 Article 5 2006 Traditional Marquesan Agriculture and Subsistence: The iH storical Evidence David J. Addison ASPA Archaeological Specialists Department Supervisor Follow this and additional works at: https://kahualike.manoa.hawaii.edu/rnj Part of the History of the Pacific slI ands Commons, and the Pacific slI ands Languages and Societies Commons Recommended Citation Addison, David J. (2006) "Traditional Marquesan Agriculture and Subsistence: The iH storical Evidence," Rapa Nui Journal: Journal of the Easter Island Foundation: Vol. 20 : Iss. 2 , Article 5. Available at: https://kahualike.manoa.hawaii.edu/rnj/vol20/iss2/5 This Research Paper is brought to you for free and open access by the University of Hawai`i Press at Kahualike. It has been accepted for inclusion in Rapa Nui Journal: Journal of the Easter Island Foundation by an authorized editor of Kahualike. For more information, please contact [email protected]. Addison: Traditional Marquesan Agriculture and Subsistence Traditional Marquesan Agriculture and Subsistence: The Historical Evidence Part I of IV - General Descriptions, Garden Locations, the Agricultural Calendar, Hydrology and Soils, Cultigens, and Agricultural Techniques David1. Addison* HE MARQUESAS ISLANDS (Figure 1) have long captivated nario for the prehistoric involution of Marquesan power T the attention of social scientists. Members of the Bishop structures. Museum's Bayard-Dominick Expedition did the first fonnal While social and political structures and relationships anthropological and archaeological research in the archipel­ have been dominant research topics, little attention has been ago (Figure 2) in the early 20'h century (e.g.
    [Show full text]