Effect of Magnesium Sulfate Administration On

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Magnesium Sulfate Administration On Available online http://ccforum.com/content/9/1/R18 ResearchFebruary 2005 Vol 9 No 1 Open Access Effect of magnesium sulfate administration on blood–brain barrier in a rat model of intraperitoneal sepsis: a randomized controlled experimental study Figen Esen1, Tulin Erdem2, Damla Aktan2, Mukadder Orhan3, Mehmet Kaya4, Haluk Eraksoy5, Nahit Cakar1 and Lutfi Telci1 1Professor, University of Istanbul, Istanbul Faculty of Medicine, Department of Anesthesiology and Intensive Care, Istanbul, Turkey 2Staff Anesthesiologist, University of Istanbul, Istanbul Faculty of Medicine Department of Anesthesiology and Intensive Care, Istanbul, Turkey 3MD, University of Istanbul, Istanbul Faculty of Medicine Department of Anesthesiology and Intensive Care, Istanbul, Turkey 4Professor, University of Istanbul, Istanbul Faculty of Medicine Department of Physiology, Istanbul, Turkey 5Professor, University of Istanbul, Istanbul Faculty of Medicine, Department of Infectious Disease and Clinical Microbiology, Istanbul, Turkey Corresponding author: Figen Esen, [email protected] Received: 1 September 2004 Critical Care 2005, 9:R18-R23 (DOI 10.1186/cc3004) Revisions requested: 23 September 2004 This article is online at: http://ccforum.com/content/9/1/R18 Revisions received: 14 October 2004 © 2004 Esen et al.; licensee BioMed Central Ltd. Accepted: 25 October 2004 This is an Open Access article distributed under the terms of the Published: 23 November 2004 Creative Commons Attribution License (http://creativecommons.org/ licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Introduction Permeability changes in the blood–brain barrier (BBB) and their possible contribution to brain edema formation have a crucial role in the pathophysiology of septic encephalopathy. Magnesium sulfate has been shown to have a protective effect on BBB integrity in multiple experimental models. In this study we determine whether magnesium sulfate administration could have any protective effects on BBB derangement in a rat model of sepsis. Methods This randomized controlled experimental study was performed on adult male Sprague– Dawley rats. Intraperitoneal sepsis was induced by using the infected fibrin–thrombin clot model. To examine the effect of magnesium in septic and sham-operated rats, a dose of 750 µmol/kg magnesium sulfate was given intramuscularly immediately after surgery. Control groups for both infected and sham- operated rats were injected with equal volume of saline. Those rats surviving for 24 hours were anesthetized and decapitated for the investigation of brain tissue specific gravity and BBB integrity by the spectrophotometric assay of Evans blue dye extravasations. Another set of experiments was performed for hemodynamic measurements and plasma magnesium level analysis. Rats were allocated into four parallel groups undergoing identical procedures. Results Sepsis significantly increased BBB permeability to Evans blue. The dye content of each hemisphere was significantly lower in the magnesium-treated septic rats (left hemisphere, 0.00218 ± 0.0005; right hemisphere, 0.00199 ± 0.0007 [all results are means ± standard deviation]) than in control septic animals (left hemisphere, 0.00466 ± 0.0002; right hemisphere, 0.00641 ± 0.0003). In septic animals treated with magnesium sulfate, specific gravity was higher (left hemisphere, 1.0438 ± 0.0007; right hemisphere, 1.0439 ± 0.0004) than in the untreated septic animals (left hemisphere, 1.0429 ± 0.0009; right hemisphere, 1.0424 ± 0.0012), indicating less edema formation with the administration of magnesium. A significant decrease in plasma magnesium levels was observed 24 hours after the induction of sepsis. The dose of magnesium that we used maintained the baseline plasma magnesium levels in magnesium-treated septic rats. Conclusions Magnesium administration attenuated the increased BBB permeability defect and caused a reduction in brain edema formation in our rat model of intraperitoneal sepsis. Keywords: blood–brain barrier, brain edema, magnesium, sepsis, septic encephalopathy BBB = blood–brain barrier; EB = Evans blue; SG = specific gravity. R18 Critical Care February 2005 Vol 9 No 1 Esen et al. Introduction NaCl]) and 160 µl (100 units/ml) of sterile human thrombin to Patients with severe sepsis often manifest symptoms of a 5 ml syringe. The resulting clot was then incubated at room encephalopathy. Acute alterations in mental status, which temperature for 30 min before implantation into the abdominal occur fairly frequently in septic patients, have been shown to cavity. The Escherichia coli strain was isolated from an intra- be associated with poor prognosis [1]. However, not much is abdominal collection from a patient with secondary peritonitis. known about the exact mechanism of brain injury in sepsis. The bacteria were inoculated into a brain heart infusion broth Studies have suggested that septic encephalopathy might (DIFCO Laboratories, Detroit, MI, USA) and incubated over- involve a disturbance of plasma and brain neutral amino acid night at 35°C. The count of E. coli was adjusted to 1.8 × 109 transport across the blood–brain barrier (BBB), similar to colony-forming units/ml with McFarland standard 6. After mak- those seen in porto-systemic encephalopathy. This process ing a 0.5 cm midline abdominal incision, the peritoneum was has been related to the breakdown of the BBB because opened and the prepared clot was injected into the peritoneal patients with septic encephalopathy have high protein levels in cavity directly from the syringe. Sham-operated rats had a ster- the cerebrospinal fluid [2]. Recently, derangements in the ile clot injected into their peritoneal cavity. To examine the BBB causing perivascular edema have been demonstrated in effect of magnesium in septic and sham-operated rats, a dose sepsis-induced pigs [3]. of 750 µmol/kg MgSO4 was given intramuscularly immediately after surgery. Control groups for both infected and sham-oper- Protective effects of magnesium sulfate (MgSO4) against ated rats were injected with an equal volume of saline. BBB breakdown after severe insulin-induced hypoglycemia have been reported in animals [4]. Similar effects of magne- After surgery, the animals were given 50 µl/g per hour of saline sium on BBB were also evident in a diffuse traumatic brain subcutaneously and were allowed to wake up while breathing injury model in rats [5-7]. spontaneously. They were returned to their cages and were allowed free access to water. Those rats surviving for 24 hours In summary, MgSO4 was shown to have a protective effect on after the surgery were anesthetized and decapitated for the BBB integrity in multiple experimental models. We hypothe- investigation of brain tissue specific gravity (SG) and BBB sized that MgSO4 will also protect against BBB derangements integrity. observed in sepsis and tested the hypothesis in a rat model of sepsis induced by an intraperitoneally inserted infected fibrin– We used the method described by Mikawa and colleagues [9] thrombin clot. to determine BBB integrity by Evans blue (EB) dye. EB dye (4 ml/kg, 2%) was administered intravenously and allowed to cir- Methods culate for 60 min. The animals were then perfused with saline One hundred and twenty-six male Sprague–Dawley rats through the left ventricle at a pressure of 110 mmHg until weighing 320–440 g were used in this study. Rats were pur- colorless fluid was obtained from the right atrium. Afterwards, chased from the Institute for Experimental Research and Appli- the brains were removed and dissected. Each hemisphere cation (Istanbul Medical Faculty), and were cared for before was weighed and the samples were then homogenized in 3.5 and during all stages of the experimental protocol in compli- ml phosphate-buffered saline and vortex-mixed for 2 min after ance with the applicable institutional guidelines and regula- the addition of 2.5 ml of 60% trichloroacetic acid to precipitate tions of the Institute for Experimental Medicine Research and protein. The samples were then cooled for 30 min and centri- Application. fuged for 30 min at 1000 r.p.m. The absorbance of the super- natants for EB dye was measured at 610 nm with a Rats were prepared for surgery under anesthesia with intra- spectrophotometer. EB dye content is expressed as µg/mg of muscular 100 µg/g ketamine (Parke-Davis, Morris Plains, NJ, brain tissue against a standard curve. USA) and 20 µg/g xylazine hydrochloride Rompun 2% (Bayer, Munich, Germany) and allowed to breathe spontaneously. The The method defined by Marmarou and colleagues was used loss of corneal reflex and no movement in response to a painful for the determination of SG [10]. We obtained 1 mm3 samples stimulus confirmed maintenance of adequate anesthesia for taken from the right and left hemispheres of each animal. Sam- the experimental procedure. The rats were subsequently rand- ples were placed into linear density gradient columns of kero- omized into one of four groups: sham control (C), sham control sene and bromobenzene. A calibration curve was determined MgSO4-treated (C-Mg), septic (S) and septic with MgSO4 (S- for each column by using anhydrous K2SO4 solutions of Mg). known SG (1.045, 1.040, 1.035 and 1.025). Brain tissue SG values were subsequently determined with this calibration Intraperitoneal sepsis was induced with the infected fibrin– curve. thrombin clot model described by Mathiak and colleagues [8]. Fibrin–thrombin clots were formed by adding
Recommended publications
  • Magnesium Causes Nitric Oxide Independent Coronary Artery Vasodilation in Humans Heart: First Published As 10.1136/Hrt.86.2.212 on 1 August 2001
    212 Heart 2001;86:212–216 Magnesium causes nitric oxide independent coronary artery vasodilation in humans Heart: first published as 10.1136/hrt.86.2.212 on 1 August 2001. Downloaded from H Teragawa, M Kato, T Yamagata, H Matsuura, G Kajiyama Abstract Objective—To determine how magnesium aVects human coronary arteries and whether endothe- lium derived nitric oxide (EDNO) is involved in the coronary arterial response to magnesium. Design—Quantitative coronary angiography and Doppler flow velocity measurements were used to determine the eVects of the nitric oxide synthase inhibitor NG-monomethyl-L-arginine (L-NMMA) on magnesium induced dilation of the epicardial and resistance coronary arteries. Setting—Hiroshima University Hospital a tertiary cardiology centre. Patients—17 patients with angiographically normal coronary arteries. Interventions—Magnesium sulfate (MgSO4) (0.02 mmol/min and 0.2 mmol/min) was infused for two minutes into the left coronary ostium before and after intracoronary infusion of L-NMMA. Main outcome measures—Diameter of the proximal and distal segments of the epicardial cor- onary arteries and coronary blood flow. Results—At a dose of 0.02 mmol/min, MgSO4 did not aVect the coronary arteries. At a dose of 0.2 mmol/min, MgSO4 caused coronary artery dilation (mean (SEM) proximal diameter 3.00 (0.09) to 3.11 (0.09) mm; distal 1.64 (0.06) to 1.77 (0.07) mm) and increased coronary blood flow (79.3 (7.5) to 101.4 (9.9) ml/min, p < 0.001 v baseline for all). MgSO4 increased the changes in these parameters after the infusion of L-NMMA (p < 0.001 v baseline).
    [Show full text]
  • THE ACCUMULATION and DISTRIBUTION of EVANS BLUE in the KIDNEY of RATS FED NORMAL OR LOW MAGNESIUM DIETS by George Williams Seign
    THE ACCUMULATION AND DISTRIBUTION OF EVANS BLUE IN THE KIDNEY OF RATS FED NORMAL OR LOW MAGNESIUM DIETS by George Williams Seignious, IV Thesis submitted to the Graduate Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in ! Biochemistry and Nutrition APPROVED: G. E. Bunce, Chairman R. E. Webb ______ fl" ________ M;O. ......... ..;:;...; ___'"";:,....:; __.;..,. ___ _ _.. ''-.::;,,/ ___ , _______ ,_.._~_ M. H. Samli R. G. Saacke August, 1973 Blacksburg, Virginia . l\CKNOWLEDGMEN',rS The author of this thesis would like to e~press his deepest thanks and gra'titU;de to for his.continued help, advice, and . ·. .. : .. - understanding which made this thesis possible •. A special note of ·"· thanks is expressed.to whos_e invaluable help, advice arid suggestions aided greatly the author's efforts. The author would also like to thank for his. help and advice in the lab and all the other graduate students who made the author's stay at Virginia.Tech i{ very pleasant _one. Thanks is expressed to the author's wife, , for .her love, understanding, encouragement, and typing which· enabled the completion of this thesis. Also the author would like.to thank his parents for their lc;rving support and financial assistance. ii 'TABLE OF CONTENTS ACKNOWLEDGMENTS ii. TABLE OF CONTENTS . iii I,.IST OF TABLES iv LIST OF FIGURES Vi LIST OF SELECTED CHEMICAL STRUCTURES vii LIST OF·ABBREVIATIONS viii INTRODUCTION 1 LITERATURE REVIEW 5 EXPERIMENTAL PROCEDURES RESULTS 33 DISCUSSION 74 SUMMARY 82 REFERENCES 85 VITA 88 iii ~· ,,;.
    [Show full text]
  • Magnesium Production
    Magnesium Production Subpart T, Greenhouse Gas Reporting Program Under the Greenhouse Gas Reporting Program (GHGRP), owners or operators of facilities that contain magnesium production processes must report emissions from use of cover and carrier gases as well as for all other source categories located at the facility for which methods are defined in the rule. Owners and operators are required to collect emission data, calculate greenhouse gas (GHG) emissions and follow the specified procedures for quality assurance, missing data, recordkeeping, and reporting per the requirements of 40 CFR Part 98 Subpart T – Magnesium Production. How Is This Source Category Defined? The magnesium production source category is defined as consisting of any process where magnesium metal is produced through smelting (including electrolytic smelting), refining, or remelting operations (including primary production facilities that extract magnesium from its ore and secondary production facilities that recover magnesium from scrap), or any process where molten magnesium is used in alloying, casting, drawing, extruding, forming, or rolling operations. Who Must Report? Magnesium production facilities that emit more than 25,000 metric tons CO2e per year. What Greenhouse Gases Must Be Reported? Each facility must report total annual emissions for each of the following greenhouse gases used in magnesium production facilities: ● Sulfur hexafluoride (SF6) ● HFC-134a ● The fluorinated ketone FK 5-1-12 ● Carbon dioxide (CO2) ● Any other GHG as defined in 40 CFR part 98, subpart A (General Provisions) of the rule In addition, the facility must report greenhouse gas emissions for any other source categories for which calculation methods are provided in the rule, as applicable.
    [Show full text]
  • Burning Magnesium, a Sparkle in Acute Inflammation: Gleams from Experimental Models
    Journal Identification = MRH Article Identification = 0418 Date: April 6, 2017 Time: 1:32 pm Magnesium Research 2017; 30 (1): 8-15 REVIEW Burning magnesium, a sparkle in acute inflammation: gleams from experimental models Sara Castiglioni, Alessandra Cazzaniga, Laura Locatelli, Jeanette AM Maier Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Università di Milano, Milano, I-20157, Italy Correspondence: Dipartimento di Scienze Biomediche e Cliniche Luigi Sacco, Università di Milano, Via GB Grassi, 74 Milano 20157, Italy <[email protected]> Abstract. Magnesium contributes to the regulation of inflammatory responses. Here, we focus on the role of magnesium in acute inflammation. Although present knowledge is incomplete to delineate an accurate scenario and a sche- dule of the events occurring under magnesium deficiency, it emerges that low magnesium status favors the induction of acute inflammation by sensitizing sen- tinel cells to the noxious agent, and then by participating to the orchestration of the vascular and cellular events that characterize the process. Key words: magnesium, acute inflammation, leukocytes, endothelial cells Inflammation has been observed since the pathological processes, including the regulation of beginning of documented medical knowledge [1], immune response [3-7]. TRPM7, which possesses but the disclosure of its significance and com- an ion transport domain and an active kinase plexity is rather recent. It is now clear that domain and is responsible for cellular Mg homeo- inflammation is the automatic response of living stasis, phosphorylates phospholipase C␥2, crucial tissues to damage. Through a series of inter- in intracellular signaling after the activation of connected events involving blood vessels and B lymphocytes, and is implicated in T cell migra- leukocytes, it defends from damages and paves the tion [7, 8].
    [Show full text]
  • Schlenk Equilibrium in Toluene Solutions of Grignard Reagents
    SCHLENK EQUILIBRIUM IN TOLUENE SOLUTIONS OF GRIGNARD REAGENTS Ants Tuulmets*, Marvi Mikk and Dmitri Panov Institute of Organic Chemistry, University of Tartu, Tartu, EE2400 Estonia Abstract Grignard reagents were prepared from η-butyl chloride, η-butyl bromide and bromobenzene in toluene in the presence of small amounts of diethyl ether. The reagents disproportionate according to the Schlenk equilibrium with the formation of a precipitate rich in magnesium halide. The supernatant solution comprises higly soluble complexes of the stoichiometry xR2Mg.yMgX2.zEt20 (x>y). The extent of side-reactions during the formation of these Grignard reagents increases in the order nBuCI<nBuBr<PhBr. Introduction Organomagnesium compounds can be prepared not only in conventional ethers but also in hydrocarbon media or without any solvent at all [1-5]. For many purposes the replacement of ethers by hydrocarbons of higher boiling point is expedient. The process in hydrocarbons is preferable, since the reaction medium is cheap, nonhygroscopic, and fire hazards are low. The use of unsolvated organomagnesium halides is limited to primary alkyl and aryl compounds. Branched chain primary, secondary, and tertiary alkyl halides, vinyl, allyl, and benzyl halides do not react under these conditions or produce Wurtz-type coupling products [2,6]. In the presence of one molar equivalent of complexing agents, e.g. ethers and tertiary amines, several organomagnesium compounds have been obtained in hydrocarbon media [5,7,8], Furthermore, alkylmagnesium bromide and chloride reagents in toluene containing less than one equivalent of diethyl ether have also been prepared [9-12]. Because the Grignard reagents in donor solvents are complexed at least with two solvent molecules per atom of magnesium, the reagents obtained in the presence of smaller amounts of donors should be considered as partially solvated.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,284,263 B1 Place (45) Date of Patent: Sep
    USOO6284263B1 (12) United States Patent (10) Patent No.: US 6,284,263 B1 Place (45) Date of Patent: Sep. 4, 2001 (54) BUCCAL DRUG ADMINISTRATION IN THE 4,755,386 7/1988 Hsiao et al. TREATMENT OF FEMALE SEXUAL 4,764,378 8/1988 Keith et al.. DYSFUNCTION 4,877,774 10/1989 Pitha et al.. 5,135,752 8/1992 Snipes. 5,190,967 3/1993 Riley. (76) Inventor: Virgil A. Place, P.O. Box 44555-10 5,346,701 9/1994 Heiber et al. Ala Kahua, Kawaihae, HI (US) 96743 5,516,523 5/1996 Heiber et al. 5,543,154 8/1996 Rork et al. ........................ 424/133.1 (*) Notice: Subject to any disclaimer, the term of this 5,639,743 6/1997 Kaswan et al. patent is extended or adjusted under 35 6,180,682 1/2001 Place. U.S.C. 154(b) by 0 days. * cited by examiner (21) Appl. No.: 09/626,772 Primary Examiner Thurman K. Page ASSistant Examiner-Rachel M. Bennett (22) Filed: Jul. 27, 2000 (74) Attorney, Agent, or Firm-Dianne E. Reed; Reed & Related U.S. Application Data ASSciates (62) Division of application No. 09/237,713, filed on Jan. 26, (57) ABSTRACT 1999, now Pat. No. 6,117,446. A buccal dosage unit is provided for administering a com (51) Int. Cl. ............................. A61F 13/02; A61 K9/20; bination of Steroidal active agents to a female individual. A61K 47/30 The novel buccal drug delivery Systems may be used in (52) U.S. Cl. .......................... 424/435; 424/434; 424/464; female hormone replacement therapy, in female 514/772.3 contraception, to treat female Sexual dysfunction, and to treat or prevent a variety of conditions and disorders which (58) Field of Search ....................................
    [Show full text]
  • Standard Operating Procedures (Sop) for Working with Chloroform at Amherst College August 2019
    STANDARD OPERATING PROCEDURES (SOP) FOR WORKING WITH CHLOROFORM AT AMHERST COLLEGE AUGUST 2019 ____________________________________________________________________________________ General Information Chloroform, also known as trichloromethane, is a very volatile, sweet smelling, colorless liquid that is frequently used in the laboratory as a dilution solvent. In industry, it is commonly used in the production of the refrigerant Freon. Chloroform is an acutely toxic compound and is classified as a category 2 carcinogen. _____________________________________________________________________________________ Personal Protective Equipment When working with Chloroform, the following personal protective equipment (PPE) must be worn: Splash goggles Lab coat Long pants Close toed shoes Viton Gloves (Nitrile gloves may only be used if working with chloroform for less than 5 minutes and double gloving is employed; change gloves as often as needed). _____________________________________________________________________________________ Safety Devices Fume hood – always work with Chloroform in a fume hood to prevent exposure by inhalation. Identify the location of all the safety devices in the room before starting your procedure. Also, familiarize yourself with all the possible means of egress. Keep safety devices and means of egress clear at all times. _____________________________________________________________________________________ Specific Health Hazards Chloroform has an OSHA Permissible Exposure Limit (ceiling) of 50 ppm. This means that personnel
    [Show full text]
  • Ketamine Infusion Combined with Magnesium As a Therapy for Intractable Chronic Cluster Headache: Report of Two Cases
    ISSN 0017-8748 Headache doi: 10.1111/head.13135 VC 2017 American Headache Society Published by Wiley Periodicals, Inc. Brief Communications Ketamine Infusion Combined With Magnesium as a Therapy for Intractable Chronic Cluster Headache: Report of Two Cases Xavier Moisset, MD, PhD ; Pierre Clavelou, MD, PhD; Michel Lauxerois, MD; Radhouane Dallel, DDS, PhD; Pascale Picard, MD Background.—Chronic cluster headache (CH) is a rare, highly disabling primary headache condition. As NMDA receptors are possibly overactive in CH, NMDA receptor antagonists, such as ketamine, could be of interest in patients with intractable CH. Case reports.—Two Caucasian males, 28 and 45 years-old, with chronic intractable CH, received a single ketamine infusion (0.5 mg/kg over 2 h) combined with magnesium sulfate (3000 mg over 30 min) in an outpatient setting. This treat- ment led to a complete relief from symptoms (attack frequency and pain intensity) for one patient and partial relief (50%) for the other patient, for 6 weeks in both cases. Conclusion.—The NMDA receptor is a potential target for the treatment of chronic CH. Randomized, placebo- controlled studies are warranted to establish both safety and efficacy of such treatment. Key words: cluster headache, ketamine, NMDA Abbreviations: CH cluster headache, NMDA N-methyl-D-aspartate (Headache 2017;57:1261-1264) INTRODUCTION form of CH is rare, and its attacks recur over more Cluster headache (CH) is characterized by than 1 year without remission periods or with severe strictly unilateral headaches lasting 15- remission periods lasting less than 1 month.1 Some 180 min, accompanied by agitation and ipsilateral chronic CH patients become drug-resistant and autonomic phenomena, including rhinorrhea, lacri- continue to suffer almost daily attacks for long peri- mation, and conjunctival injection.1 The chronic ods.
    [Show full text]
  • The Effects of Combined Magnesium and Zinc Supplementation On
    Hamedifard et al. Lipids in Health and Disease (2020) 19:112 https://doi.org/10.1186/s12944-020-01298-4 RESEARCH Open Access The effects of combined magnesium and zinc supplementation on metabolic status in patients with type 2 diabetes mellitus and coronary heart disease Zahra Hamedifard1, Alireza Farrokhian2, Željko Reiner3, Fereshteh Bahmani1, Zatollah Asemi1, Maryam Ghotbi1 and Mohsen Taghizadeh1* Abstract Background: The present research aimed to analyze the impacts of magnesium and zinc supplements on glycemic control, serum lipids, and biomarkers of oxidative stress and inflammation in patients suffering from coronary heart disease (CHD) and type 2 diabetes mellitus (T2DM). Methods: According to the research design, a randomized, double-blind, placebo-controlled trial has been implemented on 60 subjects suffering from CHD and T2DM. Therefore, participants have been randomly divided into 2 groups for taking placebo (n = 30) or 250 mg magnesium oxide plus 150 mg zinc sulfate (n = 30) for 12 weeks. Results: Magnesium and zinc significantly decreased fasting plasma glucose (FPG) (β − 9.44 mg/dL, 95% CI, − 18.30, − 0.57; P = 0.03) and insulin levels (β − 1.37 μIU/mL, 95% CI, − 2.57, − 0.18; P = 0.02). Moreover, HDL-cholesterol levels significantly enhanced (β 2.09 mg/dL, 95% CI, 0.05, 4.13; P = 0.04) in comparison to the placebo. There was an association between magnesium and zinc intake, and a significant decrease of C-reactive protein (CRP) (β − 0.85 mg/L, 95% CI, − 1.26, − 0.45; P < 0.001), a significant increase in total nitrite (β 5.13 μmol/L, 95% CI, 1.85, 8.41; P =0.003)and total antioxidant capacity (TAC) (β 43.44 mmol/L, 95% CI, 3.39, 83.50; P = 0.03) when compared with placebo.
    [Show full text]
  • Ketamine and Magnesium for Refractory Neuropathic Pain
    PAIN MEDICINE ABSTRACT Background: Ketamine is often used for the management of refractory chronic pain. There is, however, a paucity of trials exploring its analgesic effect several weeks after intravenous administration or in association with Ketamine and magnesium. The authors hypothesized that ketamine in neuropathic pain may provide pain relief and cognitive–emotional benefitversus placebo and that a Magnesium for Refractory combination with magnesium may have an additive effect for 5 weeks. Methods: A randomized, double-blind, crossover, placebo-controlled study Neuropathic Pain (NCT02467517) included 20 patients with neuropathic pain. Each ket- amine-naïve patient received one infusion every 35 days in a random order: Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/133/1/154/514260/20200700.0-00027.pdf by guest on 25 September 2021 A Randomized, Double-blind, ketamine (0.5 mg/kg)/placebo or ketamine (0.5 mg/kg)/magnesium sulfate Crossover Trial (3g) or placebo/placebo. The primary endpoint was the area under the curve of daily pain intensity for a Gisèle Pickering, M.D., Ph.D., D.Pharm., period of 35 days after infusion. Secondary endpoints included pain (at 7, 15, 21 Bruno Pereira, Ph.D., Véronique Morel, Ph.D., and 28 days) and health-related, emotional, sleep, and quality of life questionnaires. Alexandrine Corriger, Ph.D., Fatiha Giron, B.Sc., Results: Daily pain intensity was not significantly different between the three Fabienne Marcaillou, M.D., Assiya Bidar-Beauvallot, B.Sc., groups (n = 20) over 35 days (mean area under the curve = 185 ± 100, 196 Evelyne Chandeze, B.Sc., Céline Lambert, M.Sc., ± 92, and 187 ± 90 pain score-days for ketamine, ketamine/magnesium, and Lise Bernard, D.Pharm., Noémie Delage, M.D.
    [Show full text]
  • The Absorption and Retention of Magnesium, Zinc, and Copper by Low Birth Weight Infants Fed Pasteurized Human Breast Milk
    Pediat. Res. 11: 991-997 (1977) Absorption magnesium copper newborn low birth weight infants zinc The Absorption and Retention of Magnesium, Zinc, and Copper by Low Birth Weight Infants Fed pasteurized Human Breast Milk M. J. DAUNCEY, J. C. L. SHAW,'3" AND J. URMAN Depnrttnent of Poedintrics, University College Hospitnl, Londorz, and Medical Resenrcll Council Dicnn Nutrition Unit, Cilmbridge, England Summary about two-thirds of the magnesium and perhaps one-third of the zinc in the body are present in the bones. Because of the " Using serial metabolic balance techniques, the absorption and extensive remodeling of fetal bone after birth retention of magnesium, copper, and zinc have been measured much of the magnesium and zinc in bone, as well as the hepatic in six preterm infants (mean gestation 29 weeks), and two term copper, probably become available to meet the later needs of the , small for gestational age infants (<1.5 kg birth weight). The growing full term infant. amounts of the minerals retained were compared with the The infant born months prematurely, however, has much amounts retained by a fetus of equivalent ~e~~~~~~~~lage in smaller amounts of magnesium, copper, and zinc in his body, u tero . and must rely on the fetal intestine to absorb enough of these The preterm absorbed 5'3 * 3'5 mg/kg'day "lagne- substances for his needs. Cavell and Widdowson (4) showed that sium (43% of intake, range 1-74%) and retained 2.8 * 1.3 mg/ full term infants were in negative balance for copper and zinc in kg' (25% intake, range -I5 to +48%)' The mean postna- the newborn period, and the reports of Tkacenko (21) and of tal retention over the period, as a percentage of Widdowson et a/.
    [Show full text]
  • DE Medicaid MAC List Effective As of 1/5/2018
    OptumRx - DE Medicaid MAC List Effective as of 1/5/2018 Generic Label Name & Drug Strength Effective Date MAC Price OTHER IV THERAPY (OTIP) 10/25/2017 77.61750 PENICILLIN G POTASSIUM FOR INJ 5000000 UNIT 3/15/2017 8.00000 PENICILLIN G POTASSIUM FOR INJ 20000000 UNIT 3/15/2017 49.62000 PENICILLIN G SODIUM FOR INJ 5000000 UNIT 10/25/2017 53.57958 PENICILLIN V POTASSIUM TAB 250 MG 1/3/2018 0.05510 PENICILLIN V POTASSIUM TAB 500 MG 12/29/2017 0.10800 PENICILLIN V POTASSIUM FOR SOLN 125 MG/5ML 10/26/2017 0.02000 PENICILLIN V POTASSIUM FOR SOLN 250 MG/5ML 12/22/2017 0.02000 AMOXICILLIN (TRIHYDRATE) CAP 250 MG 12/22/2017 0.03930 AMOXICILLIN (TRIHYDRATE) CAP 500 MG 11/1/2017 0.05000 AMOXICILLIN (TRIHYDRATE) TAB 500 MG 12/28/2017 0.20630 AMOXICILLIN (TRIHYDRATE) TAB 875 MG 10/31/2017 0.08000 AMOXICILLIN (TRIHYDRATE) CHEW TAB 125 MG 10/26/2017 0.12000 AMOXICILLIN (TRIHYDRATE) CHEW TAB 250 MG 10/26/2017 0.24000 AMOXICILLIN (TRIHYDRATE) FOR SUSP 125 MG/5ML 10/28/2017 0.00667 AMOXICILLIN (TRIHYDRATE) FOR SUSP 200 MG/5ML 12/20/2017 0.01240 AMOXICILLIN (TRIHYDRATE) FOR SUSP 250 MG/5ML 12/18/2017 0.00980 AMOXICILLIN (TRIHYDRATE) FOR SUSP 400 MG/5ML 12/28/2017 0.01310 AMPICILLIN CAP 250 MG 9/26/2017 0.07154 AMPICILLIN CAP 500 MG 11/6/2017 0.24000 AMPICILLIN FOR SUSP 125 MG/5ML 3/17/2017 0.02825 AMPICILLIN FOR SUSP 250 MG/5ML 9/15/2017 0.00491 AMPICILLIN SODIUM FOR INJ 250 MG 3/15/2017 1.38900 AMPICILLIN SODIUM FOR INJ 500 MG 7/16/2016 1.02520 AMPICILLIN SODIUM FOR INJ 1 GM 12/20/2017 2.00370 AMPICILLIN SODIUM FOR IV SOLN 1 GM 7/16/2016 15.76300 AMPICILLIN
    [Show full text]