Multiple Origins of Pyrethroid Insecticide Resistance Across the Species Complex of a Nontarget Aquatic Crustacean, Hyalella Azteca

Total Page:16

File Type:pdf, Size:1020Kb

Multiple Origins of Pyrethroid Insecticide Resistance Across the Species Complex of a Nontarget Aquatic Crustacean, Hyalella Azteca Multiple origins of pyrethroid insecticide resistance across the species complex of a nontarget aquatic crustacean, Hyalella azteca Donald P. Westona,1, Helen C. Poyntonb, Gary A. Wellbornc, Michael J. Lydyd, Bonnie J. Blalockb, Maria S. Sepulvedae, and John K. Colbournef aDepartment of Integrative Biology, University of California, Berkeley, CA 94720; bSchool for the Environment, University of Massachusetts, Boston, MA 02125; cDepartment of Biology, University of Oklahoma, Norman, OK 73019; dCenter for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, IL 62901; eDepartment of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907; and fThe Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405 Edited* by Bruce D. Hammock, University of California, Davis, CA, and approved August 20, 2013 (received for review January 31, 2013) Use of pesticides can have substantial nonlethal impacts on non- survival when exposed to contaminants (13). The possibility of target species, including driving evolutionary change, often with differential contaminant sensitivity among species within the unknown consequences for species, ecosystems, and society. complex has not been fully appreciated by the ecotoxicological Hyalella azteca, a species complex of North American freshwater community, yet it could have implications for the many moni- amphipods, is widely used for toxicity testing of water and sed- toring programs that rely on this organism. iment and has frequently shown toxicity due to pyrethroid pes- In the present study, we demonstrate wide variation in pyre- ticides. We demonstrate that 10 populations, 3 from laboratory throid sensitivity among populations of H. azteca. We contrast cultures and 7 from California water bodies, differed by at least sensitivity of three laboratory-cultured and seven wild-collected 550-fold in sensitivity to pyrethroids. The populations sorted in- populations and interpret differences in light of phylogenetic to four phylogenetic groups consistent with species-level diver- relationships, emergence of resistance, and contrasting gene gence. By sequencing the primary pyrethroid target site, the expression patterns among the populations. GENETICS voltage-gated sodium channel, we show that point mutations Results and their spread in natural populations were responsible for H. azteca differences in pyrethroid sensitivity. At least one population had Sources of Investigated and Relationship to Pyrethroid both mutant and WT alleles, suggesting ongoing evolution of resis- Exposure. Natural populations of H. azteca were obtained from tance. Although nonresistant H. azteca were susceptible to the typ- seven sites in California (Table 1). Using sediment pyrethroid ical neurotoxic effects of pyrethroids, gene expression analysis concentrations as an integrated measure of exposure, the sites suggests the mode of action in resistant H. azteca was not neurotox- represent a broad range of prior exposure. Two sites with minimal icity but was oxidative stress sustained only at considerably higher surrounding development (Blodgett and Laguna) contained bifen- pyrethroid concentrations. The finding that a nontarget aquatic spe- thrin barely above the 1-ng/g reporting limit. Chualar Creek con- cies has acquired resistance to pesticides used only on terrestrial pests tained no measurable pyrethroids, although agricultural pyrethroid is troubling evidence of the impact of chronic pesticide transport from land-based applications into aquatic systems. Our findings have far- Significance reaching implications for continued uncritical use of H. azteca as a principal species for monitoring and environmental policy The crustacean, Hyalella azteca, is commonly used in environ- decisions. mental monitoring to test the toxicity of water or sediment. We show that among three laboratory cultures and seven wild lthough evolution of pesticide resistance in pest species has populations of H. azteca, there is a more than 550-fold varia- Abeen a major area of investigation, evolutionary impacts of tion in sensitivity to widely used pyrethroid insecticides. Some pesticide pollution on nontarget species are poorly understood individuals have attained resistance by mutations in the volt- but may hold important consequences for affected species and age-gated sodium channel, the target site for pyrethroid tox- their ecosystems (1, 2). Acquisition of pesticide resistance may icity. Similar mutations have been found in agricultural pests be especially troublesome when it occurs in nontarget species targeted by pyrethroids, but this study indicates that runoff of terrestially applied urban and agricultural pesticides has been used in biomonitoring programs that inform public policy. One sufficient to induce resistance in a nontarget aquatic species on such species is the amphipod, Hyalella azteca, widely used for multiple, independent occasions. Our results have far-reaching sediment toxicity testing and sometimes for water testing (3, 4). implications for biomonitoring programs in general and espe- There are many instances of sediment or water toxicity to H. cially those relying on H. azteca. azteca due to pyrethroids, which are widely used insecticides in – fi urban and agricultural settings (4 6). However, we nd wild Author contributions: D.P.W. and H.C.P. designed research; D.P.W., H.C.P., G.A.W., M.J.L., populations of H. azteca in some pyrethroid-contaminated water and B.J.B. performed research; H.C.P., M.S.S., and J.K.C. contributed new reagents/analytic bodies from which water or sediment samples cause acute tools; D.P.W., H.C.P., G.A.W., and B.J.B. analyzed data; and D.P.W., H.C.P., G.A.W., M.J.L., mortality to laboratory-cultured populations. One possibility is and M.S.S. wrote the paper. fl that wild populations have evolved resistance, as has been The authors declare no con ict of interest. reported in target pests (7, 8). *This Direct Submission article had a prearranged editor. The picture is further complicated by the fact that H. azteca is Data deposition: The sequences reported in this paper have been deposited in the Gen- Bank database (accession nos. GAJQ00000000.1, GAJP00000000.1, JX678289, KF596727– actually a species complex. Genetic analyses of what are nomi- KF596752, and KF596753–KF596771), and the data reported in this paper have been nally H. azteca have suggested the presence of 33 species in the deposited in the Gene Expression Omnibus (GEO) database, www.ncbi.nlm.nih.gov/geo Great Basin of California and Nevada (9), 7 species in Wisconsin (accession nos. GPL17458 and GSE48943). and parts of Canada (10), 4 species in Michigan (11), and 2 1To whom correspondence should be addressed. E-mail: [email protected]. species in Oregon (12). Genetic differences among individuals This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. within a single population of H. azteca led to differences in 1073/pnas.1302023110/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1302023110 PNAS Early Edition | 1of6 Downloaded by guest on September 25, 2021 Table 1. Collecting sites for the wild H. azteca populations, including the organic content and total pyrethroid concentration in the sediments, measured at the time the animals were collected Land use surrounding Sediment organic Pyrethroid concentration Site and coordinates sampling site Sample date carbon (%) (ng/g)* Blodgett Reservoir, Sacramento, CA Undeveloped Nov. 19, 2010 2.7 1.3 38.5176°N, 121.2109°W grasslands Laguna Lake, Petaluma, CA Grasslands with scattered July 3, 2010 0.2 1.8 38.2064°N, 122.7636°W homes and agriculture † † Pleasant Grove Creek, Roseville, CA Open space with residential June 1, 2010; 2.9 6.8 38.8052°N, 121.3069°W use 1 km upstream March 13, 2013 Morrison Creek, Sacramento, CA Airfield with residential Oct. 19, 2010 1.6 Not detected (<1) 38.5271°N, 121.3274°W use 5 km upstream Mosher Slough, Stockton, CA Commercial and June 11, 2010 3.4 57.6 38.0325°N, 121.3654°W residential land use Chualar Creek, Chualar, CA Agriculture Aug. 18. 2010 1.1 Not detected (<1) 36.5583°N, 121.5296°W Grayson Creek, Concord, CA Commercial and Aug. 12, 2010 1.2 50.7 37.9665°N, 122.0666°W residential land use *Total sediment pyrethroids were comprised entirely of bifenthrin except Mosher Slough (35.5 ng/g bifenthrin, 5.9 ng/g cyfluthrin, 4.2 ng/g cyhalothrin, 5.4 ng/g cypermethrin, 6.6 ng/g permethrin) and Grayson Creek (26.6 ng/g bifenthrin, 7.7 ng/g cyfluthrin, 3.6 ng/g cypermethrin, 12.8 ng/g permethrin). † Chemistry data from the June 2010 collecting event. use is widespread in the watershed (14). The organophosphate in- 4.8 ng/L. Wild populations from the two sites with little prior secticide chlorpyrifos was present at 248 ng/g at the site. Among four pyrethroid exposure had sensitivity comparable to the cultures: urban creeks, Morrison Creek sediments had no measurable pyr- Blodgett Reservoir animals (clade B) had LC50sof1.1–1.3 ng/L, ethroids, perhaps because the site was in a reach of the creek along and Laguna Lake amphipods (clade A) had LC50sof3.9–4.8 ng/L. an airfield, although there was extensive residential development Wild populations from sites with the highest pyrethroid and therefore likely pyrethroid use, both upstream and downstream. exposures as indicated by sediment concentrations (Mosher and The Pleasant Grove Creek site had 6.8 ng/g bifenthrin, approxi- Grayson) or with pyrethroid use nearby in the watershed (Mor- mately one-third the median lethal concentration (LC50) for labo- rison and Chualar) showed extraordinary pyrethroid resistance. ratory-cultured H. azteca (15), and sediment toxicity attributed to H. azteca from the Morrison, Mosher, and Chualar sites had pyrethroids has been reported 2 km downstream (16). Mosher fl – Slough and Grayson Creek contained pyrethroids at least twice the cy uthrin LC50sof92535 ng/L. Grayson Creek animals were even more resistant, with only 33% mortality at the highest LC50 for laboratory-cultured H. azteca. For comparison with wild populations, laboratory-cultured H.
Recommended publications
  • BORON of Aquatic Life
    Canadian Water Quality Guidelines for the Protection BORON of Aquatic Life oron (CAS Registry Number 7440-42-8) is The wet deposition of boron over the continents is ubiquitous in the environment, occurring estimated to be approximately 0.50 Tg B/yr, where Bnaturally in over 80 minerals and constituting rainwater from continental sites contains less boron 0.001% of the Earth’s crust (U.S. EPA, 1987). The when compared to boron from coastal and marine sites chemical symbol for Boron is B with an atomic weight (Park and Schlesinger, 2002).Natural weathering of 10.81 g mol-1 (Budavari et al., 1989; Weast, 1985; (chemical and mechanical) of boron-containing rocks is Lide, 2000; Clayton and Clayton, 1982; Sax, 1984; a major source of boron compounds in water Windholz, 1983; Moss and Nagpal, 2003). Boron is not (Butterwick et al., 1989) and on land (Park and found as a free element in nature. Schlesinger, 2002). The amount of boron released into the aquatic environment varies greatly depending on the Sources to the environment: The highest concentrations surrounding geology. Boron compounds also are of boron are found in sediments and sedimentary rock, released to water in municipal sewage and in waste particularly in clay rich marine sediments. The high waters from coal-burning power plants, irrigation, boron concentration in seawater (4.5 mg B L-1), ensures copper smelters and industries using boron (ATSDR, that marine clays are rich in boron relative to other rock 1992; Howe, 1998). With respect to Canadian types (Butterwick et al., 1989). The most significant wastewater discharges, a literature review was source of boron is seasalt aerosols, where annual input conducted to characterize the state of knowledge of of boron to the atmosphere is estimated to be 1.44 Tg B municipal effluent (Hydromantis Inc., 2005).
    [Show full text]
  • Redescription of the Freshwater Amphipod Hyalella Faxoni from Costa Rica (Crustacea: Amphipoda: Hyalellidae)
    Rev. Biol. Trop. 50(2): 659-667, 2002 www.ucr.ac.cr www.ots.ac.cr www.ots.duke.edu Redescription of the freshwater amphipod Hyalella faxoni from Costa Rica (Crustacea: Amphipoda: Hyalellidae) Exequiel R. González1 and Les Watling2 1 Facultad de Ciencias del Mar, Universidad Católica del Norte, Casilla 117, Coquimbo, Chile, Ph.: 56-51-209931, Fax: 56-51-209812, e-mail: [email protected] 2 Darling Marine Center, University of Maine, 193 Clark’s Cove Rd., Walpole, Maine 04573, USA, Ph.: 207-563-3146, Fax: 207-563-8407, e-mail: [email protected] Received 20-VII-2001. Corrected 21-XI-2001. Accepted 05-V-2002. Abstract.: Hyalella faxoni Stebbing, 1903 from Costa Rica is redescribed. The species was previously in the synonymy of Hyalella azteca (Saussure, 1858). The morphological differences between these two species are discussed. Key words: Amphipoda, freshwater, Hyalella, epigean, South America. Hyalella faxoni Stebbing, 1903 is part of onymized H. knickerbockeri (Bate 1862), H. what has been called the “azteca complex” dentata Smith, 1874, H. inermis Smith, 1875 named after Hyalella azteca (Saussure 1858), a and Lockingtonia fluvialis Harford, 1877, common freshwater organism generally under H. azteca, but did not mention H. faxoni. thought to be found all over North America, Weckel (1907) put H. faxoni in the synonymy Central America and probably also in northern of H. knickerbockeri, which she thought had South America. The original description by precedence over H. dentata. She did not see Saussure (1858), based on samples from a Stebbing (1906) who had already put H. “cistern” in Veracruz and Mexico City in knickerbockeri under H.
    [Show full text]
  • The Hyalella (Crustacea: Amphipoda) Species Cloud of the Ancient Lake Titicaca Originated from Multiple Colonizations
    Accepted Manuscript The Hyalella (Crustacea: Amphipoda) species cloud of the ancient Lake Titicaca originated from multiple colonizations Sarah J. Adamowicz, María Cristina Marinone, Silvina Menu Marque, Jeffery W. Martin, Daniel C. Allen, Michelle N. Pyle, Patricio R. De los Ríos-Escalante, Crystal N. Sobel, Carla Ibañez, Julio Pinto, Jonathan D.S. Witt PII: S1055-7903(17)30154-9 DOI: https://doi.org/10.1016/j.ympev.2018.03.004 Reference: YMPEV 6076 To appear in: Molecular Phylogenetics and Evolution Received Date: 18 February 2017 Revised Date: 13 February 2018 Accepted Date: 5 March 2018 Please cite this article as: Adamowicz, S.J., Cristina Marinone, M., Menu Marque, S., Martin, J.W., Allen, D.C., Pyle, M.N., De los Ríos-Escalante, P.R., Sobel, C.N., Ibañez, C., Pinto, J., Witt, J.D.S., The Hyalella (Crustacea: Amphipoda) species cloud of the ancient Lake Titicaca originated from multiple colonizations, Molecular Phylogenetics and Evolution (2018), doi: https://doi.org/10.1016/j.ympev.2018.03.004 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. The final publication is available at Elsevier via https://doi.org/10.1016/j.ympev.2018.03.004. © 2018.
    [Show full text]
  • University of Birmingham the Toxicogenome of Hyalella
    University of Birmingham The Toxicogenome of Hyalella azteca Poynton, Helen C.; Colbourne, John K.; Hasenbein, Simone; Benoit, Joshua B.; Sepulveda, Maria S.; Poelchau, Monica F.; Hughes, Daniel S.T.; Murali, Shwetha C.; Chen, Shuai; Glastad, Karl M.; Goodisman, Michael A.D.; Werren, John H.; Vineis, Joseph H.; Bowen, Jennifer L.; Friedrich, Markus; Jones, Jeffery; Robertson, Hugh M.; Feyereisen, René; Mechler-Hickson, Alexandra; Mathers, Nicholas DOI: 10.1021/acs.est.8b00837 License: None: All rights reserved Document Version Peer reviewed version Citation for published version (Harvard): Poynton, HC, Colbourne, JK, Hasenbein, S, Benoit, JB, Sepulveda, MS, Poelchau, MF, Hughes, DST, Murali, SC, Chen, S, Glastad, KM, Goodisman, MAD, Werren, JH, Vineis, JH, Bowen, JL, Friedrich, M, Jones, J, Robertson, HM, Feyereisen, R, Mechler-Hickson, A, Mathers, N, Lee, CE, Biales, A, Johnston, JS, Wellborn, GA, Rosendale, AJ, Cridge, AG, Munoz-Torres, MC, Bain, PA, Manny, AR, Major, KM, Lambert, FN, Vulpe, CD, Tuck, P, Blalock, BJ, Lin, YY, Smith, ME, Ochoa-Acuña, H, Chen, MJM, Childers, CP, Qu, J, Dugan, S, Lee, SL, Chao, H, Dinh, H, Han, Y, Doddapaneni, H, Worley, KC, Muzny, DM, Gibbs, RA & Richards, S 2018, 'The Toxicogenome of Hyalella azteca: A Model for Sediment Ecotoxicology and Evolutionary Toxicology', Environmental Science and Technology, vol. 52, no. 10, pp. 6009-6022. https://doi.org/10.1021/acs.est.8b00837 Link to publication on Research at Birmingham portal Publisher Rights Statement: This document is the Accepted Manuscript version of a Published Work that appeared in final form in Environmental Science and Technology, copyright © American Chemical Society after peer review and technical editing by the publisher.
    [Show full text]
  • Canadian Water Quality Guidelines for the Protection of Aquatic Life
    Canadian Water Quality Guidelines for the Protection URANIUM of Aquatic Life ranium (U; CASN 7440-61-1) is a heavy Sources to the environment: Anthropogenically, naturally-occurring element (atomic number uranium can be released to the environment through U 92, atomic weight of 238.029 g/mol). It is a uranium mill tailings, mill and refining and conversion member of the actinide series on the periodic plant effluent, and stack emissions. Tailings deposited table and is radioactive; it decays by emitting an alpha on dry land, if not capped with a clean cover, can be () particle (2 neutrons and 2 protons) from its nucleus lifted as dust particles, as with emissions from the (Harley 1996). Elemental uranium has a relatively low stacks, and subsequently deposited or washed out by radioactivity (0.67 Ci for a one gram sample; ASTDR precipitation and reach surface water bodies. Treated 1999), and is not soluble in water. Elemental uranium uranium mill effluent is another possible source of has a boiling point of 4131°C, a melting point of uranium; however, the effluent and the stack emissions 1135°C and a density of 19.1 g·cm-3. are highly monitored and regulated. Uranium is also released into the atmosphere from uranium refining and Not found in elemental form in nature, uranium exists conversion plants in both soluble and insoluble forms. as an important component of about 155 minerals, The effluent of these plants is discharged into the including oxides (e.g., pitchblende and uraninite), aquatic environment via the municipal sanitary sewer phosphates, carbonates, vanadates, silicates, arsenates system, however it has not been identified as a source of and molybdates (Clark et al.
    [Show full text]
  • Environmental Factors Controlling Reproduction of the Amphipod Hyalella Azteca
    16 ENVIRONMENTAL FACTORS CONTROLLING REPRODUCTION OF THE AMPHIPOD HYALELLA AZTECA Lois G. Kruschwitz Department of Biology, Oklahoma City University, Oklahoma City, Oklahoma The effects of temperature, photoperiod, and mate stimulation on reproductive intervals were assessed in the laboratory. Field observations of sex ratios and the proportion of females carrying eggs provided comparisons for laboratory studies. Generally, within the ranges studied, higher temperatures, longer photoperiods, and pairing increase reproductive activity. Primarily, temperature regulates the reproductive activities investigated. Photoperiod and male stimulation affect specific reproductive activities. INTRODUCTION Temperature and light are often considered major exogenous determinants of the breeding cycles of crustaceans and other animals. (1). Geisler, Clemens, Hynes, and Cooper stressed the importance of temperature in the breeding biology of Hyalella azteca and other freshwater amphipod species (2, 3, 4, 5). Although there are indications that photoperiod is important in the control of reproductive activities of crustaceans, the mechanisms are not well understood (6, 7, 8, 9, 10, 11). In some amphipods the absence of the male has been shown to prolong female reproductive cycles by increasing the intermolt period and by delaying oviposition (12, 13). Temperature, light, and pairing are indicated as possible important exogenous determinants of the breeding activity in amphipods. The present investigation is concerned with the influence of these factors in the field and in the laboratory. I investigated the timing of the onset and cessation of measurable reproductive activity in field populations. The control of reproductive rates within the breeding season was studied in the laboratory. The laboratory inquiry determined the relative influence and interactions of temperature, photoperiod, and mate stimulation on dependent variables related to the reproduction of the amphipod.
    [Show full text]
  • ABSTRACT Collections of New Mexican Amphipod Crustaceans
    ; Citation: Cole, G. A. 1988b. A report on the status of Amphipoda, including Gammarus desperatus in New Mexico. Report submitted to the Endangered Species Program, New Mexico Department of Game and Fish under Professional Services Contract 519-77-02, Santa Fe, New Mexico. ABSTRACT Collections of New Mexican amphipod crustaceans were made during the first week of May, 1988. In the Rio Honda, Lincoln Co., an adult female Gammarus and some immature specimens were found to be referable to G. lacustris Sars. Also, there were examples of Hyalella that differed morphologically from those taken at the other collecting sites. North Spring at the Roswell Country Club, Chaves Co., was found to have been roofed-over and walled-up. There were amplexing Hyalella beneath debris in a shallow spring outflow, but no examples of Gammarus desperatus Cole could be found. It was impossible to collect in the depression where _§. desperatus once occurred. In the Bitter Lake National Wildlife Refuge specimens of Hyalella were taken from a sinkhole and from a small section of lost River. These were much like the Hyalella from Roswell. Also from lost River an oviger­ our female Gammarus and a larger male were taken. The latter had lost most of its antennular flagella , but it could be compared to _!h desperatus. and other members of the Gammarus-pecos complex. Careful comparisons of these two specimens with data derived from study of _!h desperatus and closely related forms imply that the lost River animals are related very closely to..§..:_ desperatus and may be conspecific with it, despite some vari­ ation.
    [Show full text]
  • Wetland Use and Feeding by Lesser Scaup During Spring Migration Across the Upper Midwest, Usa
    WETLANDS, Vol. 29, No. 2, June 2009, pp. 704–712 ’ 2009, The Society of Wetland Scientists WETLAND USE AND FEEDING BY LESSER SCAUP DURING SPRING MIGRATION ACROSS THE UPPER MIDWEST, USA Michael J. Anteau1,2 and Alan D. Afton3 1School of Renewable Natural Resources, Louisiana State University Baton Rouge, Louisiana, USA 70803 2Present address: U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown North Dakota, USA 58401, USA E-mail: [email protected] 3U.S. Geological Survey Louisiana Cooperative Fish and Wildlife Research Unit, Louisiana State University Baton Rouge, Louisiana, USA 70803 Abstract: Low food availability and forage quality and concomitant decreased lipid reserves of lesser scaup (Aythya affinis; hereafter scaup) during spring migration in the upper Midwest may partially explain reductions in the continental population of scaup. In springs 2004–2005, we examined wetland use and feeding activity of scaup on 356 randomly-selected wetlands within 6 regions in Iowa, Minnesota, and North Dakota. We examined wetland characteristics that favor high scaup use in 286 of these wetlands. We found that probabilities of wetland use and feeding by scaup increased with turbidity up to 45 and 30 NTU, respectively, but then declined at higher turbidity levels. Wetland use was positively correlated with size of open-water zone and amphipod densities, but was not correlated with chironomid densities. Feeding increased with amphipod density up to 26 m23 and then declined at higher amphipod densities; scaup seemingly forage most efficiently at amphipod densities above 26 m23. Wetland use was higher in North Dakota than in southern Minnesota and Iowa. Our results indicate that effective wetland restoration efforts to benefit scaup require maintaining abundant populations of amphipods (generally near 26 m23 landscape geometric mean) in wetlands with large (.
    [Show full text]
  • I Estudo Do Metabolismo Intermediário E Da Lipoperoxidação De Hyalella
    Estudo do Metabolismo Intermediário e da Lipoperoxidação de Hyalella curvispina e Hyalella pleoacuta (Crustacea, Amphipoda, Dogielinotidae) e Padronização destas Espécies como Bioindicadores Ambientais Autora: Bibiana Kaiser Dutra I PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE BIOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM BIOCIÊNCIAS - ZOOLOGIA Estudo do Metabolismo Intermediário e da Lipoperoxidação de Hyalella curvispina e Hyalella pleoacuta (Crustacea, Amphipoda, Dogielinotidae) e Padronização destas Espécies como Bioindicadores Ambientais Mestranda: Bibiana Kaiser Dutra Orientadora: Dra. Guendalina Turcato Oliveira DISSERTAÇÃO DE MESTRADO PORTO ALEGRE, RS, BRASIL 2007 II SUMÁRIO Sumário...........................................................................................................................................III Agradecimentos...............................................................................................................................V Dedicatória...................................................................................................................................VIII Resumo...........................................................................................................................................IX Abstract............................................................................................................................................X Apresentação...................................................................................................................................1
    [Show full text]
  • Terrestrial Amphipods Or Lawn Shrimp (Crustacea: Amphipoda: Talitridae)1 Thomas R
    EENY-220 Terrestrial Amphipods or Lawn Shrimp (Crustacea: Amphipoda: Talitridae)1 Thomas R. Fasulo2 Introduction occasionally invades structures is Arcitalitrus sylvaticus (Haswell) (McLaughlin et al. 2005, Smith and Whitman Amphipods comprise an order of crustacea, shrimp-like in 1992). Two species common to Florida are Talitroides form, which contains mostly marine and freshwater forms. topitotum (Burt) (W. Cranshaw personal communication 30 While some species are terrestrial, they still require moist June 2011) and Talitroides allaudi (Chevreux). habitats. These terrestrial species are sometimes referred to as lawn shrimp due to their similarity to true shrimp. Description and Life Cycle Amphipods are elongate and more or less compressed laterally. They do not have a carapace (the hard covering of the thorax common in other crustacea), and seven (rarely six) of the thoracic segments are distinct and bear leg-like appendages. The abdominal segments are more often or less fused, and so the thoracic segments make up most of the body (Borror et al. 1989). They have two pairs of antennae, with one pair usually very small. The eyes usually are well developed, but are sometimes reduced or lacking. Members of this order have chewing mouthparts (Smith and Whit- Figure 1. As seen by the red color, this amphipod, or lawn shrimp, is man 1992). Adult amphipods range from 5 mm to 20 mm dead. (3/16 to 3/4 inch) in length. Arcitalitrus sylvaticus (Haswell) Credits: UF/IFAS reaches a length of 8 mm (3/8 inch), Talitroides topitotum are 7 mm in length, and Talitroides allaudi about 3.5 mm. Distribution Aquatic species are often whitish but are seen in other Amphipods were first described in New South Wales, colors also.
    [Show full text]
  • Handbook Elasmopoides 627
    Handbook Elasmopoides 627 Coxae ordinary, moderately setose, coxa 1 rectangular or weakly expanded, coxa 4 lobate. Gnathopods diverse, gnathopod 1 small, wrist of medium length, weakly lobate, hand slightly longer than wrist, rectangular, palm slightly oblique, gnathopod 2 enlarged in both sexes, wrist in female of medium length, weakly lobate, hand elongate, rectangular, palm oblique, in male wrist short, strongly lobate, hand much enlarged, palm very oblique, often plain but usually sculptured with specific tooth formulas, dactyl elongate or short, gently or deeply curved, occasionally riding onto medial face of hand; other variables present. Article 2 of pereopods 5-7 weakly expanded, scarcely to slightly lobate posteroventrally, naked, setulate or strongly setose posteriorly; pereopods 5-7 generally short and stout. Rami of uropods 1-2 extending equally or subequally, marginally spinose, peduncle of uropod 1 with basofacial spine. Uropod 3 scarcely extended, magni or variramous, occasionally almost parviramous, rami or at least outer ramus broad and short, outer ramus always strongly spinose, article 2 if present cryptically vestigial. Telson short to ordinary, deeply cleft, apically spinose, each lobe generally with naked apicomedial protrusion. Gills 2-6, broad. Oostegites slender. Relationship.--Differing from Maera in the falcate article 3 of the mandibular palp. Variations.--Urosome with tooth (neglectus, japonicus); basis of pereopods 5-7 unlobed (spinidactylus). Species.—affinis Delia Valle, 1893 (= congoensis Shoemaker, 1920b) (Monod, 1931a) [352]; antennatus (Stout, 1913) (J.L. Barnard, 1962a) [370]; atolgidus J.L. Barnard, 1965 [591]; bampo J.L. Barnard, 1979 [370]; barbatus Schellenberg, 1925a, 1939b [448]; besnardi Oliveira, 1951 (? = brasiliensis) [462]; bollonsi Chilton, 1915 (J.L.
    [Show full text]
  • From Cuatro Cidnegas Material. Thc Status of Mexican Most Avid Collector of Us All
    CRUSTACEA FROM THE BOLSON OF CUATRO CIENEGAS, COAHUILA, MEXICO GERALD A. COLE Route 4, Box 892 Flagstaff, Arizona 86001 ABSTRACT Twelve crustaceans are known from the Cuatro CiCnegas basin. These include: the cirolanid isopods Speocirolana ther- mydronis, Sphaerolana interstitialis, Sphaerolana affinis; one stenasellid isopod Mexistenasellus coahuila, the first of the Stenasellidae found in the New World; and two endemic hadzioid (weckeliid) amphipods originally assigned to Mexiweckelia, M. colei, and M. particeps. M, part;ceps will be re ferred to the monotypic new genus Paramexiweckelia (Holsinger, in press), These six species were described from the basin and are endemic to it; *Ie genera Sphaerolana and, Paramexiweckelia have no representatives outside the basin. Other crustaceans include: a species of the brine shrimp, Artemia; another anostracan, probably a species of Streptocephalus; an harpacticoid copepod similar to Cletocarnptus albuquerquensis; an ostracodrefer- able to Chlarnydotheca,' an amphipod much like Hyalella azteca, although designated here simply Hyalella; and the decapod Palaemonetes suttkusi, The last species, Chlamydotheca, and H, azteca were described originally from Mexican material. Although crustacean diversity is low in its thermal waters, discovery of morespeciescanbeexpectedintheCuatroCi6negas basin. RESUMEN Doce crust-aceos son conocidos de la cuencade Cuatro CiCnegas. Estos incluyen: losis6podoscirol'anidosSpeocirolana therrnydronis, Sphaerolana interstitialis, Sphaerolana affinis; un is6podo estenasellido Mexistenasellus coahuila, el primer Stenasellidae descubierto €n el Nuevo Mundo; y dos anfipodos hadziidos (weckeliid) end6micos originalmente asignados a Mexiweckelia, M. colei y M, particeps. Se referir6 a M, particeps como un nuevo g6nero monotiPico, Paramexiweckelia (Holsinger, en prensa). Dichas seis especies fueron descritas de la cuenca donde son enddmicas; los gieneros Sphaerolana y Pararnexiueckelia no tienen representantes afuera de la cuenca.
    [Show full text]