ABSTRACT Collections of New Mexican Amphipod Crustaceans

Total Page:16

File Type:pdf, Size:1020Kb

ABSTRACT Collections of New Mexican Amphipod Crustaceans ; Citation: Cole, G. A. 1988b. A report on the status of Amphipoda, including Gammarus desperatus in New Mexico. Report submitted to the Endangered Species Program, New Mexico Department of Game and Fish under Professional Services Contract 519-77-02, Santa Fe, New Mexico. ABSTRACT Collections of New Mexican amphipod crustaceans were made during the first week of May, 1988. In the Rio Honda, Lincoln Co., an adult female Gammarus and some immature specimens were found to be referable to G. lacustris Sars. Also, there were examples of Hyalella that differed morphologically from those taken at the other collecting sites. North Spring at the Roswell Country Club, Chaves Co., was found to have been roofed-over and walled-up. There were amplexing Hyalella beneath debris in a shallow spring outflow, but no examples of Gammarus desperatus Cole could be found. It was impossible to collect in the depression where _§. desperatus once occurred. In the Bitter Lake National Wildlife Refuge specimens of Hyalella were taken from a sinkhole and from a small section of lost River. These were much like the Hyalella from Roswell. Also from lost River an oviger­ our female Gammarus and a larger male were taken. The latter had lost most of its antennular flagella , but it could be compared to _!h desperatus. and other members of the Gammarus-pecos complex. Careful comparisons of these two specimens with data derived from study of _!h desperatus and closely related forms imply that the lost River animals are related very closely to..§..:_ desperatus and may be conspecific with it, despite some vari­ ation. A REPORT SUBMITTED TO THE NEW MEXICO DEPARTMENT OF GAME AND FISH ENDANGERED SPECIES PROGRAM Gerald A. Cole July 1988 On May 3, 1988, Gerald A. and Jean H. Cole began a collecting trip to New Mexico. The trip was planned to last three days leaving from Flagstaff, AZ., and travelling to the Bitter Lake National Wildlife Refuge With collecting stops along the way. On May 4 the search for amphipod crustaceans began at the Rio Hondo near Hondo, Lincoln County, NM. This site was just east of the junction of U. S. Route 70 and 380, off the main route where a silver-pa,inted iron bridge crosses the river below a small crudely built dam (Photos 1 and 2). In the grass and aquatic vegetation at the stream margins there occurred: snails, probably referable to Physa; amphipods referable to Hyalella and Gammarus. This collecting site will be referred to as Station A. At another place on the Rio Hondo, also in Lincoln Co., NM, more collections were made. This was about 4.9 miles east of Station A, on Route 70-380 east of Tinnie, NM, and the junction of State Route 368. Here a rusty metal bridge crosses the river. There was no nearby dam. Collecting done along the stream banks yielded some small specimens of Gammarus. This collecting site is designated Station B. In the afternoon of 4 May 1988 we reached the Roswell Country Club to look for Gammarus desperatus in North Spring. This site, in Chaves County, NM, is shown in Photos 3, 4, and 5; it is designated Station C. 2 We found that the spring had been roofed-over and sodded. A curved concrete wall, composed of four tiers of cinder blocks and topped in part by a layer of common building bricks, closed the downstream entrance to the spring except for a narrow space about 38 mm high between the lowest of the cinder blocks and a concrete apron that leads to a nearby golf-course pond. Water, 3-4 mm deep, flowed through the space from the walled-off and roofed-over spring. On the concrete apron were some cinder blocks, loose slabs of concrete, sticks and stones. Beneath there were many repre­ sentatives of Hyalella and some terrestrial isopods belonging to the genus Porcellio. Many of the Hyalella were paired in amplexus and some were gravid. However, no specimens of Gammarus were found at Station C. On May 5 we arrived at the Bitter Lake National Wildlife Refuge and were escorted by Lee Marlatt to two collecting sites in the Research Natural Area. The first of these, Station D, was a sinkhole (see Photos 6 and 7). David Galat, of Arizona State University's Department of Zoology, has studied several sinkholes in the Refuge and supplied me with some chemical data he determined on waters collected 30 March 1985. These are extremely saline waters. The mean total dissolved solids for water collected at about one meter's depth in six sinkholes was 39.06 grams per liter. The range was from 10.63 to 75.49 g/liter. Sodium and chloride are the princi­ pal ions, with sulfate being relatively more abundant in the lower salinities. AT the edge of the sinkhole five specimens of Hyalella and some small sinis­ trally coiled snails, probably members of Physa, were taken. The other collecting site in the Refuge was at a sharp bend in a small stream called Lost River. The edges of the stream were grassy and here were collected four specimens of Hyalella and seven individuals referable to Gammarus. This is Station E, and is portrayed in Photo 8. 3 Hyalella at Four Stations The seven specimens of Hyalella collected at Station A along the edges of the Rio Hondo have mouth parts that are considered typical of Hyalella azteca (Saussure). This may be an inaccurate statement because: Saussure did not figure the mouth parts in his original description; the species may be extremely variable; and there are probably many undescribed species masquerading as!!.:. azteca. The endopod (or inner plate) of each first maxilla bears two terminal, strong plumose setae. On the inner margin of the endopod of each maxilla 2 there are two stout plumose setae, proximal to the apex. The inner plate of each maxilliped bears three triangular apical teeth. Mouth parts such as those described above are not unique to H. azteca. The smooth-backed Hyalella that occurs. in Montezuma Well, AZ, with H. montezuma has maxillae and maxillipeds similar to the Rio Hondo form. Also, some unpublished plates sent to me by Dr. E. L. 8ousfield show that two new species, Hyalella longicornis from a spring in St. George, UT, and.!!- caribbeana from Grand Terre, Guadeloupe, West Indies, show nearly identical mouth appendages. The dorsal mucronation of H. azteca (that Saussure described from specimens collected in Vera Cruz, Mexico) consists of a mid-dorsal, daudally projecting spine on each of pleonites l and 2 (Saussure 1858, Plate V, Fig. 33). In the Rio Hondo specimens I found no freely projecting tergite spines. There was strong chitinization in the posterior midline of several segments, but they were what I shall call pseudospines; the outer, thin transparent cuticle covers them so they do not project freely. (A sketch is included to illustrate spines and pseudospines). In most specimens the last three pereonites bore short p,eudospines held closely to the dorsal surface. The first three pleonites bore longer,raised structures that looked like spines 4 unless examined under higher magnification. In addition, a very short depressed pseudospine was present on the first segment of the urosome. Superficial examination of the seven Rio Hondo specimens might result in one terming the pleonite segments spined. It may be that at other seasons the tergite spines would be free and the pleon dorsal sur­ face mucronate. There were, however, ovigerous females and mature males in the collection. At the Roswell Country Club (Station C) the thriving Hyalella popu­ lations living beneath debris on the concrete apron outside North Spring differ from the Rio Hondo forms. The inner plate of the first maxilla bears two terminal plumose setae with a similar sub-apical seta close to them; essentially there are three terminal setae on this structure. Features of maxilla 2 and the maxilliped, however, are comparable to the Station A forms. The dorsal mucronation of the North Spring animals involves the presence of well-defined caudally directed spines on pleonites 1 and 2. A pseudospine is present on the third pleonite, and a smaller one is present on the first uronite. In most specimens small pseudospines occur on the posterior pereonites, and in some specimens all seven pereonites appear to bear small depressed pseudospines. The Hyalella individuals from the sinkhole (Station D) in the Bitter Lake National Wildlife Refuge resembled those from Station C. They also showed the unusual feature of three plumose setae on the endopod of maxilla 1, one being slightly smaller and a bit sub-apical on the inner margin. Their mucronation was like that·of the North Spring amphipods although the pleonite spines of pleonite l and 2 seemed to be a little longer, and the pseudospine on pleonite 3 was almost "real". 5 Only four specimens of Hyalella were taken from Lost River (Station E). The descriptions of the sinkhole population apply to the Lost River animals with two exceptions: the tergite spines on pleonites 1 and 2 may have been shorter in the Lost River crustaceans; one of the individuals from Station E had three stout plumose setae (rather than two) on the inner margin near the apex of the endopod of maxilla 2. The significance of this variation is not known. Conclusions re Hyalella There seem to be at least two discrete types of Hyalella described above. The Rio Hondo population differs from animals in Roswell and those in the Bitter Lake Refuge. Throughout southwestern North America such phenomena are collil1on; aquatic habitats are often island-like when compared with waters in mesic regions.
Recommended publications
  • Abstract Effects of Wildfire on Water Quality and Benthic Macroinvertebrate Communities of a Chihuahuan Desert Spring System
    ABSTRACT EFFECTS OF WILDFIRE ON WATER QUALITY AND BENTHIC MACROINVERTEBRATE COMMUNITIES OF A CHIHUAHUAN DESERT SPRING SYSTEM by Tara Jo Haan Wildfire disturbances affect resource availability and alter community composition in arid environments. Traditionally, fire effects on arid-land aquatic ecosystems are under-studied compared to terrestrial ecosystems. Chihuahuan Desert spring systems offer a unique opportunity to study such effects on macroinvertebrate community resistance and resilience. I took advantage of a rare opportunity to employ a BACI design to observe changes in water quality and macroinvertebrate communities to wildfire in a spring system on Bitter Lake National Wildlife Refuge, New Mexico. The results suggest significant water quality and species-specific response to wildfire. I observed an increase in an endangered snail, Juturnia kosteri, but there were no significant community-based changes. These results suggest that arid-land aquatic communities can be resistant to abiotic/biotic changes caused by wildland fire. With climate change predicted to increase the frequency and intensity of arid-land fires, aquatic communities may be more vulnerable to severe events in the future. EFFECTS OF WILDFIRE ON WATER QUALITY AND BENTHIC MACROINVERTEBRATE COMMUNITIES OF A CHIHUAHUAN DESERT SPRING SYSTEM A Thesis Submitted to the Faculty of Miami University in partial fulfillment of the requirements for the degree of Master of Science Department of Zoology by Tara Jo Haan Miami University Oxford, OH 2012 Advisor _______________________ Dr. David J. Berg Reader _______________________ Dr. Craig Williamson Reader _______________________ Dr. Ann L. Rypstra TABLE OF CONTENTS List of tables iii List of figures iv List of appendices v Acknowledgements vi 1.
    [Show full text]
  • Crustacea: Amphipoda) in Texas and New Mexico, Usa
    ANALYSIS OF THE GAMMARUS-PECOS COMPLEX (CRUSTACEA: AMPHIPODA) IN TEXAS AND NEW MEXICO, USA GERALD A. COLE Route 4, Box 892 Flagstaff, Arizona 86001 ABSTRACT A comparative study was made of representatives from seven populations of Gammarus in Texan and New Mexican fresh-to-miohaline waters in areas once overlain by Permian seas. They included the described species: G. pecos Cole and Bousfield (symbolized P) from Pecos Co., TX; G. hyalelloides Cole (H) from Phantom Lake Spring, Jeff Davis Co., TX; and G. desperatus Cole (D) from Chaves Co., NM. Members of other populations were examined from: San Solomon Spring (S), Toyahvale, Reeves Co., TX; a large species (C) co-occurring with H in Phantom Lake Spring; a small form (M) that came either from Phantom Lake Spring or from a spring 350 m to the north; and a species (E) from a pool near Carlsbad, Eddy Co., NM. All members of the group lack calceoli, bear C-setae on their mandibular palps, and have narrow oostegites. Coxae 1-4, in the larger individuals, are armed abundantly with long setae, and all animals have at least one spine at the posterodistal corner of the first peduncular article of the antennule. Twenty Mann-Whitney U tests were applied to certain morphologic attributes of the seven populations. The results suggest that: P and S are conspecific, with the latter showing some affinities to the larger animals (C) in the nearby Phantom Lake Spring system; C probably is a new species although more closely related to M and H than are the other four; G.
    [Show full text]
  • BORON of Aquatic Life
    Canadian Water Quality Guidelines for the Protection BORON of Aquatic Life oron (CAS Registry Number 7440-42-8) is The wet deposition of boron over the continents is ubiquitous in the environment, occurring estimated to be approximately 0.50 Tg B/yr, where Bnaturally in over 80 minerals and constituting rainwater from continental sites contains less boron 0.001% of the Earth’s crust (U.S. EPA, 1987). The when compared to boron from coastal and marine sites chemical symbol for Boron is B with an atomic weight (Park and Schlesinger, 2002).Natural weathering of 10.81 g mol-1 (Budavari et al., 1989; Weast, 1985; (chemical and mechanical) of boron-containing rocks is Lide, 2000; Clayton and Clayton, 1982; Sax, 1984; a major source of boron compounds in water Windholz, 1983; Moss and Nagpal, 2003). Boron is not (Butterwick et al., 1989) and on land (Park and found as a free element in nature. Schlesinger, 2002). The amount of boron released into the aquatic environment varies greatly depending on the Sources to the environment: The highest concentrations surrounding geology. Boron compounds also are of boron are found in sediments and sedimentary rock, released to water in municipal sewage and in waste particularly in clay rich marine sediments. The high waters from coal-burning power plants, irrigation, boron concentration in seawater (4.5 mg B L-1), ensures copper smelters and industries using boron (ATSDR, that marine clays are rich in boron relative to other rock 1992; Howe, 1998). With respect to Canadian types (Butterwick et al., 1989). The most significant wastewater discharges, a literature review was source of boron is seasalt aerosols, where annual input conducted to characterize the state of knowledge of of boron to the atmosphere is estimated to be 1.44 Tg B municipal effluent (Hydromantis Inc., 2005).
    [Show full text]
  • Redescription of the Freshwater Amphipod Hyalella Faxoni from Costa Rica (Crustacea: Amphipoda: Hyalellidae)
    Rev. Biol. Trop. 50(2): 659-667, 2002 www.ucr.ac.cr www.ots.ac.cr www.ots.duke.edu Redescription of the freshwater amphipod Hyalella faxoni from Costa Rica (Crustacea: Amphipoda: Hyalellidae) Exequiel R. González1 and Les Watling2 1 Facultad de Ciencias del Mar, Universidad Católica del Norte, Casilla 117, Coquimbo, Chile, Ph.: 56-51-209931, Fax: 56-51-209812, e-mail: [email protected] 2 Darling Marine Center, University of Maine, 193 Clark’s Cove Rd., Walpole, Maine 04573, USA, Ph.: 207-563-3146, Fax: 207-563-8407, e-mail: [email protected] Received 20-VII-2001. Corrected 21-XI-2001. Accepted 05-V-2002. Abstract.: Hyalella faxoni Stebbing, 1903 from Costa Rica is redescribed. The species was previously in the synonymy of Hyalella azteca (Saussure, 1858). The morphological differences between these two species are discussed. Key words: Amphipoda, freshwater, Hyalella, epigean, South America. Hyalella faxoni Stebbing, 1903 is part of onymized H. knickerbockeri (Bate 1862), H. what has been called the “azteca complex” dentata Smith, 1874, H. inermis Smith, 1875 named after Hyalella azteca (Saussure 1858), a and Lockingtonia fluvialis Harford, 1877, common freshwater organism generally under H. azteca, but did not mention H. faxoni. thought to be found all over North America, Weckel (1907) put H. faxoni in the synonymy Central America and probably also in northern of H. knickerbockeri, which she thought had South America. The original description by precedence over H. dentata. She did not see Saussure (1858), based on samples from a Stebbing (1906) who had already put H. “cistern” in Veracruz and Mexico City in knickerbockeri under H.
    [Show full text]
  • Department of the Interior Fish and Wildlife Service
    Tuesday, August 9, 2005 Part III Department of the Interior Fish and Wildlife Service 50 CFR Part 17 Endangered and Threatened Wildlife and Plants; Listing Roswell springsnail, Koster’s springsnail, Noel’s amphipod, and Pecos assiminea as Endangered With Critical Habitat; Final Rule VerDate jul<14>2003 18:26 Aug 08, 2005 Jkt 205001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\09AUR2.SGM 09AUR2 46304 Federal Register / Vol. 70, No. 152 / Tuesday, August 9, 2005 / Rules and Regulations DEPARTMENT OF THE INTERIOR SUPPLEMENTARY INFORMATION: in coastal brackish waters or along tropical and temperate seacoasts Background Fish and Wildlife Service worldwide (Taylor 1987). Inland species It is our intent to discuss only those of the genus Assiminea are known from 50 CFR Part 17 topics directly relevant to this final around the world, and in North America listing determination. For more RIN 1018–AI15 they occur in California (Death Valley information on the four invertebrates, National Monument), Utah, New Endangered and Threatened Wildlife refer to the February 12, 2002, proposed Mexico, Texas (Pecos and Reeves and Plants; Listing Roswell rule (67 FR 6459). However, some of Counties), and Mexico (Bolso´n de springsnail, Koster’s springsnail, this information is discussed in our Cuatro Cı´enegas). Noel’s amphipod, and Pecos analyses below, such as the summary of The Roswell springsnail and Koster’s assiminea as Endangered With Critical factors affecting the species. springsnail are aquatic species. These Habitat Springsnails snails have lifespans of 9 to 15 months and reproduce several times during the AGENCY: Fish and Wildlife Service, The Permian Basin of the spring through fall breeding season Interior.
    [Show full text]
  • Section IV – Guideline for the Texas Priority Species List
    Section IV – Guideline for the Texas Priority Species List Associated Tables The Texas Priority Species List……………..733 Introduction For many years the management and conservation of wildlife species has focused on the individual animal or population of interest. Many times, directing research and conservation plans toward individual species also benefits incidental species; sometimes entire ecosystems. Unfortunately, there are times when highly focused research and conservation of particular species can also harm peripheral species and their habitats. Management that is focused on entire habitats or communities would decrease the possibility of harming those incidental species or their habitats. A holistic management approach would potentially allow species within a community to take care of themselves (Savory 1988); however, the study of particular species of concern is still necessary due to the smaller scale at which individuals are studied. Until we understand all of the parts that make up the whole can we then focus more on the habitat management approach to conservation. Species Conservation In terms of species diversity, Texas is considered the second most diverse state in the Union. Texas has the highest number of bird and reptile taxon and is second in number of plants and mammals in the United States (NatureServe 2002). There have been over 600 species of bird that have been identified within the borders of Texas and 184 known species of mammal, including marine species that inhabit Texas’ coastal waters (Schmidly 2004). It is estimated that approximately 29,000 species of insect in Texas take up residence in every conceivable habitat, including rocky outcroppings, pitcher plant bogs, and on individual species of plants (Riley in publication).
    [Show full text]
  • The Hyalella (Crustacea: Amphipoda) Species Cloud of the Ancient Lake Titicaca Originated from Multiple Colonizations
    Accepted Manuscript The Hyalella (Crustacea: Amphipoda) species cloud of the ancient Lake Titicaca originated from multiple colonizations Sarah J. Adamowicz, María Cristina Marinone, Silvina Menu Marque, Jeffery W. Martin, Daniel C. Allen, Michelle N. Pyle, Patricio R. De los Ríos-Escalante, Crystal N. Sobel, Carla Ibañez, Julio Pinto, Jonathan D.S. Witt PII: S1055-7903(17)30154-9 DOI: https://doi.org/10.1016/j.ympev.2018.03.004 Reference: YMPEV 6076 To appear in: Molecular Phylogenetics and Evolution Received Date: 18 February 2017 Revised Date: 13 February 2018 Accepted Date: 5 March 2018 Please cite this article as: Adamowicz, S.J., Cristina Marinone, M., Menu Marque, S., Martin, J.W., Allen, D.C., Pyle, M.N., De los Ríos-Escalante, P.R., Sobel, C.N., Ibañez, C., Pinto, J., Witt, J.D.S., The Hyalella (Crustacea: Amphipoda) species cloud of the ancient Lake Titicaca originated from multiple colonizations, Molecular Phylogenetics and Evolution (2018), doi: https://doi.org/10.1016/j.ympev.2018.03.004 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. The final publication is available at Elsevier via https://doi.org/10.1016/j.ympev.2018.03.004. © 2018.
    [Show full text]
  • University of Birmingham the Toxicogenome of Hyalella
    University of Birmingham The Toxicogenome of Hyalella azteca Poynton, Helen C.; Colbourne, John K.; Hasenbein, Simone; Benoit, Joshua B.; Sepulveda, Maria S.; Poelchau, Monica F.; Hughes, Daniel S.T.; Murali, Shwetha C.; Chen, Shuai; Glastad, Karl M.; Goodisman, Michael A.D.; Werren, John H.; Vineis, Joseph H.; Bowen, Jennifer L.; Friedrich, Markus; Jones, Jeffery; Robertson, Hugh M.; Feyereisen, René; Mechler-Hickson, Alexandra; Mathers, Nicholas DOI: 10.1021/acs.est.8b00837 License: None: All rights reserved Document Version Peer reviewed version Citation for published version (Harvard): Poynton, HC, Colbourne, JK, Hasenbein, S, Benoit, JB, Sepulveda, MS, Poelchau, MF, Hughes, DST, Murali, SC, Chen, S, Glastad, KM, Goodisman, MAD, Werren, JH, Vineis, JH, Bowen, JL, Friedrich, M, Jones, J, Robertson, HM, Feyereisen, R, Mechler-Hickson, A, Mathers, N, Lee, CE, Biales, A, Johnston, JS, Wellborn, GA, Rosendale, AJ, Cridge, AG, Munoz-Torres, MC, Bain, PA, Manny, AR, Major, KM, Lambert, FN, Vulpe, CD, Tuck, P, Blalock, BJ, Lin, YY, Smith, ME, Ochoa-Acuña, H, Chen, MJM, Childers, CP, Qu, J, Dugan, S, Lee, SL, Chao, H, Dinh, H, Han, Y, Doddapaneni, H, Worley, KC, Muzny, DM, Gibbs, RA & Richards, S 2018, 'The Toxicogenome of Hyalella azteca: A Model for Sediment Ecotoxicology and Evolutionary Toxicology', Environmental Science and Technology, vol. 52, no. 10, pp. 6009-6022. https://doi.org/10.1021/acs.est.8b00837 Link to publication on Research at Birmingham portal Publisher Rights Statement: This document is the Accepted Manuscript version of a Published Work that appeared in final form in Environmental Science and Technology, copyright © American Chemical Society after peer review and technical editing by the publisher.
    [Show full text]
  • Literature Cited Designation of Critical Habitat for Roswell Springsnail, Koster’S Springsnail, Noel’S Amphipod, and Pecos Assiminea Docket No
    Literature Cited Designation of Critical Habitat for Roswell Springsnail, Koster’s Springsnail, Noel’s Amphipod, and Pecos Assiminea Docket No. FWS-R2-ES-2009-0014, May 2011 Bailey, J.K., J.A. Schweitzer, and T.G. Whitham. 2001. Salt cedar negatively affects biodiversity of aquatic macroinvertebrates. Wetlands 21:442-447. Balleau , W.P., R.A. Woford, D.M. Romero, and S.E. Silver. 1999. Source-water protection zones for Bitter Lake National Wildlife Refuge. Prepared for U.S. Fish and Wildlife Service, Albuquerque, NM. 42 pp. Berg, D.J. 2010. Status of the Rio Hondo population of Noel’s amphipod (Gammarus desperatus). Report to U.S. Fish and Wildlife Service, Albuquerque, NM. 3 pp. Boghici, R. 1997. Hydrogeological investigations at Diamond Y Springs and surrounding area, Pecos County, Texas. M.A. Thesis. University of Texas at Austin. 120 pp. Boylen, C.W. and T.D. Brock. 1973. Bacterial decomposition properties in Lake Wingra sediments during winter. Limnology and Oceanography 18:628-634. Bureau of Land Management. 2002. Habitat protection zone environmental assessment. EA-NM- 060-00-030. Roswell, Field Office, Roswell, NM. Burton, G.A. Jr. and R.E. Pitt. 2002. Ecosystem component characterization. Chapter 6 in Stormwater Effects Handbook: A Toolbox for Watershed Managers, Scientists, and Engineers. Lewis Publishers, CRC Press, Boca Raton, FL. Brune, G. 1981. Springs of Texas. Branch-Smith, Inc. Fort Worth, Texas. Christensen, J.H., B. Hewitson, A. Busuioc, A. Chen, X. Gao, I. Held, R. Jones, R.K. Kolli, W.- T. Kwon, R. Laprise, V. Magaña Rueda, L.Mearns, C.G. Menéndez, J. Räisänen, A.
    [Show full text]
  • 2020 Biological Assessment for the Rangeland Grasshopper and Mormon Cricket Suppression Program in New Mexico
    2020 Biological Assessment For the Rangeland Grasshopper and Mormon Cricket Suppression Program in New Mexico 01/24/2020 Prepared by USDA, APHIS, PPQ 270 South 17th Street Las Cruces, NM 88005 BIOLOGICAL ASSESSMENT (BA) FOR STATE CONSULTATION AND CONFERENCE FOR 2020 GH/MC PROGRAMS IN NEW MEXICO 2020 Biological Assessment for the Rangeland Grasshopper and Mormon Cricket Suppression Program, New Mexico 1.0 INTRODUCTION The Animal and Plant Health Inspection Service (APHIS), in conjunction with other Federal agencies, State departments of agriculture, land management groups, and private individuals, is planning to conduct grasshopper control programs in New Mexico in 2020. This document is intended as state-wide consultation and conference with the U.S. Fish and Wildlife Service (FWS) regarding the APHIS Rangeland Grasshopper and Mormon Cricket Suppression Program. Beginning in 1987, APHIS has consulted with the FWS on a national level for the Rangeland Grasshopper Cooperative Management Program. Biological Opinions (BO) were issued annually by FWS from 1987 through 1995 for the national program. A letter dated October 3, 1995 from FWS to APHIS concurred with buffers and other measures agreed to by APHIS for New Mexico and superseded all previous consultations. Since then, funding constraints and other considerations have drastically reduced grasshopper/Mormon cricket suppression activities. APHIS is requesting initiation of informal consultation for the implementation of the 2020 Rangeland Grasshopper and Mormon Cricket Suppression Program on rangeland in New Mexico. Our determinations of effect for listed species, proposed candidate species, critical habitat, and proposed critical habitat are based on the October 3, 1995 FWS letter, the analysis provided in the 2019 Environmental Impact Statement (EIS) for APHIS suppression activities in 17 western states, and local discussions with FWS.
    [Show full text]
  • Lang 1999 Status of Aquatic Mollusks of New Mexico E-20-7.Pdf
    Appendix A. Management recommendations for state-listed and federal Candidate species and Species of Concern macro invertebrates of New Mexico, E-20-7. Management Recommendations for State-listed and Federal Candidate Species and Species of Concern Macroinvertebrates of New Mexico under Section 6 Project E-20-7 Noel's Amphipod (Gammarus desperatus) Status: Monthly (1995-1998) censuses ofmacroinvertebrates at the Bitter Lake National WildlifeRefuge (BLNWR) documented a second population of G. desperatus in Sago Springs complex. This species was known heretofore only fromBitter Creek ("Lost River"; Cole 1988), and extirpated from North Spring ofthe Roswell Country Club (RCC) and Lander Springbrook, Chaves County (Cole 1981, 1985). From June 1995 to May 1996, the relative abundance of G. desperatus in 2 2 Bitter Creek was 64-8768 amphipods/m compared to lower densities (26-575 amphipods/m ) in Sago Springs complex. A satellite population of G. desperatus was recently documented by Dr. M. E. Gordon in a ditch along the west shore line ofrefugeUnit 6 (B. K. Lang,pers. obs.). Gammarus desperatus appears restricted to wetland habitats ofthe BLNWR, as exploratory aquatic inventories in southeasternNew Mexico during the past fouryears have documented only hyalellid amphipods (NMGF files). Cole (1981, 1985, 1988) considered the species a narrow endemic known only fromisolated populations in Chaves County, New Mexico. Gammarus desperatus occurs sympatrically with three macroinvertebrate tax.apossessing state and federalstatus (Table 1), the federalendangered Pecos gambusia, and the proposed endangered Pecos pupfish, that inhabit surface waters of Bitter Creek and Sago Springs complex ofthe BLNWR. Potential adverse impacts of oil and gas activities along the Pecos River (USFWS 1997b) underscore the imminence ofthreats (see Appendix B, attached) to the long­ term viability of G.
    [Show full text]
  • THREATENED and ENDANGERED SPECIES of NEW MEXICO 2008 Biennial Review and Recommendations
    THREATENED AND ENDANGERED SPECIES OF NEW MEXICO 2008 BIENNIAL REVIEW DRAFT First Public Comment Period March 11, 2008 New Mexico Department of Game and Fish Conservation Services Division DRAFT 2008 Biennial Review of T & E Species of NM, 3/11/08 THREATENED AND ENDANGERED SPECIES OF NEW MEXICO 2008 Biennial Review and Recommendations Authority: Wildlife Conservation Act (17-2-37 through 17-2-46 NMSA 1978) EXECUTIVE SUMMARY: A total of 118 species and subspecies are on the 2008 list of threatened and endangered New Mexico wildlife. The list includes 2 crustaceans, 25 mollusks, 23 fishes, 6 amphibians, 15 reptiles, 32 birds and 15 mammals (Tables 1, 2). An additional 7 species of mammals has been listed as restricted to facilitate control of traffic in federally protected species. A species is endangered if it is in jeopardy of extinction or extirpation from the state; a species is threatened if it is likely to become endangered within the foreseeable future throughout all or a significant portion of its range in New Mexico. Species or subspecies of mammals, birds, reptiles, amphibians, fishes, mollusks, and crustaceans native to New Mexico may be listed as threatened or endangered under the Wildlife Conservation Act (WCA). During the Biennial Review, species may be upgraded from threatened to endangered, or downgraded from endangered to threatened, based upon data, views, and information regarding the biological and ecological status of the species. Investigations for new listings or removals from the list (delistings) can be undertaken at any time, but require additional procedures from those for the Biennial Review. The 2006 Biennial Review contained a recommendation for maintaining the status for 119 species and subspecies listed as threatened, endangered, or restricted under the WCA, and uplisting four species (Arizona grasshopper sparrow, Pecos bluntnose shiner, spikedace, and meadow jumping mouse ) from threatened to endangered and downlisting two species (shortneck snaggletooth and piping plover) from endangered to threatened.
    [Show full text]