Elemental and Neurochemical Based Analysis of the Pathophysiological Mechanisms of Gilles De La Tourette Syndrome

Total Page:16

File Type:pdf, Size:1020Kb

Elemental and Neurochemical Based Analysis of the Pathophysiological Mechanisms of Gilles De La Tourette Syndrome MEDIZINISCHE HOCHSCHULE HANNOVER Klinik für Psychiatrie, Sozialpsychiatrie und Psychotherapie Elemental and Neurochemical Based Analysis of the Pathophysiological Mechanisms of Gilles de la Tourette syndrome INAUGURALDISSERTATION zur Erlangung des Grades einer Doktorin oder eines Doktors der Naturwissenschaften Doctor rerum naturalium - Dr. rer. nat. vorgelegt von Ahmad Seif Kanaan B.Sc., M.Sc geb. am 17/05/1986, Amman, Jordanien Hannover, Deutschland (2017) Promotionsordnung der Medizinischen Hochschule Hannover für die Erlangung des Grades einer Doktorin/eines Doktors der Naturwissenschaften (Doctor rerum naturalium) Letzte Änderung in der 523. Sitzung Senatssitzung vom 15.07.2015 Wissenschaftliche Betreuung: Prof. Dr. med. Kirsten Müller-Vahl Wissenschaftliche Zweitbetreuung: Prof. Dr. rer. nat. Claudia Grothe 1. Erst-Gutachterin/Gutachter: Prof. Dr. med. Kirsten Müller-Vahl 2. Gutachterliche Stellungnahme durch: Prof. Dr. rer. nat. Claudia Grothe 3. Gutachterin/Gutachter: Prof Dr. Phil. Florian Beißner Tag der mündlichen Prüfung: 12.07.2017 Promotionsordnung der Medizinischen Hochschule Hannover für die Erlangung des Grades einer Doktorin/eines Doktors der Naturwissenschaften (Doctor rerum naturalium) Letzte Änderung in der 523. Sitzung Senatssitzung vom 15.07.2015 To Seif, Shireen, Farah & Mira . “How can a three-pound mass of jelly that you can hold in your palm imagine angels, contemplate the meaning of infinity, and even question its own place in the cosmos? Especially awe inspiring is the fact that any single brain, including yours, is made up of atoms that were forged in the hearts of countless, far-flung stars billions of years ago. These particles drifted for eons and light-years until gravity and change brought them together here, now. These atoms now form a conglomerate- your brain- that can not only ponder the very stars that gave it birth but can also think about its own ability to think and wonder about its own ability to wonder. With the arrival of humans, it has been said, the universe has suddenly become conscious of itself. This, truly, it the greatest mystery of all.” V.S. Ramachandran Acknowledgements I warmly thank that patients and their families for their selfless contribution of time and effort to further the understanding of their affliction — a disease that makes them lead difficult, stigmatized and action packed lives. I particularly admired the determination of many of the patients who had to travel vast distances across Germany to undergo multiple investigations. My most enduring acknowledgment goes to my supervisors Kirsten Müller-Vahl and Harald E. Möller who were the true pillars of this work. I sincerely thank them both for their excellent mentorship and guidance, and for giving me the opportunity to tackle absorbing ideas while traveling between Leipzig and Hannover. My deep gratitude also goes to Alfred Anwander for teaching me how to think like an image scientist and for always keeping the door open for discussion. I sincerely thank Sarah Gerasch for her significant contribution in recruiting the patients and acquiring the clinical data. I am also grateful to Daniel Margulies for giving me the opportunity to discover image analysis in his laboratory in the initial stages of my PhD. My deep admiration and gratitude go to Isabel Garcia-Garcia who provided ample ideas and reviewed multiple drafts of initial works. Thank you for crossing my path, for teaching me how to conduct statistical analyses with a smile and for being there when it counted. For their tremendous support in image and clinical data acquisition, I sincerely thank Saskia Czerwonatis, Claudia Pelke, Leonie Lampe, Tomas Goucha, Sieglinde Remane, Nicole Pampus, Christiane, Driedger-Garbe and Cornelia Gerbothe. I especially thank Andre Pampel and Torsten Schlumm for their support in developing the imaging se- quences. To Jamie Near, Berkin Bilgic and Andreas Schäfer, thank you for your openness to collaborate and for providing technical support in finding solutions to challenging imaging problems. I would also like to thank my colleagues in the NMR group: Ricardo Metere, Tobias Lenich, Miguel Martinez Maestro, Henrick Marschner, Maria Guidi, Jakob Georgi and all other members for sharing this experience with me. To the TS-EUROTRAIN community: Nacho Gonzalez, Francesca Rizzo, Ester Nespoli, Muhammad Sulaman Nawaz, Sam Padmanabhuni, John Alexander, Nuno Nogueira, Natalie Forde, Luca Pagliaroli, Sarah Fan, Joanna Widomska, Rayan Houssari, Peristera Paschou, Andrea Ludolph, Danielle Cathe, Pieter Hoekstra, Zeynep Tümer, Csaba Barta, Jeffrey Glennon, Bastian Hengerer, Hrienn Steffanson, Jeremiah Scharf, I thank you all for making this journey so cheerful and all the more worthwhile. I also warmly thank Professor Mary Robertson for our illuminating discussions and for inspiring me to keep going forward. To Jim Leckman, I thank you for appreciating my work and bestowing me with the honor of the 2016 Professor Mary Robertson Award. To my family Seif, Shireen, Mira, Farah and Hussam, I deeply thank you for your love, understanding and everlasting encouragement. Abstract Elemental and neurochemical based analysis of the pathophysiological mechanisms of Gilles de le Tourette syndrome. Ahmad Seif Kanaan Gilles de la Tourette syndrome is a developmental neuropsychiatric movement disorder characterized by the presence of tics and associated comorbid conditions. As current treatment strategies are often unsatisfactory and associated with significant adverse ef- fects, there is an urgent need in further elucidating the nature of GTS pathophysiology to accelerate the drug discovery and development process. Neurochemically, previous work has indicated that the clinical manifestations of GTS are primarily driven by putative ab- normalities in dopamine and γ-Aminobutyric-acid (GABA). Given the spatio-temporal and metabolic interdependence exhibit by the neurotransmitter glutamate with dopamine and GABA, respectively, we hypothesized the glutamatergic signalling is related to the pathophysiology of GTS. On a finer scale, considering the critical role exhibited by the el- ement iron in varied biochemical processes sustaining typical neurochemical synthesis and trafficking throughout the lifespan, we additionally postulated that GTS patients exhibit abnormalities in iron metabolism. Utilizing a multi-parametric, quantitative Magnetic Resonance Imaging approach in vivo, we investigated the role of glutamate and iron using 1H-Magnetic Resonance Spectroscopy and Quantitative Susceptibility Mapping, respectively, for the first time. To achieve these aims, two methodological investigations were initially conducted to obtain quantitative neurochemical and magnetic susceptibil- ity measurements of sufficient precision to identify rather subtle changes. Imaging, spec- troscopic and clinical data were acquired from a relatively large and well-characterized sample of adult patients with GTS and age/gender matched healthy controls. To in- terrogate the influence of treatment on neurochemical and clinical characteristics of the study sample, we employed a longitudinal study design in which the patients were in- vited to undergo treatment with the commonly used antipsychotic aripiprazole. At the neurochemical level, we report significant reductions in the concentrations of spec- troscopic glutamatergic signalling markers in the striatum and the thalamus in GTS. These reductions correlated with tic severity and were normalized with aripiprazole treat- ment. At the elemental level, we report significant reductions in subcortical magnetic susceptibility which is regarded as surrogate index for iron content. Reductions were specific to subcortical nuclei key in coordinating mechanisms of motor and non-motor habit formation, and were mirrored by decreases in serum ferritin levels. Importantly, significant associations were observed between striatal susceptibility and glutamatergic neurotransmission as indexed by the glutamine:glutamate ratio. Clinically, treatment with aripiprazole led to significant reductions of tic severity in the patient sample, and additionally led to an approximate 50% reduction in OCD diagnosis. Our results indi- cate that patients with GTS exhibit an abnormality in the flux of metabolites in the GABA-glutamate-glutamine cycle, thus implying perturbations in astrocytic-neuronal coupling systems that maintain the subtle balance between excitatory and inhibitory neurotransmission within subcortical nuclei. These abnormalities may be driven or fur- ther compounded by the observed abnormalities in iron metabolism. Chronic pertur- bations in the subcortical GABA-glutamate-glutamine cycle flux could lead to spatially focalized alterations in excitatory, inhibitory and modulatory subcortical neurochemical ratios that would have a profound influence on the neuroplastic mechanisms involved ii in reinforcement learning and habit formation systems, which are governed by striatal neurons that code the serial order of syntactic natural behaviour. This work sheds a new light on the neurobiological basis of GTS and provides novel clues that may prove critical in the future development of functionally selective pharmacological modulators that target multiple neurochemical systems. Zusammenfassung Elemental and neurochemical based analysis of the pathophysiological mechanisms of Gilles de le Tourette syndrome. Ahmad Seif Kanaan Das Gilles de la Tourette-Syndrom (GTS) ist eine neuropsychiatrische Entwicklungsstör- ung, die durch das Bestehen von Tics und psychiatrischen Komorbiditäten
Recommended publications
  • The Dopamine Transporter: More Exciting Than Housekeeping
    The Dopamine Transporter: More Exciting than Housekeeping Susan Ingram Washington State University Vancouver Dopaminergic Synapse Presynaptic cell MGluR 2 Na+ Cl- GIRK D2 DA DA D2 D1 a1 Postsynaptic cell Currents are activated at lower dopamine concentrations than are required for transport Ingram, et al., 2002 Low DA concentrations increase firing Ingram, et al., 2002 DAT-mediated chloride current is excitatory in cultured midbrain DA neurons DEPOLARIZATION HYPERPOLARIZATION Ingram, et al., 2002 Proteins that regulate intracellular Cl- Whole-cell patch clamp recordings from DA neurons Raclopride Sulpiride Prazosin TTX biocytin Prasad and Amara, 2001 Amphetamine activates a DAT-mediated current at low concentrations Cultures Slices Watts, Fyfe and Ingram, unpublished data. DA neurons make glutamatergic autapses in culture and amphetamine increases AMPA currents Ingram, et al., unpublished data mbYFPQS localizes to the membrane of cultured midbrain neurons Watts, Jimenez and Ingram, unpublished data. Amphetamine stimulates a dose-dependent change in mbYFPQS fluorescence in both soma and dendrites of DA neurons Watts and Ingram, unpublished data. KCC2 Expression is different in cultures and slices cultures slices TH KCC2 Jamieson and Ingram, unpublished data. Baculoviral Transfections Watts and Ingram, unpublished data. Summary • DAT-mediated chloride current may alter excitability of DA neurons and integration of synaptic activity. • The current may be activated selectively (relative to transport) by low DA and amphetamine concentrations suggesting a role in increasing release of DA. • The amphetamine-mediated current is dose-dependent in both cultures and slices of midbrain neurons but is inhibited at high amphetamine concentrations (20 µM). • The mbYFPQS is a sensitive tool to measure intracellular chloride concentrations (K50 = 30 mM) and is useful for monitoring changes in intracellular chloride concentrations in dendrites.
    [Show full text]
  • Program Book
    PARKINSON’SDISEASE2014 ADVANCING RESEARCH, IMPROVING LIVES PROGRAM MATERIALS Sponsored by: January 6 – 7, 2014 Natcher Conference Center National Institutes of Health Bethesda, MD About our cover: The program cover image is a stylized version of the Parkinson’s Disease Motor-Related Pattern (PDRP), an abnormal pattern of regional brain function observed in MRI studies which shows increased metabolism indicated by red in some brain regions (pallidothalamic, pontine, and motor cortical areas), and decreased metabolism indicated by blue in others (associated lateral premotor and posterior parietal areas). Original image used with permission of David Eidelberg, M.D. For further information see: Hirano et al., Journal of Neuroscience 28 (16): 4201-4209. Welcome Message from Dr. Story C. Landis Welcome to the National Institute of Neurological Disorders and Stroke (NINDS) conference, “Parkinson’s Disease 2014: Advancing Research, Improving Lives.” Remarkable new discoveries and technological advances are rapidly changing the way we study the biological mechanisms of Parkinson’s disease, identify paths to improved treatments, and design effective clinical trials. Elucidating mechanisms and developing and testing effective interventions require a diverse set of approaches and perspectives. The NINDS has organized this conference with the primary goal of seeking consensus on, and prioritizing, research recommendations spanning clinical, translational, and basic Parkinson’s disease research that we support. We have assembled a stellar and dedicated group of session chairs and panelists who have worked collaboratively to identify emerging research opportunities in Parkinson’s research. While we have divided our working groups into three main research areas, we expect each will inform the others over the course of the next two days, and we look forward to both complementary and unique perspectives.
    [Show full text]
  • Machine Learning for Neuroscience Geoffrey E Hinton
    Hinton Neural Systems & Circuits 2011, 1:12 http://www.neuralsystemsandcircuits.com/content/1/1/12 QUESTIONS&ANSWERS Open Access Machine learning for neuroscience Geoffrey E Hinton What is machine learning? Could you provide a brief description of the Machine learning is a type of statistics that places parti- methods of machine learning? cular emphasis on the use of advanced computational Machine learning can be divided into three parts: 1) in algorithms. As computers become more powerful, and supervised learning, the aim is to predict a class label or modern experimental methods in areas such as imaging a real value from an input (classifying objects in images generate vast bodies of data, machine learning is becom- or predicting the future value of a stock are examples of ing ever more important for extracting reliable and this type of learning); 2) in unsupervised learning, the meaningful relationships and for making accurate pre- aim is to discover good features for representing the dictions. Key strands of modern machine learning grew input data; and 3) in reinforcement learning, the aim is out of attempts to understand how large numbers of to discover what action should be performed next in interconnected, more or less neuron-like elements could order to maximize the eventual payoff. learn to achieve behaviourally meaningful computations and to extract useful features from images or sound What does machine learning have to do with waves. neuroscience? By the 1990s, key approaches had converged on an Machine learning has two very different relationships to elegant framework called ‘graphical models’, explained neuroscience. As with any other science, modern in Koller and Friedman, in which the nodes of a graph machine-learning methods can be very helpful in analys- represent variables such as edges and corners in an ing the data.
    [Show full text]
  • Neurobiology of the Premonitory Urge in Tourette Syndrome: Pathophysiology and Treatment Implications
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE HHS Public Access provided by Aston Publications Explorer Author manuscript Author ManuscriptAuthor Manuscript Author J Neuropsychiatry Manuscript Author Clin Neurosci Manuscript Author . Author manuscript; available in PMC 2017 April 28. Published in final edited form as: J Neuropsychiatry Clin Neurosci. 2017 ; 29(2): 95–104. doi:10.1176/appi.neuropsych.16070141. Neurobiology of the premonitory urge in Tourette syndrome: Pathophysiology and treatment implications Andrea E. Cavanna1,2,3,*, Kevin J Black4, Mark Hallett5, and Valerie Voon6,7,8 1Department of Neuropsychiatry Research Group, BSMHFT and University of Birmingham, Birmingham, UK 2School of Life and Health Sciences, Aston University, Birmingham, UK 3University College London and Institute of Neurology, London, UK 4Departments of Psychiatry, Neurology, Radiology, and Anatomy & Neuroscience, Washington University School of Medicine, St. Louis, MO, USA 5Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA 6Department of Psychiatry, University of Cambridge, Cambridge, UK 7Behavioural and Clinical Neurosciences Institute, Cambridge, UK 8Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK Abstract Motor and vocal tics are relatively common motor manifestations identified as the core features of Tourette syndrome. Although traditional descriptions have focused on objective phenomenological
    [Show full text]
  • Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning
    Deep Neuroevolution: Genetic Algorithms are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning Felipe Petroski Such Vashisht Madhavan Edoardo Conti Joel Lehman Kenneth O. Stanley Jeff Clune Uber AI Labs ffelipe.such, [email protected] Abstract 1. Introduction Deep artificial neural networks (DNNs) are typ- A recent trend in machine learning and AI research is that ically trained via gradient-based learning al- old algorithms work remarkably well when combined with gorithms, namely backpropagation. Evolution sufficient computing resources and data. That has been strategies (ES) can rival backprop-based algo- the story for (1) backpropagation applied to deep neu- rithms such as Q-learning and policy gradients ral networks in supervised learning tasks such as com- on challenging deep reinforcement learning (RL) puter vision (Krizhevsky et al., 2012) and voice recog- problems. However, ES can be considered a nition (Seide et al., 2011), (2) backpropagation for deep gradient-based algorithm because it performs neural networks combined with traditional reinforcement stochastic gradient descent via an operation sim- learning algorithms, such as Q-learning (Watkins & Dayan, ilar to a finite-difference approximation of the 1992; Mnih et al., 2015) or policy gradient (PG) methods gradient. That raises the question of whether (Sehnke et al., 2010; Mnih et al., 2016), and (3) evolution non-gradient-based evolutionary algorithms can strategies (ES) applied to reinforcement learning bench- work at DNN scales. Here we demonstrate they marks (Salimans et al., 2017). One common theme is can: we evolve the weights of a DNN with a sim- that all of these methods are gradient-based, including ES, ple, gradient-free, population-based genetic al- which involves a gradient approximation similar to finite gorithm (GA) and it performs well on hard deep differences (Williams, 1992; Wierstra et al., 2008; Sali- RL problems, including Atari and humanoid lo- mans et al., 2017).
    [Show full text]
  • Continuous Arterial Spin Labeling of Mouse Cerebral Blood Flow Using an Actively-Detuned Two-Coil System at 9.4T
    Article Continuous arterial spin labeling of mouse cerebral blood flow using an actively-detuned two-coil system at 9.4T. LEI, Hongxia, et al. Abstract Among numerous magnetic resonance imaging (MRI) techniques, perfusion MRI provides insight into the passage of blood through the brain's vascular network non-invasively. Studying disease models and transgenic mice would intrinsically help understanding the underlying brain functions, cerebrovascular disease and brain disorders. This study evaluates the feasibility of performing continuous arterial spin labeling (CASL) on all cranial arteries for mapping murine cerebral blood flow at 9.4 T. We showed that with an active-detuned two-coil system, a labeling efficiency of 0.82 ± 0.03 was achieved with minimal magnetization transfer residuals in brain. The resulting cerebral blood flow of healthy mouse was 99 ± 26 mL/100g/min, in excellent agreement with other techniques. In conclusion, high magnetic fields deliver high sensitivity and allowing not only CASL but also other MR techniques, i.e. (1)H MRS and diffusion MRI etc, in studying murine brains. Reference LEI, Hongxia, et al. Continuous arterial spin labeling of mouse cerebral blood flow using an actively-detuned two-coil system at 9.4T. Conference proceedings : IEEE Engineering in Medicine and Biology Society, 2011, vol. 2011, p. 6993-6 DOI : 10.1109/IEMBS.2011.6091768 PMID : 22255948 Available at: http://archive-ouverte.unige.ch/unige:32993 Disclaimer: layout of this document may differ from the published version. 1 / 1 33rd Annual International Conference of the IEEE EMBS Boston, Massachusetts USA, August 30 - September 3, 2011 Continuous Arterial Spin Labeling of Mouse Cerebral Blood Flow Using an Actively-Detuned Two-Coil System at 9.4T Hongxia Lei, Yves Pilloud, Arthur W.
    [Show full text]
  • Tourette's Syndrome: a Review from a Developmental Perspective
    Isr J Psychiatry Relat Sci - Vol. 47 - No 2 (2010) Tourette's Syndrome: A Review from a Developmental Perspective Tamar Steinberg, MD, 1 Robert King, MD, 2 and Alan Apter, MD 1 1 The Harry Freund Neuro-Psychiatric Clinic, Schneider Children's Medical Center, Petah Tikva, Israel 2 Yale Child Study Center, New Haven, Connecticut, U.S.A. izations. Simple motor tics are sudden, fleeting or ABSTRACT fragmentary movements such as blinking, grimacing, head jerking, or shoulder shrugs. Complex motor tics The object of this review is to summarize some of the consist of several simple motor tics occurring in an recent developments in the understanding of Tourette’s orchestrated sequence or semi-purposeful movements, Syndrome which can be regarded as the prototype of a such as touching or tapping; these may also have a more developmental psychopathological entity. The review sustained, twisting, and dystonic character (2). covers the following topics: tics and their developmental Simple phonic tics consist of simple, unarticulated course; sensory phenomena related to tics including sounds such as throat clearing, sniffing, grunting, measurement of these phenomena; pathophysiology squeaking, or coughing. Complex phonic tics consist of of tics and compensatory phenomena and the parallel out-of-context syllables, words, phrases or paroxysmal development of the various psychiatric comorbidities as changes of prosody. they emerge over the life span. Finally there is an attempt Complex tics may involve socially inappropriate or to summarize the major points and future directions. obscene gestures (copropraxia) or utterances (coprola- lia), as well as echo phenomena, such as echolalia or echopraxia (repeating others’ words or gestures), which exemplify the suggestibility of tics.
    [Show full text]
  • Acetylcholine in Cortical Inference
    Neural Networks 15 (2002) 719–730 www.elsevier.com/locate/neunet 2002 Special issue Acetylcholine in cortical inference Angela J. Yu*, Peter Dayan Gatsby Computational Neuroscience Unit, University College London, 17 Queen Square, London WC1N 3AR, UK Received 5 October 2001; accepted 2 April 2002 Abstract Acetylcholine (ACh) plays an important role in a wide variety of cognitive tasks, such as perception, selective attention, associative learning, and memory. Extensive experimental and theoretical work in tasks involving learning and memory has suggested that ACh reports on unfamiliarity and controls plasticity and effective network connectivity. Based on these computational and implementational insights, we develop a theory of cholinergic modulation in perceptual inference. We propose that ACh levels reflect the uncertainty associated with top- down information, and have the effect of modulating the interaction between top-down and bottom-up processing in determining the appropriate neural representations for inputs. We illustrate our proposal by means of an hierarchical hidden Markov model, showing that cholinergic modulation of contextual information leads to appropriate perceptual inference. q 2002 Elsevier Science Ltd. All rights reserved. Keywords: Acetylcholine; Perception; Neuromodulation; Representational inference; Hidden Markov model; Attention 1. Introduction medial septum (MS), diagonal band of Broca (DBB), and nucleus basalis (NBM). Physiological studies on ACh Neuromodulators such as acetylcholine (ACh), sero- indicate that its neuromodulatory effects at the cellular tonine, dopamine, norepinephrine, and histamine play two level are diverse, causing synaptic facilitation and suppres- characteristic roles. One, most studied in vertebrate systems, sion as well as direct hyperpolarization and depolarization, concerns the control of plasticity. The other, most studied in all within the same cortical area (Kimura, Fukuda, & invertebrate systems, concerns the control of network Tsumoto, 1999).
    [Show full text]
  • Isoflurane Inhibits Dopaminergic Synaptic Vesicle Exocytosis Coupled to Cav2.1 and Cav2.2 in Rat Midbrain Neurons
    This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. Research Article: New Research | Neuronal Excitability Isoflurane inhibits dopaminergic synaptic vesicle exocytosis coupled to CaV2.1 and CaV2.2 in rat midbrain neurons Christina L. Torturo1,2, Zhen-Yu Zhou1, Timothy A. Ryan1,3 and Hugh C. Hemmings1,2 1Departments of Anesthesiology, Weill Cornell Medicine, New York, NY 10065 2Pharmacology, Weill Cornell Medicine, New York, NY 10065 3Biochemistry, Weill Cornell Medicine, New York, NY 10065 https://doi.org/10.1523/ENEURO.0278-18.2018 Received: 16 July 2018 Revised: 18 December 2018 Accepted: 21 December 2018 Published: 10 January 2019 Author Contributions: CLT, ZZ, TAR and HCH designed the research; CLT performed the research, TAR contributed unpublished reagents/analytic tools; CLT and ZZ analyzed the data; CLT, ZZ, TAR, and HCH wrote the paper. Funding: http://doi.org/10.13039/100000002HHS | National Institutes of Health (NIH) GM58055 Conflict of Interest: HCH: Editor-in-Chief of the British Journal of Anaesthesia; consultant for Elsevier. Funding Sources: NIH GM58055 Corresponding author: Hugh C. Hemmings, E-mail: [email protected] Cite as: eNeuro 2019; 10.1523/ENEURO.0278-18.2018 Alerts: Sign up at www.eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Accepted manuscripts are peer-reviewed but have not been through the copyediting, formatting, or proofreading process. Copyright © 2019 Torturo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.
    [Show full text]
  • Ziprasidone Monotherapy for Tourette Syndrome with Comorbid ADHD
    f Ps al o ych rn ia u tr o y J Journal of Psychiatry Naguy and At-Tajali, J Psychiatry 2015, S1 DOI: 10.4172/2378-5756..S1-002 ISSN: 2378-5756 ShortResearch Communication Article OpenOpen Access Access Ziprasidone Monotherapy for Tourette Syndrome with Comorbid ADHD Ahmed Naguy1* and Ali At-Tajali2 1Child and Adolescent Psychiatrist, Kuwait Centre for Mental Health (KCMH), Kuwait 2General Adult Psychiatrist, Head of Neuromodulation Unit, KCMH, Kuwait Abbreviations: TS: de la Tourette Syndrome; OCD: Obsessive- There is no hard and fast rule, but antipsychotics, especially atypical Compulsive Disorder; PANDAS: Paediatric Autoimmune (AAPs), by and large, produce the most robust results controlling tics Neuropsychiatric Disorders Associated with Streptococcal Infection; when socially-embarrassing or functionally impairing. Nonetheless, ADHD: Attention-Deficit/Hyperactivity Disorder; AAP: Atypical clinicians ’enthusiasm is commonly tempered by the ominous Antipsychotics; ECG: Electrocardiogram; OPD: Outpatient metabolic and/or neurologic syndromes subsequent to antipsychotic Department; HRT: Habit Reversal Therapy; Y-GTSS: Yale-Global use. Pharmacologic options for TS are legion [11] (Table 4). Tic Severity Scale; IQ: Intelligence Quotient; DSST: Digital Symbol Here, we are reporting a case of adolescent TS with comorbid Substitution Test; CPT: Continuous Performance Test. severe ADHD where stimulants were deleterious for tics, atomoxetine (Strattera®) was ineffective addressing ADHD, and clonidine (Catapres®) Short Communication was too soporific
    [Show full text]
  • Model-Free Episodic Control
    Model-Free Episodic Control Charles Blundell Benigno Uria Alexander Pritzel Google DeepMind Google DeepMind Google DeepMind [email protected] [email protected] [email protected] Yazhe Li Avraham Ruderman Joel Z Leibo Jack Rae Google DeepMind Google DeepMind Google DeepMind Google DeepMind [email protected] [email protected] [email protected] [email protected] Daan Wierstra Demis Hassabis Google DeepMind Google DeepMind [email protected] [email protected] Abstract State of the art deep reinforcement learning algorithms take many millions of inter- actions to attain human-level performance. Humans, on the other hand, can very quickly exploit highly rewarding nuances of an environment upon first discovery. In the brain, such rapid learning is thought to depend on the hippocampus and its capacity for episodic memory. Here we investigate whether a simple model of hippocampal episodic control can learn to solve difficult sequential decision- making tasks. We demonstrate that it not only attains a highly rewarding strategy significantly faster than state-of-the-art deep reinforcement learning algorithms, but also achieves a higher overall reward on some of the more challenging domains. 1 Introduction Deep reinforcement learning has recently achieved notable successes in a variety of domains [23, 32]. However, it is very data inefficient. For example, in the domain of Atari games [2], deep Reinforcement Learning (RL) systems typically require tens of millions of interactions with the game emulator, amounting to hundreds of hours of game play, to achieve human-level performance. As pointed out by [13], humans learn to play these games much faster. This paper addresses the question of how to emulate such fast learning abilities in a machine—without any domain-specific prior knowledge.
    [Show full text]
  • Tourette Syndrome in Children
    Focus | Clinical Tourette syndrome in children Valsamma Eapen, Tim Usherwood UP TO 20% OF CHILDREN exhibit rapid jerky peak severity at the age of approximately movements (motor tics) that are made 10–12 years, and typically improve by without conscious intention as part of a adolescence or thereafter.6 Background Gilles de la Tourette syndrome (GTS), developmental phase that often lasts a few 1 characterised by motor and vocal tics, weeks to months. Similarly, involuntary has a prevalence of approximately 1% sounds, vocalisations or noises (vocal or Clinical features in school-aged children. Commonly phonic tics) such as coughing and even In addition to simple motor and vocal/ encountered comorbidities of GTS brief screams or shouts may be observed in phonic tics, complex tics may be present include attention deficit hyperactivity some children for brief periods of time. Tics (Table 1). Some complex tics – such as disorder (ADHD) and obsessive- lasting for a few weeks to months are known spitting, licking, kissing, etc – may be compulsive behaviour/disorder (OCB/ OCD). Genetic factors play an important as ‘transient tic disorder’. When single misunderstood or misinterpreted and part in the aetiology of GTS, and family or multiple motor or vocal tics – but not a may result in the young person getting members may exhibit tics or related combination of both – have been present in trouble, especially if these tics include disorders such as ADHD, OCB or OCD. for more than one year, the term ‘chronic involuntary and inappropriate obscene tic disorder’ is used. When both (multiple) gesturing (copropraxia) or copying the Objective The aim of this article is to present a motor and (one or more) vocal tics have been movements of other people (echopraxia).
    [Show full text]