Apollo 14 Lunar Landing Feb. 5

Total Page:16

File Type:pdf, Size:1020Kb

Apollo 14 Lunar Landing Feb. 5 ,$ VOLUME XIII NUMBER 8 February 4 National Aeronaulics and Sp :e Administration ,, Ames Research Center. Moffeft Field. California AmesMagnetometer on Apollo 14 The Apollo 14 astronauts will hours of operation. chart local magneticfields on the The devicewill be carriedon the surface of the moon, in the hilly outside of the Lunar Module near upland region of the Fra Mauro one of the landinglegs. It will be landing site, using a highly spe- transferredto the Mobile Equip- cialized,Ames designedand built, meat Transporter (MET) for mov- portablemagnetometer. ing on the surface of the moon. The astronautswill transport To use the instrument,one of the the lightweightmagnetometer on the astronautswill set up the sensor two-wheeledpush cart which car- head on the tripod and deploy it ries all the mission’sportable ex- about 40 feet from the electronics periments. package and indicators,which are Ames’ Dr. Palmer Dyal, Special left on the MET. He then calls ProjectsOffice, proposed the por- out readings from three meters on table magnetometerexperimentand the electronicspackage over the is the principalinvestigator for the voice communicationlink to Mission Apollo 14 experiment.Co-investi- ControlCenter at Houston.Then he gators on the experiment are Dr. rotates the cubical sensor head on FIRST AMERICAN TO JOURNEY INTO SPACE . Al.an B. Charles Sonett of Ames, Dr. Gene the tripodto an oppositeposition Shepard, Jr., is pictured as he was recovered following his Simmons of M.S.C. and Dr. Robert to fine tune the sensor and its suborbitalflight, the first in the Project Mercury program,on DuBois of the Universityof Okla- electronics.Be then calls out the May 5, t961. February7. 1971, slightlyless than ten years later, honm. new indicatedreadings. Apollo 14 Spacecraft Commander Shepard will be recovered from The magnetometerconsists of: After repeatingthe process a the South centralPacific following America’s third lunar landing. a cube-shaped sensor head which secondtime to fully calibratethe measures about three inches on a instrumentin the lunarenvironment, side, an electronicspackage 7 1/2 he moves the tripodwith the sensor Apollo14Lunar Landing Feb.5 by 5 by 4 inches,containing three to other locations.There he makes indicator dials, a tripod, and a The Apollo 14 lunar module at pull-cart carrying experimentsand new observationsas he progresses cable reel with 50 feet of ribboo- press time, was scheduledto land geology tools during their lengthy on his lunar surface excursion. in the Fra Mauro craterregion for like electricalcable. The instru- During the Apollo 14 moonwalk, fieldgeology trek. ment is poweredby 42 tiny batteries a stay of about 33 hours, during Experimentsin the ALSEP are: astronautsAlan Shepard and Edgar which the landing crew will leave sindtarto those for pacemakerde- Mitchellwill coverabout 1.8 miles, Passive Seismic for long-term vices used in the treatment of the spacecrafttwice to set up scien- measurement of lunar seismic and be a little less than .9 miles tificexperiments on the lunarsur- certain types of heart defects. away from the lunar moduleattheir events;Active Seismic for relaying Enough power is available for 66 face and to continuegeological ex- to Earth data on the lunar crust; Continuedon Page 3) plorations.The two earlierApollo the Supratherma]]on Detectorand .~4aar landingswere Apollo 11 at Cold Cathode Ion Gauge for meas- FranquillityBase and Apollo12 at uring ion flux, densityand energy 5urveyur3 crater in the Ocean of in the lunar environment; and a ~tornls. Charged Particle Lunar Environ- Apollo 14 prime crewmen are ment Experiment for measuring ~paceoraft Commander Alan B. energy of solar protons and elec- <hepard, Jr., Command Module Pi- trons reaching the Moon and a h~t Stuart A. Roosa, and Lunar Portable Magnetometer for mea- M~dule Pilot Edgar D. Mitchell. suringvariations in the lunarnmg- ~hepard is a Navy captain, Roosa netic field in the geologytraverse n Air Force major and Mitchell will be carriedon the lunar cart. :t Navy COnliTZa.nder. "/’hecrew will set up a laserbeam Lunar materials brought back reflector,similar to the one left fr’rm~the Fra Mauro formationare by the Apollo ll crew, for tong- ~xPectedto yieldinformation on the term observatory measurementsof Car~yhistory of the Moon,the Earth Earth-Moon distance and motion and the solar system - perhapsas relationships. long ago as five billion years. While the comnmnder and lunar During their two Moonwalks, module pilot are exploringthe Fra 5hepard and Mitchell will set up Mauro area, the command module AMES-DESIGNED AND BUILT ,~ seriesof experiments,the Apol- pilot will be carryingoat several flightmodel of the k~ Lunar Surface Experiments Lunar Portable Magnetometer (LPM) is assembled in the Ames orbitalscience tasks in lunarorbit clean room by (1 to r} Principal Investigator,Dr. Palmer Dyle Package (ALSEP) and will conduct above, including photography of extensivegeological surveys of the and Joe F. DeRose of the Special ProjectsOffice, Space Science dim-lightphenomena and candidate Division,and Darrain L. Waters, Reliabilityand Quality Assur- area around the landingsite. The landingsites. ~rew will be aidedby a two-wheeled ance Branch. The LPM isbeing flown on Apollo 14launched from {Continued on Page 2) Cape Kennedy,Sunday, Jan.31. Page 2 Apollo|4 AmesHosts Plastics {Continuedfrom Page 1) EducationConference While Shepard and Mitchellare Ames hosted the Plastic Edu- exploringthe Fra Mauro area, the cation ConferenceJanuary 28 and command module pilot will be car- 29. The conference was co-spon- ryingout orbitalscinece tasks, in- sored by the Northern California cluding photographyof dim-light industry-Education Counciland phenomena and candidate landing Ames. High school administrators, sites. principals and instructors from Also, photos of earlier Apollo forty-fivecounties attended. landing sites will be aboard for The two-clay conference pur- correlationwith previoustracking posed to demonstrate to Bay Area data to improvetracking accuracy educatorsthe type of trainedper- techniques. sonnelneeded in the plasticsindus- The Apollo 14 flight profilein try. generalfoltows those flown by Apol- LloydJones, Office of the Direc- los ll and 12 with two major ex- tor, opened the conferencewith an ceptions:Lunar orbit insertionburn introductorywelcome. He was fol- No.2 has been combined with des- lowed by Garth A. Hull, Public cent orbit insertionand the docked Affairs Office, who explainedthe ASTRONAUT JACK R. LOUSMA . (left}conferred spacecraftwill be placed into a backgroundof the conference,and Robert J. Randle (center), Manned Machine Integration Branch 10 by 58-nauticalmile lunar orbit Andre Bogart, MaterialsResearch. and Emmett Lampkin {right), Human Performance Branch at by the service propulsionsystem. Conference Coordinator, who de- Ames recently. They discussed the Ames-Kolisman Space Sex- Lunar module propellantis con- fined the procedureof the confer- tant. which will be tested in NASA’s TOO-2 Sky Lab A Exper- served by combining these man- ence. in-lent. euvers and by using the service TOURS moduleengine to provide15 seconds To demonstrate the equipment of additionalhover time duringthe now in use, and the types of skills landing. needed in the plastics industry, AstronautLousma Visits Ames Also,additional tracking time in tours were conductedthrough Ames, AstronautJack R. Lousmavisited feasibilityof a light-weight,auto- the descentorbit providesmore ac- Hewlett-Packard and Arrow De- Amos, January 21, to confer with nomous, manual navigationsystem curateposition and velocitydata for velopment. These were followed Robert J. Randle, Man-MaehinoIn- which is independentof space-craft use in the landing.The otherchange by toursof classesin PlasticTech- tegrationBranch, and Emmet power and ground trackingsystems. is in the lunar orbit rendezvous. niquesat SequoiaHigh School. Lampkin, Human Performance A simple on-board system would be Many of the intermediatemaneuvers It was pointed out during the Branch. The three spent the day usefulfor increasedmission relia- leading up to rendezvousand dock- conference,that most schools,both discussing the Amos - Kollsman bility,for back up in primarysys- ing after LM ascent stage liftoff high schoolsand colleges,lack the Space Sextant,which will be tested tem malfunction,and in space abort have been omitted, and rendezvous necessary equipment and programs in NASA’s TOO-2 Sky Lab A Ex- where an emergency return vehicle will take place shortly before the to preparestudents for careersin periment. Major Lousnm is pres- may be weightlimited. end of the firstrevolution after as- plastics. ently actingas coordinatorfor the cent. GROUP SESSIONS experiment,between Manned Space- Film LibraryMoves Small group sessionswere held craft Center and Amos. The Amos Film Library was AmesPublic Affairs at Ames on the second day of the The sextantwas first developed consolidatedrecently with the NASA conference.The sessionscovered a by Don Smith. Guidance and Nav- Pasadena Office and has moved StaffAids Apollo 14 full range of topics dealing with igation,and firsttested aboard the from its former locationin Build- Three of the Ames Public Af- educationalpreparation for the plas- Gemini 12 with Astronaut Edwin ing 24L The office is now located fairs staff are working"behind tic industry.Each waspresidedover Aldren as Navigator. Mr. Smith at 2902 Scott Blvd., Santa Clara. the scenes" on the Apollo 14 mis- by one or two secondary school also did the initial work on the Films. now on loan, should
Recommended publications
  • PEANUTS and SPACE FOUNDATION Apollo and Beyond
    Reproducible Master PEANUTS and SPACE FOUNDATION Apollo and Beyond GRADE 4 – 5 OBJECTIVES PAGE 1 Students will: ö Read Snoopy, First Beagle on the Moon! and Shoot for the Moon, Snoopy! ö Learn facts about the Apollo Moon missions. ö Use this information to complete a fill-in-the-blank fact worksheet. ö Create mission objectives for a brand new mission to the moon. SUGGESTED GRADE LEVELS 4 – 5 SUBJECT AREAS Space Science, History TIMELINE 30 – 45 minutes NEXT GENERATION SCIENCE STANDARDS ö 5-ESS1 ESS1.B Earth and the Solar System ö 3-5-ETS1 ETS1.B Developing Possible Solutions 21st CENTURY ESSENTIAL SKILLS Collaboration and Teamwork, Communication, Information Literacy, Flexibility, Leadership, Initiative, Organizing Concepts, Obtaining/Evaluating/Communicating Ideas BACKGROUND ö According to NASA.gov, NASA has proudly shared an association with Charles M. Schulz and his American icon Snoopy since Apollo missions began in the 1960s. Schulz created comic strips depicting Snoopy on the Moon, capturing public excitement about America’s achievements in space. In May 1969, Apollo 10 astronauts traveled to the Moon for a final trial run before the lunar landings took place on later missions. Because that mission required the lunar module to skim within 50,000 feet of the Moon’s surface and “snoop around” to determine the landing site for Apollo 11, the crew named the lunar module Snoopy. The command module was named Charlie Brown, after Snoopy’s loyal owner. These books are a united effort between Peanuts Worldwide, NASA and Simon & Schuster to generate interest in space among today’s younger children.
    [Show full text]
  • A Comparative Analysis of the Geology Tools Used During the Apollo Lunar Program and Their Suitability for Future Missions to the Om on Lindsay Kathleen Anderson
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2016 A Comparative Analysis Of The Geology Tools Used During The Apollo Lunar Program And Their Suitability For Future Missions To The oM on Lindsay Kathleen Anderson Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Anderson, Lindsay Kathleen, "A Comparative Analysis Of The Geology Tools Used During The Apollo Lunar Program And Their Suitability For Future Missions To The oonM " (2016). Theses and Dissertations. 1860. https://commons.und.edu/theses/1860 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. A COMPARATIVE ANALYSIS OF THE GEOLOGY TOOLS USED DURING THE APOLLO LUNAR PROGRAM AND THEIR SUITABILITY FOR FUTURE MISSIONS TO THE MOON by Lindsay Kathleen Anderson Bachelor of Science, University of North Dakota, 2009 A Thesis Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Master of Science Grand Forks, North Dakota May 2016 Copyright 2016 Lindsay Anderson ii iii PERMISSION Title A Comparative Analysis of the Geology Tools Used During the Apollo Lunar Program and Their Suitability for Future Missions to the Moon Department Space Studies Degree Master of Science In presenting this thesis in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection.
    [Show full text]
  • Apollo 14 Press
    NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WO 2-4155 WASHINGT0N.D.C. 20546 lELS.wo 36925 RELEASE NO: 71-3K FOR RELEASE: THURSDAY A. M . January 21, 1971 P R E S S K I T -more - 1/11/71 2 -0- NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (m2) 962-4155 N E w s WASHINGTON,D.C. 20546 mu: (202) 963-6925 FOR RELEASE: THURSDAY A..M. January 21:, 1971 RELEASE NO: 71-3 APOLLO 14 LAUNCH JAN. 31 Apollo 14, the sixth United States manned flight to the Moon and fourth Apollo mission with an objective of landing men on the Moon, is scheduled for launch Jan. 31 at 3:23 p.m. EST from Kennedy Space Center, Fla. The Apollo 14 lunar module is to land in the hilly upland region north of the Fra Mauro crater for a stay of about 33 hours, during whick, the landing crew will leave the spacecraft twice to set up scientific experiments on the lunar surface and to continue geological explorations. The two earlier Apollo lunar landings were Apollo 11 at Tranquillity Base and Apollo 12 at Surveyor 3 crater in the Ocean of Storms. Apollo 14 prime crewmen are Spacecraft Commander Alan B. Shepard, Jr., Command Module Pilot Stuart A. Roosa, and Lunar Module Pilot Edgar I). Mitchell. Shepard is a Navy car-sain Roosa an Air Force major and Mitchell a Navy commander. -more- 1/8/71 -2- Lunar materials brought- back from the Fra Mauro formation are expected to yield information on the early history of the Moon, the Earth and the solar system--perhaps as long ago as five billion years.
    [Show full text]
  • Apollo 14 Press
    / 17,° " 4 c 0 /r- NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WO 2-4155 FELS . WASHINGTON, D .0 . 20546 WO 3-6925 RELEASE NO: 71-3K FOR RELEASE:THURSDAY A.M. January 21, 1971 PROJECT: APOLLO 14 P (To be launched no earlier than Jan. 31) Eli?:4S7D7 5T- amuouAfX Ce4lift R FEB 1 ign contents E FPFITZcItt‘ GENERAL RELEASE 1-5 S COUNTDOWN 6 7 LAUNCH AND MISSION PROFILE 8 9 Launch Opportunities 9 Ground Elapsed Time Update 10 Launch Events 11 Mission Events 12-22 S Entry Events 23-24 RECOVERY OPERATIONS 25 Crew and Sample Return Schedule 26 MISSION OBJECTIVES 27 Lunar Surface Science 27-39 Lunar Orbital Science 39-46 Engineering/Operational Objectives 46-47 APOLLO LUNAR HAND TOOLS 48-51 FRA MAURO LANDING SITE 52-53 1‹: PHOTOGRAPHIC EQUIPMENT 54-55 TELEVISION 56 Apollo 14 TV Schedule 57-58 ZERO-GRAVITY INFLIGHT DEMONSTRATIONS 59 Electrophoretic Separation 59-61 Heat Flow and Convection 61 Liquid Transfer 62 Composite Casting 62-63 ASTRONAUTS AND CREW EQUIPMENT 64 Space Suits 64-69 Personal Hygiene 70 Medical Kit 70 Survival Kit 71 Crew Food 71 Prime Crew Biographies 72-78 Backup Crew Biographies 79-84 Flight Crew Health Stabilization Program 85 -more- 2 APOLLO 14 FLAGS, LUNAR MODULE PLAQUE 86 LUNAR RECEIVING LABORATORY (LRL) 87- 88 Sterilization and Release of Spacecraft 88-89 SATURN V LAUNCH VEHICLE 90 First Stage 90 Second Stage 90 Third Stage 90-91 Instrument Unit 92 Propulsion 92 Major Vehicle Changes 93 APOLLO SPACECRAFT 94-96 Command-Service Module Modifications 96-97 Lunar Module (LM) 98-100 MANNED
    [Show full text]
  • Apollo 13 Mission Review
    APOLLO 13 MISSION REVIEW HEAR& BEFORE THE COMMITTEE ON AERONAUTICAL AND SPACE SCIENCES UNITED STATES SENATE NINETY-FIRST CONGRESS SECOR’D SESSION JUR’E 30, 1970 Printed for the use of the Committee on Aeronautical and Space Sciences U.S. GOVERNMENT PRINTING OFFICE 47476 0 WASHINGTON : 1970 COMMITTEE ON AEROKAUTICAL AND SPACE SCIENCES CLINTON P. ANDERSON, New Mexico, Chairman RICHARD B. RUSSELL, Georgia MARGARET CHASE SMITH, Maine WARREN G. MAGNUSON, Washington CARL T. CURTIS, Nebraska STUART SYMINGTON, bfissouri MARK 0. HATFIELD, Oregon JOHN STENNIS, Mississippi BARRY GOLDWATER, Arizona STEPHEN M.YOUNG, Ohio WILLIAM B. SAXBE, Ohio THOJfAS J. DODD, Connecticut RALPH T. SMITH, Illinois HOWARD W. CANNON, Nevada SPESSARD L. HOLLAND, Florida J4MES J. GEHRIG,Stad Director EVERARDH. SMITH, Jr., Professional staffMember Dr. GLENP. WILSOS,Professional #tad Member CRAIGVOORHEES, Professional Staff Nember WILLIAMPARKER, Professional Staff Member SAMBOUCHARD, Assistant Chief Clerk DONALDH. BRESNAS,Research Assistant (11) CONTENTS Tuesday, June 30, 1970 : Page Opening statement by the chairman, Senator Clinton P. Anderson-__- 1 Review Board Findings, Determinations and Recommendations-----_ 2 Testimony of- Dr. Thomas 0. Paine, Administrator of NASA, accompanied by Edgar M. Cortright, Director, Langley Research Center and Chairman of the dpollo 13 Review Board ; Dr. Charles D. Har- rington, Chairman, Aerospace Safety Advisory Panel ; Dr. Dale D. Myers, Associate Administrator for Manned Space Flight, and Dr. Rocco A. Petrone, hpollo Director -___________ 21, 30 Edgar 11. Cortright, Chairman, hpollo 13 Review Board-------- 21,27 Dr. Dale D. Mvers. Associate Administrator for Manned SDace 68 69 105 109 LIST OF ILLUSTRATIOSS 1. Internal coinponents of oxygen tank So. 2 ---_____-_________________ 22 2.
    [Show full text]
  • Appendix a Apollo 15: “The Problem We Brought Back from the Moon”
    Appendix A Apollo 15: “The Problem We Brought Back From the Moon” Postal Covers Carried on Apollo 151 Among the best known collectables from the Apollo Era are the covers flown onboard the Apollo 15 mission in 1971, mainly because of what the mission’s Lunar Module Pilot, Jim Irwin, called “the problem we brought back from the Moon.” [1] The crew of Apollo 15 carried out one of the most complete scientific explorations of the Moon and accomplished several firsts, including the first lunar roving vehicle that was operated on the Moon to extend the range of exploration. Some 81 kilograms (180 pounds) of lunar surface samples were returned for anal- ysis, and a battery of very productive lunar surface and orbital experiments were conducted, including the first EVA in deep space. [2] Yet the Apollo 15 crew are best remembered for carrying envelopes to the Moon, and the mission is remem- bered for the “great postal caper.” [3] As noted in Chapter 7, Apollo 15 was not the first mission to carry covers. Dozens were carried on each flight from Apollo 11 onwards (see Table 1 for the complete list) and, as Apollo 15 Commander Dave Scott recalled in his book, the whole business had probably been building since Mercury, through Gemini and into Apollo. [4] People had a fascination with objects that had been carried into space, and that became more and more popular – and valuable – as the programs progressed. Right from the start of the Mercury program, each astronaut had been allowed to carry a certain number of personal items onboard, with NASA’s permission, in 1 A first version of this material was issued as Apollo 15 Cover Scandal in Orbit No.
    [Show full text]
  • Apollo 15 Mission
    THE APOLLO 15 MISSION On July 30, 1971, the Apollo 15 lunar module Falcon, descending over the 4,000 meter Apennine Mountain front, landed at one of the most geologically diverse sites selected in the Apollo program, the Hadley-Apennine region. Astronauts Dave Scott and Jim Irwin brought the spacecraft onto a mare plain just inside the most prominent mountain ring structure of the Imbrium basin, the Montes Apennines chain which marks its southeastern topographic rim, and close to the sinuous Hadley Rille (Fig. 1). The main objectives of the mission were to investigate and sample materials of the Apennine Front itself (expected to be Imbrium ejecta and pre-Imbrium materials), of Hadley Rille, and of the mare lavas of Palus Putredinis (Fig. 2). A package of seven surface experiments, including heat flow and passive seismic, was also set up and 1152 surface photographs were taken. A television camera, data acquisition (sequence) camera, and orbital photography and chemical data provided more information. The Apollo 15 mission was the first devoted almost entirely to science, and the first to use a Rover vehicle which considerably extended the length of the traverses, from a total of 3.5 km on Apollo 14 to 25.3 km during three separate traverses on Apollo 15 (Fig. 3). The collected sample mass was almost doubled, from 43 kg on Apollo 14 to 78 kg on Apollo 15. A reduction in the planned traverse length was made necessary, in part by unexpected and time-consuming difficulties in the collection of the deep core sample (at the experiments package area).
    [Show full text]
  • 15415 Ferroan Anorthosite 269.4 Grams “Don’T Lose Your Bag Now, Jim”
    15415 Ferroan Anorthosite 269.4 grams “don’t lose your bag now, Jim” Figure 1: Photo of 15415 before processing. Cube is 1 inch. NASA# S71-44990 Transcript CDR Okay. Now let’s go down and get that unusual one. CDR Yes. We’ll get some of these. - - - No, let’s don’t mix Look at the little crater here, and the one that’s facing us. There is them – let’s make this a special one. I’ll zip it up. Make this bag this little white corner to the thing. What do you think the best 196, a special bag. Our first one. Don’t lose your bag now, Jim. way to sample it would be? O, boy. LMP I think probably – could we break off a piece of the clod underneath it? Or I guess you could probably lift that top fragment Transearth Coast Press Conference off. CC Q2: Near Spur Crater, you found what may be “Genesis CDR Yes. Let me try. Yes. Sure can. And it’s a white clast, Rock”, the oldest yet collected on the Moon. Tell us more about and it’s about – oh, boy! it. LMP Look at the – glint. Almost see twinning in there. CDR Well, I think the one you’re referring to was what we CDR Guess what we found? Guess what we just found? felt was almost entirely plagioclase or perhaps anorthosite. And it LMP I think we found what we came for. was a small fragment sitting on top of a dark brown larger fragment, CDR Crystal rock, huh? Yes, sir.
    [Show full text]
  • Smokejumper Magazine, July 2005 National Smokejumper Association
    Eastern Washington University EWU Digital Commons Smokejumper and Static Line Magazines University Archives & Special Collections 7-1-2005 Smokejumper Magazine, July 2005 National Smokejumper Association Jill Leger John McDaniel Follow this and additional works at: https://dc.ewu.edu/smokejumper_mag Recommended Citation National Smokejumper Association; Leger, Jill; and McDaniel, John, "Smokejumper Magazine, July 2005" (2005). Smokejumper and Static Line Magazines. 48. https://dc.ewu.edu/smokejumper_mag/48 This Book is brought to you for free and open access by the University Archives & Special Collections at EWU Digital Commons. It has been accepted for inclusion in Smokejumper and Static Line Magazines by an authorized administrator of EWU Digital Commons. For more information, please contact [email protected]. The National Smokejumper Quarterly Magazine SmokejumperAssociation July 2005 InsideInside ThisThis Issue:Issue: MissoulaMissoula thethe YearYear AfterAfter MannMann GulchGulch ...................................................... ...................................................... 3 3 SmokejumperSmokejumper PilotPilot ofof ApolloApollo 14.............................................................14............................................................. 8 8 TributeTribute toto HalHal Ewing.............................................................................Ewing............................................................................. 12 12 CONTENTS Message from Message from the President ........................
    [Show full text]
  • The Impact of Lunar Dust on Human Exploration
    The Impact of Lunar Dust on Human Exploration The Impact of Lunar Dust on Human Exploration Edited by Joel S. Levine The Impact of Lunar Dust on Human Exploration Edited by Joel S. Levine This book first published 2021 Cambridge Scholars Publishing Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2021 by Joel S. Levine and contributors All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISBN (10): 1-5275-6308-1 ISBN (13): 978-1-5275-6308-7 TABLE OF CONTENTS Preface ......................................................................................................... x Joel S. Levine Remembrance. Brian J. O’Brien: From the Earth to the Moon ................ xvi Rick Chappell, Jim Burch, Patricia Reiff, and Jackie Reasoner Section One: The Apollo Experience and Preparing for the Artemis Missions Chapter One ................................................................................................. 2 Measurements of Surface Moondust and Its Movement on the Apollo Missions: A Personal Journey Brian J. O’Brien Chapter Two .............................................................................................. 41 Lunar Dust and Its Impact on Human Exploration: Identifying the Problems
    [Show full text]
  • View the Apollo 13 Chart
    APOLLO 13 (AS-508) LC-39A JULY 2015 JOHN F. KENNEDY SPACE CENTER AS-508-2 3rd LUNAR LANDING MISSION MISSION FACTS & HIGHLIGHTS Apollo 13 was to be NASA’s third mission to land on the Moon. The spacecraft launched from the Kennedy Space Center in Florida. Midway to the moon, an explosion in one of the oxygen tanks of the service module crippled the spacecraft. After the in-flight emergency, for safety reasons, the crew was forced to temporarily power down and evacuate the command module, taking refuge in the lunar module. The spacecraft then orbited the Moon without landing. Later in the flight, heading back toward Earth, the crew returned to the command module, restored power, jettisoned the damaged service module, then the lunar module and, after an anxious re- entry blackout period, returned safely to the Earth. The command module and its crew slasheddown in the South Pacific Ocean and were recovered by the U.S.S. Iwo Jima (LPH-2). FACTS • Apollo XIII Mission Motto: Ex Luna, Scientia • Lunar Module: Aquarius • Command and Service Module: Odyssey • Crew: • James A. Lovell, Jr. - Commander • John L. Swigert, Jr. - Command Module Pilot ( * ) • Fred W. Haise, Jr. - Lunar Module Pilot • NASA Flight Directors • Milt Windler - Flight Director Shift #1 • Gerald Griffin - Flight Director Shift #2 • Gene Kranz - Flight Director Shift #3 • Glynn Lunney - Flight Director Shift #4 • William Reeves - Systems • Launch Site: John F. Kennedy Space Center, Florida • Launch Complex: Pad 39A • Launch: 2:13 pm EST, April 11, 1970 •Orbit: • Altitude: 118.99 miles • Inclination 32.547 degrees • Earth orbits: 1.5 • Lunar Landing Site: Intended to be Fra Mauro (later became landing site for Apollo 14) • Return to Earth: April 17, 1970 • Splashdown: 18:07:41 UTC (1:07:41 pm EST) • Recovery site location: South Pacific Ocean (near Samoa) S21 38.6 W165 21.7 • Recovery ship: U.S.S.
    [Show full text]
  • Flight to the Moon Spacecraft Attitude Control, MIT IAP 16.S585
    1/17/21 Earth-Moon Orbit Orbital Period: 27-1/2 days One side of Moon always faces Earth Flight to the Moon Spacecraft Attitude Control, MIT IAP 16.S585 Robert Stengel Princeton University There is no “Dark Side” January 14, 2021 1 ALL SIDES are dark once a month 2 1 2 The Earth and the Moon December 17, 1958 Earth mass = 81.4 x Moon mass Orbit eccentricity = 0.05 1st Cosmonaut Mercury 7, 1959 Class, 1959 3 4 3 4 1 1/17/21 April 12, 1961 February 20, 1962 John Glenn Vostok 1 Friendship 7 Mercury-Atlas Yuri Gagarin 5 6 5 6 Project Gemini [1965-66] Lunar Missions 10 crewed Titan II missions June 1961 Competition among contractors for the spacecraft and launch rockets US takes Space Race Lead 7 8 7 8 2 1/17/21 First Apollo Program Contract MIT Instrumentation Laboratory August 9, 1961 HOWEVER … Lunar landing technique had not been decided 9 10 9 10 Alternative Landers Saturn 3rd Stage 11 12 11 12 3 1/17/21 Proposed Saturn Launch Vehicles July 1962 Two Saturn 5s One or One Saturn 5 Nova Ten Saturn 1s Saturn 1 Saturn 5 Nova (Saturn 8) 13 14 13 14 Saturn Launch Vehicles Saturn 1B Saturn 5 The Apollo Modules Earth Orbit Missions Lunar Missions Service Command Lunar Module Module Module North American Grumman 15 16 15 16 4 1/17/21 First Manned Flight, Apollo 7 Apollo 8, December 21-27, 1968 October 11, 1968 • Earth-orbit mission to test LM planned • More ambitious mission was pursued st Eisele Schirra Cunningham • Repurposed to 1 manned flight to the Moon • 6-day mission, no Lunar Module Coast Reentry Trans- Moon’s Lunar Coast Injection “Sphere
    [Show full text]