From Nuclear Matter to Neutron Stars

Total Page:16

File Type:pdf, Size:1020Kb

From Nuclear Matter to Neutron Stars The University of Adelaide Thesis submitted for the degree of Doctor of Philosophy in Theoretical Physics Department of physics and Special research centre for the subatomic structure of matter Hadrons and Quarks in Dense Matter: From Nuclear Matter to Neutron Stars Supervisors: Author: Prof. A. W. Thomas Daniel L. Whittenbury Prof. A. G. Williams Dr R. Young November 10, 2015 Contents List of Tables vii List of Figures ix Signed Statement xv Acknowledgements xvii Dedication xix Abstract xxi List of Publications xxiii 1 Introduction 1 2 From Nuclear Physics to QCD and Back Again 9 2.1 NN Interaction and Early Nuclear Physics . .9 2.2 Basic Notions of Quantum Chromodynamics . 16 2.2.1 QCD Lagrangian and its Symmetries . 17 2.2.2 Asymptotic Freedom and Perturbation Theory . 21 2.2.3 Chiral Effective Field Theory . 24 2.3 Nuclear Matter . 25 2.4 Experimental and Theoretical Knowledge of the Nuclear EoS . 30 2.5 Quantum Hadrodynamics and the Relativistic Mean Field Approximation 35 2.6 The Quark-Meson Coupling Model . 42 3 General Relativity and the Astrophysics of Neutron Stars 47 3.1 Hydrostatic Equilibrium . 49 3.2 The Neutron Star EoS . 51 4 Hartree-Fock QMC Applied to Nuclear Matter 57 4.1 The Hartree-Fock QMC . 58 4.2 The Lagrangian Density . 59 4.3 Equations of Motion and the MFA . 61 4.4 The Hamiltonian Density . 62 4.5 Hartree-Fock Approximation . 64 4.6 The In-medium Dirac Equation . 72 iii 4.7 Detailed Evaluation of σ Meson Fock Term . 73 4.8 Final Expressions for the Fock Terms . 75 4.9 Model Parameters . 79 4.10 Nuclear Matter Properties . 82 4.11 Asymmetric Nuclear Matter . 85 4.12 Sensitivity to Parameter Variation . 89 4.13 Summary . 90 5 Hartree{Fock QMC Applied to Neutron Stars 93 5.1 Generalised Beta Equilibrium Matter and Neutron Stars . 93 5.2 Numerical Results and Discussions . 96 5.2.1 Comparison with Other Models . 102 5.3 Summary . 103 6 Quark Matter in the Nambu{Jona-Lasinio Model 107 6.1 A Brief Introduction to the NJL Model . 107 6.2 A Simple and Less Intuitive Explanation of the Mean Field Approximation110 6.3 A Fierz Invariant NJL Lagrangian Derived from the Colour Current Interaction . 111 6.4 A Better Explanation of the Mean Field Approximation Using the Path Integral Formalism . 113 6.5 Pion Phenomenology and the Fitting of the NJL Model Parameters . 123 6.6 At Finite Density . 127 6.7 Flavour Independent Vector Interaction . 129 6.8 Numerical Results and Discussion . 130 6.9 Summary . 148 7 Phase Transitions to Quark Matter 149 7.1 Hybrid Stars and the Phase Transition to Quark Matter . 149 7.2 Interpolation Construction . 153 7.3 Numerical Results and Discussion . 155 7.4 Summary . 166 8 Summary and Outlook 167 A Hadronic Matter Supplemental Material 173 A.1 Bag Model Mass Parametrisations . 173 A.2 Self-energy . 173 A.3 Subtraction of Contact Terms . 174 A.3.1 Sigma Meson . 174 A.3.2 Vector Meson (η = !/ρ) Vector-Vector Term . 174 A.3.3 Vector Meson (η = !/ρ) Vector-Tensor Term . 175 A.3.4 Vector Meson (η = !/ρ) Tensor-Tensor Term . 175 A.3.5 Pion Term . 176 B Quark Matter Supplemental Material 177 B.1 Supplementary Material on Path Integrals, Generating Functionals and the Stationary Phase Approximation . 177 B.1.1 The Generating Functional and Green's Functions in the Canon- ical Formalism . 177 B.1.2 The Path Integral Formalism . 179 B.1.3 Free Boson Theory . 180 B.1.4 Stationary and Saddle Point Approximation . 181 B.1.5 The Connected Generating Functional and the Effective Action 183 B.1.6 Connection to QFTs at Finite Temperature and Statistical Me- chanics . 185 B.1.7 Free Fermion Theory . 188 B.2 Symmetry Lie Group and Lie Algebra Conventions . 190 B.3 Fierz Transformations . 191 B.4 Useful Functional Formulas . 191 B.5 Useful Properties Involving Determinants . 192 B.6 Schwinger's Proper Time Regularisation . 193 B.7 Effective Potential Derivation . 193 B.7.1 Effective Potential in Vacuum . 193 B.7.2 Effective Potential at Finite Density . 194 B.7.3 Divergent Part of the Effective Potential . 198 B.8 The Gap Equation . 199 B.8.1 The Gap Equation in Vacuum . 199 B.8.2 The Gap Equation at Finite Density . 200 B.9 Pion Polarisation Function . 201 B.10 Pion-quark Coupling . 205 B.11 Pion Decay Constant . 205 B.12 Three Momentum Regularised NJL Model with t' Hooft Term . 206 Bibliography 209 List of Tables 2.2.1 Quark properties [91], masses are in units of GeV. 17 2.3.1 Typical parameter set for the Bethe-Weizacker formula [109] . 26 2.5.1 Two typical QHD parameter sets. Coupling constants are dimensionless except for κ which is given in MeV. The parameter sets are given using the convention that the scalar field is positive. See the above references for the details of the fitting procedure. 42 2.5.2 Masses and incompressibility for the two typical QHD parameter sets given in Table 2.5.1. The masses and incompressibility are given in MeV. 42 4.9.1 Relations between baryon magnetic moments and anomalous isoscalar B B and isovector magnetic moments κ(IS;IV ) =: κ(!,ρ) = fB(!,ρ)=gB(!,ρ) us- ing experimental magnetic moments [256]. 80 4.13.1 Couplings, nuclear matter properties and selected hyperon optical po- tentials determined for our standard case (for which Λ = 0:9 GeV, and free RN = 1:0 fm) and the effect of subsequent variations in which dif- ferences from the standard parameter set are indicated in column 1. The tabulated quantities at saturation are the slope and curvature of the symmetry energy, L0 and Ksym, the incompressibility K0, skewness coefficient Q0 and the volume component of isospin incompressibility Kτ;v, respectively. 92 5.3.1 Selected nuclear matter properties, hyperon optical potentials and neu- tron star properties determined for our standard case (for which Λ = free 0:9 GeV, and RN = 1:0 fm) and the effect of subsequent variations in which differences from the standard parameter set are indicated in column 1. The tabulated quantities at saturation are the incompress- ibility K0, the slope of the symmetry energy, L0, and hyperon optical potentials, respectively. Tabulated neutron star quantities are the stel- lar radius, maximum stellar mass and corresponding central density −3 (units ρ0 = 0:16 fm ). .......................... 106 vii 6.5.1 We fitted all parameter sets using low energy hadron phenomenology. The proper time parameter sets used fπ = 93 MeV and mπ = 140 MeV. The three momentum regularised parameter set HK [282, 308] used fπ = 93 MeV, mπ = 138 MeV, mK = 495:7 MeV, mη0 = 957:5 MeV and m` = 5:5 MeV. An (∗) marks variables used in the fitting procedure. A dagger (y) indicates parameter sets used in other plots. 128 7.3.1 Hybrid star properties in the percolation picture. The crossover region is chosen to be (¯ρ, Γ) = (3ρ0; ρ0). An astericks (∗) indicates that a con- sistent EoS could not be constructed between that variation of hadronic and quark models with the chosen interpolation method. 164 7.3.2 Hybrid star properties in the percolation picture under variation of ρ¯ 2 f3ρ0; 4ρ0; 5ρ0g. The \Standard" or baseline scenario is used for the hadronic model and the flavour dependent vector interaction is used in each of the quark models. An astericks (∗) indicates that a consistent EoS could not be constructed between that variation of hadronic and quark models with the chosen interpolation method. 165 2.1.1 Transformations upon Wick rotation and various definitions. 188 List of Figures 2.1.1 Division of configuration space into three regions. 12 1 1 2.1.2 Phase shifts versus energy for (a) S0 and (b) D2 partial waves. Data obtained through NN-Online [40] and INS DAC [41] on 7/2/2014. 13 2.2.1 Summary of symmetries and their breaking. 19 2.2.2 Running of couplings to one loop level in (a) QED and (b) QCD. 23 2.6.1 Schematic picture of the QMC Model. 44 3.1.1 Summary of typical estimates for the masses of main sequence star corpses and their progenitors [218]. 50 3.2.1 Schematic cross section of a neutron star, see for example Refs. [111, 189, 191]. Crust: nuclei, electrons and neutrons. Outer core: Nuclear liquid consisting of neutrons, protons, electrons and muons. Inner core: Content uncertain, commonly thought that hyperons, Bose condensates or quark matter could exist. 52 4.10.1 Pure neutron matter energy per particle as a function of density as obtained in the present work, in comparison with complete CEFT at N3LO order { for more details of the latter, see Ref. [260]. 83 4.10.2 Density dependence of pressure in PNM as predicted in BHF, DBHF, QuMoCa and CEFT with and without three-body forces. (a) With- out three-body forces. (b) With three-body forces. The QMC model prediction is shown in (b). For more details see the text and ref. [87]. 84 4.10.3 (a) Pressure in SNM as a function of density as predicted in QMC model. The shaded area is taken from Ref. [265]. (b) Pressure in PNM as a function of density as predicted in the QMC model. The upper and lower shaded areas correspond to two different estimates of the contribution of the symmetry pressure to the total pressure. For more detail see Ref. [265] . 86 4.11.1 (a) Symmetry energy, S, as a function of baryon number density, as calculated in this work.
Recommended publications
  • Advances in Quantum Field Theory
    ADVANCES IN QUANTUM FIELD THEORY Edited by Sergey Ketov Advances in Quantum Field Theory Edited by Sergey Ketov Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2012 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source. As for readers, this license allows users to download, copy and build upon published chapters even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. Notice Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book. Publishing Process Manager Romana Vukelic Technical Editor Teodora Smiljanic Cover Designer InTech Design Team First published February, 2012 Printed in Croatia A free online edition of this book is available at www.intechopen.com Additional hard copies can be obtained from [email protected] Advances in Quantum Field Theory, Edited by Sergey Ketov p.
    [Show full text]
  • Super-Exceptional Embedding Construction of the Heterotic M5
    Super-exceptional embedding construction of the heterotic M5: Emergence of SU(2)-flavor sector Domenico Fiorenza, Hisham Sati, Urs Schreiber June 2, 2020 Abstract A new super-exceptional embedding construction of the heterotic M5-brane’s sigma-model was recently shown to produce, at leading order in the super-exceptional vielbein components, the super-Nambu-Goto (Green- Schwarz-type) Lagrangian for the embedding fields plus the Perry-Schwarz Lagrangian for the free abelian self-dual higher gauge field. Beyond that, further fields and interactions emerge in the model, arising from probe M2- and probe M5-brane wrapping modes. Here we classify the full super-exceptional field content and work out some of its characteristic interactions from the rich super-exceptional Lagrangian of the model. We show that SU(2) U(1)-valued scalar and vector fields emerge from probe M2- and M5-branes wrapping × the vanishing cycle in the A1-type singularity; together with a pair of spinor fields of U(1)-hypercharge 1 and each transforming as SU(2) iso-doublets. Then we highlight the appearance of a WZW-type term in± the super-exceptional PS-Lagrangian and find that on the electromagnetic field it gives the first-order non-linear DBI-correction, while on the iso-vector scalar field it has the form characteristic of the coupling of vector mesons to pions via the Skyrme baryon current. We discuss how this is suggestive of a form of SU(2)-flavor chiral hadrodynamics emerging on the single (N = 1) M5 brane, different from, but akin to, holographiclarge-N QCD.
    [Show full text]
  • A Quark-Meson Coupling Model for Nuclear and Neutron Matter
    Adelaide University ADPT February A quarkmeson coupling mo del for nuclear and neutron matter K Saito Physics Division Tohoku College of Pharmacy Sendai Japan and y A W Thomas Department of Physics and Mathematical Physics University of Adelaide South Australia Australia March Abstract nucl-th/9403015 18 Mar 1994 An explicit quark mo del based on a mean eld description of nonoverlapping nucleon bags b ound by the selfconsistent exchange of ! and mesons is used to investigate the prop erties of b oth nuclear and neutron matter We establish a clear understanding of the relationship b etween this mo del which incorp orates the internal structure of the nucleon and QHD Finally we use the mo del to study the density dep endence of the quark condensate inmedium Corresp ondence to Dr K Saito email ksaitonuclphystohokuacjp y email athomasphysicsadelaideeduau Recently there has b een considerable interest in relativistic calculations of innite nuclear matter as well as dense neutron matter A relativistic treatment is of course essential if one aims to deal with the prop erties of dense matter including the equation of state EOS The simplest relativistic mo del for hadronic matter is the Walecka mo del often called Quantum Hadro dynamics ie QHDI which consists of structureless nucleons interacting through the exchange of the meson and the time comp onent of the meson in the meaneld approximation MFA Later Serot and Walecka extended the mo del to incorp orate the isovector mesons and QHDI I and used it to discuss systems like
    [Show full text]
  • Vector Mesons and an Interpretation of Seiberg Duality
    Vector Mesons and an Interpretation of Seiberg Duality Zohar Komargodski School of Natural Sciences Institute for Advanced Study Einstein Drive, Princeton, NJ 08540 We interpret the dynamics of Supersymmetric QCD (SQCD) in terms of ideas familiar from the hadronic world. Some mysterious properties of the supersymmetric theory, such as the emergent magnetic gauge symmetry, are shown to have analogs in QCD. On the other hand, several phenomenological concepts, such as “hidden local symmetry” and “vector meson dominance,” are shown to be rigorously realized in SQCD. These considerations suggest a relation between the flavor symmetry group and the emergent gauge fields in theories with a weakly coupled dual description. arXiv:1010.4105v2 [hep-th] 2 Dec 2010 10/2010 1. Introduction and Summary The physics of hadrons has been a topic of intense study for decades. Various theoret- ical insights have been instrumental in explaining some of the conundrums of the hadronic world. Perhaps the most prominent tool is the chiral limit of QCD. If the masses of the up, down, and strange quarks are set to zero, the underlying theory has an SU(3)L SU(3)R × global symmetry which is spontaneously broken to SU(3)diag in the QCD vacuum. Since in the real world the masses of these quarks are small compared to the strong coupling 1 scale, the SU(3)L SU(3)R SU(3)diag symmetry breaking pattern dictates the ex- × → istence of 8 light pseudo-scalars in the adjoint of SU(3)diag. These are identified with the familiar pions, kaons, and eta.2 The spontaneously broken symmetries are realized nonlinearly, fixing the interactions of these pseudo-scalars uniquely at the two derivative level.
    [Show full text]
  • Sum Rules on Quantum Hadrodynamics at Finite Temperature
    Sum rules on quantum hadrodynamics at finite temperature and density B. X. Sun1∗, X. F. Lu2;3;7, L. Li4, P. Z. Ning2;4, P. N. Shen7;1;2, E. G. Zhao2;5;6;7 1Institute of High Energy Physics, The Chinese Academy of Sciences, P.O.Box 918(4), Beijing 100039, China 2Institute of Theoretical Physics, The Chinese Academy of Sciences, Beijing 100080, China 3Department of Physics, Sichuan University, Chengdu 610064, China 4Department of Physics, Nankai University, Tianjin 300071, China 5Center of Theoretical Nuclear Physics, National Laboratory of Heavy ion Accelerator,Lanzhou 730000, China 6Department of Physics, Tsinghua University, Beijing 100084, China 7China Center of Advanced Science and Technology(World Laboratory), Beijing 100080,China October 15, 2003 Abstract According to Wick's theorem, the second order self-energy corrections of hadrons in the hot and dense nuclear matter are calculated. Furthermore, the Feynman rules ∗Corresponding author. E-mail address: [email protected]. Present address: Laboratoire de Physique Subatomique et de Cosmologie, IN2P3/CNRS, 53 Av. des Martyrs, 38026 Grenoble-cedex, France 1 are summarized, and the method of sum rules on quantum hadrodynamics at finite temperature and density is developed. As the strong couplings between nucleons are considered, the self-consistency of this method is discussed in the framework of relativistic mean-field approximation. Debye screening masses of the scalar and vector mesons in the hot and dense nuclear matter are calculated with this method in the relativistic mean-field approximation. The results are different from those of thermofield dynamics and Brown-Rho conjecture. Moreover, the effective masses of the photon and the nucleon in the hot and dense nuclear matter are discussed.
    [Show full text]
  • Tests of Perturbative Quantum Chromodynamics in Photon-Photon
    SLAC-PUB-2464 February 1980 MAST, 00 TESTS OF PERTURBATIVE QUANTUM CHROMODYNAMICS IN PROTON-PHOTON COLLISIONS Stanley J. Brodsky Stanford Linear Accelerator Center Stanford University, Stanford, California 94305 ABSTRACT The production of hadrons in the collision of two photons via the process e e -*- e e X (see Fig. 1) can provide an ideal laboratory for testing many of the features of the photon's hadronic interactions, especially its short distance aspects. We will review here that part of two-photon physics which is particularly relevant to testa of pert":rh*_tivt QCD. (Invited talk presented at the 1979 International Conference- on Two Photon Interactions, Lake Tahoe, California, August 30 - September 1, 1979, Sponsored by University of California, Davis.) * Work supported by the Department of Energy under contract number DE-AC03-76SF00515. •• LIMITED e+—=>—<t>w(_ JVMS^A,—<e- x, ^ ^ *2 „-78 cr(yr — hadrons) 3318A1 Fig. 1. Two-photon annihilation into hadrons in e e collisions. 2 7 Large PT let production " Perhaps the most interesting application of two photon physics to QCD is the production of hadrons and hadronic jets at large p . The elementary reaction YY "*" *1^ "*" hadrons yields an asymptotically scale- invariant two-jet cross section at large p„ proportional to the fourth power of the quark charge. The yy -*• qq subprocess7 implies the produc­ tion of two non-collinear, roughly coplanar high p (SPEAR-like) jets, with a cross section nearly flat in rapidity. Such "short jets" will be readily distinguishable from e e -*• qq events due to missing visible energy, even without tagging the forward leptons.
    [Show full text]
  • Relativistic Nuclear Field Theory and Applications to Single- and Double-Beta Decay
    Relativistic nuclear field theory and applications to single- and double-beta decay Caroline Robin, Elena Litvinova INT Neutrinoless double-beta decay program Seattle, June 13, 2017 Outline Relativistic Nuclear Field Theory: connecting the scales of nuclear physics from Quantum Hadrodynamics to emergent collective phenomena Nuclear response to one-body isospin-transfer external field: Gamow-Teller transitions, beta-decay half-lives and the “quenching” problem Current developments: ground-state correlations in RNFT Application to double-beta decay: some ideas Conclusion & perspectives Outline Relativistic Nuclear Field Theory: connecting the scales of nuclear physics from Quantum Hadrodynamics to emergent collective phenomena Nuclear response to one-body isospin-transfer external field: Gamow-Teller transitions, beta-decay half-lives and the “quenching” problem Current developments: ground-state correlations in RNFT Application to double-beta decay: some ideas Conclusion & perspectives Relativistic Nuclear Field Theory: foundations Quantum Hadrodynamics σ ω ρ - Relativistic nucleons mesons self-consistent m ~140-800 MeV π,σ,ω,ρ extensions of the Relativistic Relativistic mean-field Mean-Field nucleons + superfluidity via S ~ 10 MeV Green function n techniques (1p-1h) collective vibrations successive (phonons) ~ few MeV Relativistic Random Phase Approximation corrections in the single- phonon particle motion (2p-2h) and effective interaction Particle-Vibration coupling - Nuclear Field theory nucleons – Time-Blocking & phonons ... (3p-3h)
    [Show full text]
  • The Role of Nucleon Structure in Finite Nuclei
    ADP-95-45/T194 THE ROLE OF NUCLEON STRUCTURE IN FINITE NUCLEI Pierre A. M. GUICHON 1 DAPHIA/SPhN, CE Saclay, 91191 Gif-sur Yvette, CEDEX, France Koichi SAITO 2 Physics Division, Tohoku College of Pharmacy Sendai 981, Japan Evguenii RODIONOV 3 and Anthony W. THOMAS 4 Department of Physics and Mathematical Physics, University of Adelaide, South Australia 5005, Australia arXiv:nucl-th/9509034v2 15 Jan 1996 PACS numbers: 12.39.Ba, 21.60.-n, 21.90.+f, 24.85.+p Keywords: Relativistic mean-field theory, finite nuclei, quark degrees of freedom, MIT bag model, charge density [email protected] [email protected] [email protected] [email protected] 1 Abstract The quark-meson coupling model, based on a mean field description of non- overlapping nucleon bags bound by the self-consistent exchange of σ, ω and ρ mesons, is extended to investigate the properties of finite nuclei. Using the Born- Oppenheimer approximation to describe the interacting quark-meson system, we derive the effective equation of motion for the nucleon, as well as the self-consistent equations for the meson mean fields. The model is first applied to nuclear matter, after which we show some initial results for finite nuclei. 2 1 Introductory remarks The nuclear many-body problem has been the object of enormous theoretical attention for decades. Apart from the non-relativistic treatments based upon realistic two-body forces [1, 2], there are also studies of three-body effects and higher [3]. The importance of relativity has been recognised in a host of treatments under the general heading of Dirac- Brueckner [4, 5, 6].
    [Show full text]
  • Photon Structure Functions at Small X in Holographic
    Physics Letters B 751 (2015) 321–325 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Photon structure functions at small x in holographic QCD ∗ Akira Watanabe a, , Hsiang-nan Li a,b,c a Institute of Physics, Academia Sinica, Taipei, 115, Taiwan, ROC b Department of Physics, National Tsing-Hua University, Hsinchu, 300, Taiwan, ROC c Department of Physics, National Cheng-Kung University, Tainan, 701, Taiwan, ROC a r t i c l e i n f o a b s t r a c t Article history: We investigate the photon structure functions at small Bjorken variable x in the framework of the Received 20 February 2015 holographic QCD, assuming dominance of the Pomeron exchange. The quasi-real photon structure Received in revised form 9 October 2015 functions are expressed as convolution of the Brower–Polchinski–Strassler–Tan (BPST) Pomeron kernel Accepted 26 October 2015 and the known wave functions of the U(1) vector field in the five-dimensional AdS space, in which the Available online 29 October 2015 involved parameters in the BPST kernel have been fixed in previous studies of the nucleon structure Editor: J.-P. Blaizot functions. The predicted photon structure functions, as confronted with data, provide a clean test of the Keywords: BPST kernel. The agreement between theoretical predictions and data is demonstrated, which supports Deep inelastic scattering applications of holographic QCD to hadronic processes in the nonperturbative region. Our results are also Gauge/string correspondence consistent with those derived from the parton distribution functions of the photon proposed by Glück, Pomeron Reya, and Schienbein, implying realization of the vector meson dominance in the present model setup.
    [Show full text]
  • Structure of the Vacuum in Nuclear Matter: a Nonperturbative Approach
    PHYSICAL REVIEW C VOLUME 56, NUMBER 3 SEPTEMBER 1997 Structure of the vacuum in nuclear matter: A nonperturbative approach A. Mishra,1,* P. K. Panda,1 S. Schramm,2 J. Reinhardt,1 and W. Greiner1 1Institut fu¨r Theoretische Physik, J.W. Goethe Universita¨t, Robert Mayer-Straße 10, Postfach 11 19 32, D-60054 Frankfurt/Main, Germany 2Gesellschaft fu¨r Schwerionenforschung (GSI), Planckstraße 1, Postfach 110 552, D-64220 Darmstadt, Germany ~Received 3 February 1997! We compute the vacuum polarization correction to the binding energy of nuclear matter in the Walecka model using a nonperturbative approach. We first study such a contribution as arising from a ground-state structure with baryon-antibaryon condensates. This yields the same results as obtained through the relativistic Hartree approximation of summing tadpole diagrams for the baryon propagator. Such a vacuum is then generalized to include quantum effects from meson fields through scalar-meson condensates which amounts to summing over a class of multiloop diagrams. The method is applied to study properties of nuclear matter and leads to a softer equation of state giving a lower value of the incompressibility than would be reached without quantum effects. The density-dependent effective s mass is also calculated including such vacuum polarization effects. @S0556-2813~97!02509-0# PACS number~s!: 21.65.1f, 21.30.2x I. INTRODUCTION to be developed to consider nuclear many-body problems. The present work is a step in that direction including vacuum Quantum hadrodynamics ~QHD! is a general framework polarization effects. for the nuclear many-body problem @1–3#.
    [Show full text]
  • Hadron–Quark Phase Transition in the SU (3) Local Nambu–Jona-Lasinio (NJL) Model with Vector Interaction
    S S symmetry Article Hadron–Quark Phase Transition in the SU (3) Local Nambu–Jona-Lasinio (NJL) Model with Vector Interaction Grigor Alaverdyan Department of Radio Physics, Yerevan State University, 1 Alex Manoogian Street, Yerevan 0025, Armenia; [email protected] Abstract: We study the hadron–quark hybrid equation of state (EOS) of compact-star matter. The Nambu–Jona-Lasinio (NJL) local SU (3) model with vector-type interaction is used to describe the quark matter phase, while the relativistic mean field (RMF) theory with the scalar-isovector d-meson effective field is adopted to describe the hadronic matter phase. It is shown that the larger the vector coupling constant GV, the lower the threshold density for the appearance of strange quarks. For a sufficiently small value of the vector coupling constant, the functions of the mass dependence on the baryonic chemical potential have regions of ambiguity that lead to a phase transition in nonstrange quark matter with an abrupt change in the baryon number density. We show that within the framework of the NJL model, the hypothesis on the absolute stability of strange quark matter is not realized. In order to describe the phase transition from hadronic matter to quark matter, Maxwell’s construction is applied. It is shown that the greater the vector coupling, the greater the stiffness of the EOS for quark matter and the phase transition pressure. Our results indicate that the infinitesimal core of the quark phase, formed in the center of the neutron star, is stable. Keywords: quark matter; NJL model; RMF theory; deconfinement phase transition; Maxwell con- struction Citation: Alaverdyan, G.
    [Show full text]
  • Exploring the Isovector Equation of State at High Densities with HIC
    INT program Interfaces between structure and reactions for rare isotopes and nuclear astrophysics Seattle, August 8 - September 2, 2011 Exploring the isovector equation of state at high densities with HIC Vaia D. Prassa Aristotle University of Thessaloniki Department of Physics Introduction Quantum Hadrodynamics (QHD) Transport theory Particle Production Summary & Outlook Outline 1 Introduction Nuclear Equation of state Symmetry Energy Phase diagram Spacetime evolution 2 Quantum Hadrodynamics (QHD) Meson exchange model Asymmetric Nuclear Equation of State 3 Transport theory Vlasov term Collision term 4 Particle Production Cross sections Kaon-nucleon potential 5 Summary & Outlook Vaia D. Prassa Exploring the isovector equation of state at high densities with HIC 2 Introduction Nuclear Equation of state Quantum Hadrodynamics (QHD) Symmetry Energy Transport theory Phase diagram Particle Production Spacetime evolution Summary & Outlook First questions to be answered: Why is the Symmetry Energy so important? At low densities: Nuclear structure (neutron skins, pigmy resonances), Nuclear Reactions (neutron distillation in fragmentation, charge equilibration), and Astrophysics, (neutron star formation, and crust), At high densities: Relativistic Heavy ion collisions (isospin flows, particle production), Compact stars (neutron star structure), and for fundamental properties of strong interacting systems (transition to new phases of the matter). Why HIC? Probing the in-medium nuclear interaction in regions away from saturation. Reaction observables sensitive to the symmetry term of the nuclear equation of state. High density symmetry term probed from isospin effects on heavy ion reactions at relativistic energies. In this talk: HIC at intermediate energies 400AMeV -2AGeV . Investigation of particle ratios: Probes for the symmetry energy density dependence. In-medium effects in inelastic cross sections & Kaon potential choices.
    [Show full text]