Digital Electronics: Logic and Clocks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Design and Evaluation of a Clock Multiplexing Circuit for the SSRL Booster Accelerator Timing System
SLAC-TN-15-018 Design and Evaluation of a Clock Multiplexing Circuit for the SSRL Booster Accelerator Timing System Million Araya† August 21, 2015 Seattle Central Community College, Seattle, WA CCI Program, SLAC National Accelerator Laboratory SPEAR3 is a 234 m circular storage ring at SLAC’s synchrotron radiation facility (SSRL) in which a 3 GeV electron beam is stored for user access. Typically the electron beam decays with a time constant of approximately 10hr due to electron lose. In order to replenish the lost electrons, a booster synchrotron is used to accelerate fresh electrons up to 3GeV for injection into SPEAR3. In order to maintain a constant electron beam current of 500mA, the injection process occurs at 5 minute intervals. At these times the booster synchrotron accelerates electrons for injection at a 10Hz rate. A 10Hz 'injection ready' clock pulse train is generated when the booster synchrotron is operating. Between injection intervals-where the booster is not running and hence the 10 Hz ‘injection ready’ signal is not present-a 10Hz clock is derived from the power line supplied by Pacific Gas and Electric (PG&E) to keep track of the injection timing. For this project I constructed a multiplexing circuit to 'switch' between the booster synchrotron 'injection ready' clock signal and PG&E based clock signal. The circuit uses digital IC components and is capable of making glitch-free transitions between the two clocks. This report details construction of a prototype multiplexing circuit including test results and suggests improvement opportunities for the final design. I. Introduction The ultimate purpose of a synchrotron radiation facility is to generate stable, high-power beams of light spanning from the Infrared to x-ray portion of the electromagnetic spectrum. -
IC 555 Timer in the Contemporary World
International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume -4 Issue-6, August 2015 An Imprint of IC 555 Timer in t he Contemporary World Nanditha Nandanavanam Abstract- The paper deals with the basic principle of IC 555 There is also a flip flop element which gives high output Timer, its working and its application in the present world. 555 when ‘S’ is high and ‘R’ is low. It gives low when ‘R’ is Timer is part and parcel of almost every electronics project. It is high and ‘S’ is low. versatile IC whose applications range from simply making a light blink on and off to pulse-width modulation. From the time of its Pin configuration invention, a myriad of several novel and unique circuits have been developed and presented in several trade, professional , and hobby publications. Keywords: Monostable mode, A stable mode, Oscillator, Speed Detector, Hygrometer, Invertor, Patents. I. INTRODUCTION IC 555 timer is an integrated circuit(IC) or a chip used for various electronic applications. The IC was designed in 1971 by Hans R. Camenzind under a contract to Signetics, which was later acquired by Philips. It has b een in wide use ever since. It wa s the very first commercial timer IC to be designed. IC 555 timer got its name from three 5 kilo ohm resistors connec ted in series voltage divider. A single IC consists of several transistors, resistors, capacitors, diodes, flip flops and other elements. It is a highly stable device for Fig. 2 Pin diagram generating accurate time delays or oscillation [8]. -
Digital Signals
Technical Information Digital Signals 1 1 bit t Part 1 Fundamentals Technical Information Part 1: Fundamentals Part 2: Self-operated Regulators Part 3: Control Valves Part 4: Communication Part 5: Building Automation Part 6: Process Automation Should you have any further questions or suggestions, please do not hesitate to contact us: SAMSON AG Phone (+49 69) 4 00 94 67 V74 / Schulung Telefax (+49 69) 4 00 97 16 Weismüllerstraße 3 E-Mail: [email protected] D-60314 Frankfurt Internet: http://www.samson.de Part 1 ⋅ L150EN Digital Signals Range of values and discretization . 5 Bits and bytes in hexadecimal notation. 7 Digital encoding of information. 8 Advantages of digital signal processing . 10 High interference immunity. 10 Short-time and permanent storage . 11 Flexible processing . 11 Various transmission options . 11 Transmission of digital signals . 12 Bit-parallel transmission. 12 Bit-serial transmission . 12 Appendix A1: Additional Literature. 14 99/12 ⋅ SAMSON AG CONTENTS 3 Fundamentals ⋅ Digital Signals V74/ DKE ⋅ SAMSON AG 4 Part 1 ⋅ L150EN Digital Signals In electronic signal and information processing and transmission, digital technology is increasingly being used because, in various applications, digi- tal signal transmission has many advantages over analog signal transmis- sion. Numerous and very successful applications of digital technology include the continuously growing number of PCs, the communication net- work ISDN as well as the increasing use of digital control stations (Direct Di- gital Control: DDC). Unlike analog technology which uses continuous signals, digital technology continuous or encodes the information into discrete signal states (Fig. 1). When only two discrete signals states are assigned per digital signal, these signals are termed binary si- gnals. -
V850 Standby Modes
Application Note V850 Standby Modes V850ES/SG2 V850ES/SJ2 Document No. U18825EE1V0AN00 Date Published June 2007 © NEC Electronics Corporation June 2007 Printed in Germany NOTES FOR CMOS DEVICES 1 VOLTAGE APPLICATION WAVEFORM AT INPUT PIN Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN). 2 HANDLING OF UNUSED INPUT PINS Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device. 3 PRECAUTION AGAINST ESD A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. -
75324T-Instructions.Pdf
Atomic Digital Clock with indoor/outdoor temperature, calendar and moon phase MODEL # 75324T USER GUIDE Package Contents: (1) Atomic Digital Clock (1) Wireless Outdoor Temperature Sensor (1) User Guide NOTE: A clear protective flm is applied to the LCD at the What You’ll Need: factory that must be removed prior to using this product. (8) AA Batteries Locate the clear tab and simply peel to remove. Thank you for purchasing this quality TIMEX® brand product. Please read these instructions COMPLETELY to fully understand the features and functions of this clock, and to enjoy its benefts. Make sure to keep this guide handy for future reference. To receive product information, register your product online. It's quick & easy! Log on to http://www.chaneyinstrument.com/ProductReg.aspx WHAT IS AN ATOMIC CLOCK? An Atomic clock is a timepiece that maintains accuracy up to one second per million years using the most precise method of time synchronization, radio signals. In North America, the National Institute of Standards and Technologies (NIST) operates an Atomic clock in Fort Collins, Colorado, that transmits the time codes via the radio station WWVB. Please DO NOT return product to the retail store. For technical assistance This quality TIMEX® clock includes a built-in receiver that picks up the Atomic radio signal from WWVB. To and product return information, please call technical support @ 877-221-1252 maintain the best possible reception, place the unit so that the backside faces in the general direction of Monday - Friday -- 8:00 a.m. - 4:30 p.m. CST Colorado. What's more, the IntelliTime® technology built into this clock makes for hassle-free automatic setting and resetting for daylight saving time. -
Flexible. Affordable. Built to Last. 2 It’S a Good Bet There’S Not a Single Person in America, Who’S Listened to The
D-75 STANDALONE AND D-75N NETWORKABLE DIGITAL AUDIO CONSOLES Flexible. Affordable. Built To Last. 2 It’s a good bet there’s not a single person in America, who’s listened to the radio in the last 10 years, who hasn’t heard an Audioarts radio console in action. That’s how pervasive and powerful this product line is. 3 Wheatstone D-75 STANDALONE DIGITAL AUDIO CONSOLE When it comes to radio consoles, Wheatstone’s Audioarts is Individual plug-in the de facto standard. And our D-75 is the state of the art. modules make It’s got everything you need to produce, air and manage all of installation and your programs. It’s powerful and flexible enough to please any service a breeze. engineer, simple enough that even guest talent feel at home and Configuration is as cost-effective enough to make management smile. simple as setting the front panel dipswitches Available in two frame sizes, 12 input (13 max) and 18 input concealed under the (21 max), the D-75 comes standard with 4 mic preamps and hinged meterbridge. gives you plenty of stereo busses, dual phone caller capability Digital and analog input channel daughtercards make field and a comprehensive monitor section that provides separate conversions simple and fast. Easy access logic programming feeds to control room/headphone and studio monitor outputs. dipswitches make configuration changes a snap. Plus, the D-75 gives you an output module, external power supply, two LED meter pairs, digital clock and timer, headphone Best of all, the D-75 is designed by the Wheatstone engineering jack, and built-in cue speaker (dual phone module and line team so you know its construction quality and performance selector module shown are optional). -
Generate a Clock Signal from a Crystal Oscillator
www.ti.com Product Overview Generate a Clock Signal from a Crystal Oscillator Clocked Device U CLK Figure 1-1. Using an Unbuffered Inverter and Schmitt-Trigger Inverter to Generate a Clock Signal From a Crystal Oscillator Design Considerations • Drive crystal oscillators directly • Can be disabled with added logic • Allows for selectable system clocks with multiple crystals • Outputs a clean and reliable square wave • See the Use of the CMOS Unbuffered Inverter in Oscillator Circuits Application Report for more information about this use case. • Need additional assistance? Ask our engineers a question on the TI E2E™ logic support forum Recommended Parts Part Number Automotive Qualified VCC Range Features SN74LVC2GU04-Q1 ✓ 1.65 V — 5.5 V Dual unbuffered inverter SN74LVC2GU04 SN74AHC1GU04 2 V — 5.5 V Single unbuffered inverter SN74AUC1GU04 0.8 V — 2.7 V Single unbuffered inverter SN74LVC1G17-Q1 ✓ 1.65 V — 5.5 V Single Schmitt-trigger buffer SN74LVC1G17 For more devices, browse through the online parametric tool where you can sort by desired voltage, channel numbers, and other features. SCEA099 – OCTOBER 2020 Generate a Clock Signal from a Crystal Oscillator 1 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. -
Please Replace the Following Pages in the Book. 26 Microcontroller Theory and Applications with the PIC18F
Please replace the following pages in the book. 26 Microcontroller Theory and Applications with the PIC18F Before Push After Push Stack Stack 16-bit Register 0120 143E 20C2 16-bit Register 0120 SP 20CA SP 20C8 143E 20C2 0703 20C4 0703 20C4 F601 20C6 F601 20C6 0706 20C8 0706 20C8 0120 20CA 20CA 20CC 20CC 20CE 20CE Bottom of Stack FIGURE 2.12 PUSH operation when accessing a stack from the bottom Before POP After POP Stack 16-bit Register A286 16-bit Register 0360 Stack 143E 20C2 SP 20C8 SP 20CA 143E 20C2 0705 20C4 0705 20C4 F208 20C6 F208 20C6 0107 20C8 0107 20C8 A286 20CA A286 20CA 20CC 20CC Bottom of Stack FIGURE 2.13 POP operation when accessing a stack from the bottom Note that the stack is a LIFO (last in, first out) memory. As mentioned earlier, a stack is typically used during subroutine CALLs. The CPU automatically PUSHes the return address onto a stack after executing a subroutine CALL instruction in the main program. After executing a RETURN from a subroutine instruction (placed by the programmer as the last instruction of the subroutine), the CPU automatically POPs the return address from the stack (previously PUSHed) and then returns control to the main program. Note that the PIC18F accesses the stack from the top. This means that the stack pointer in the PIC18F holds the address of the bottom of the stack. Hence, in the PIC18F, the stack pointer is incremented after a PUSH, and decremented after a POP. 2.3.2 Control Unit The main purpose of the control unit is to read and decode instructions from the program memory. -
VLSI Digital Signal Processing
CLOCKS Clocks in Digital Systems • Why are clocks and clocked memory registers needed inside digital systems? • Clocks pace the flow of data inside digital processors • The exact speed of data through circuits is impossible to predict accurately due to factors such as: – Fabrication process variations – Supply voltage variations “PVT variations” – Temperature variations – Countless parasitic effects (e.g., wire-to-wire capacitances) – Data-dependent variations (e.g., calculating 1 OR 1 = 1 requires a different delay than 1 OR 0 = 1) © B. Baas 322 Clocks in Digital Systems • Clocked memory elements slow down the fastest signals, wait until all signals have finished propagating through the combinational logic in the stage*, and then release them into the next stage simultaneously, controlled by the active edge of the clock signal • * This is why we care about clock only the single slowest signal in a block (max propagation delay) when finding the maximum clock frequency © B. Baas 323 Clocks in Digital Systems • All paths within a digital system consist of an input register, (optionally) followed by combinational logic, followed by an output register • Therefore: – If we can make this structure work under all conditions, we can build a robust digital system – We should analyze this structure carefully clock a combinational out b logic c_p1 c_p3 © B. Baas c_p2 324 Robust Clock Design • Edge-triggered memory elements (flip-flops) are generally more robust than level-sensitive memory elements (transparent latches) • Always follow these rules in this class, and for the most robust designs: 1. Only clock signals may connect to flip-flop or latch clock inputs • A simpler circuit may sometimes be possible if a logic signal is connected to a clock input, but do not do it for robustness • always @(posedge key) begin 2. -
Tms320f280x, Tms320c280x, Tms320f2801x Digital Signal Processors
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802, TMS320F2809, TMS320F2808, TMS320F2806,TMS320C2801, TMS320F2802, TMS320F28016, TMS320F2801, TMS320F28015TMS320C2802, www.ti.com TMS320C2801,SPRS230P – OCTOBER TMS320F28016, 2003 – REVISED TMS320F28015 FEBRUARY 2021 SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021 TMS320F280x, TMS320C280x, TMS320F2801x digital signal processors 1 Features • Three 32-bit CPU timers • Enhanced control peripherals • High-performance static CMOS technology – Up to 16 PWM outputs – 100 MHz (10-ns cycle time) – Up to 6 HRPWM outputs with 150-ps MEP – 60 MHz (16.67-ns cycle time) resolution – Low-power (1.8-V core, 3.3-V I/O) design – Up to four capture inputs • JTAG boundary scan support – Up to two quadrature encoder interfaces – IEEE Standard 1149.1-1990 Standard Test – Up to six 32-bit/six 16-bit timers Access Port and Boundary Scan Architecture • Serial port peripherals • High-performance 32-bit CPU (TMS320C28x) – Up to 4 SPI modules – 16 × 16 and 32 × 32 MAC operations – Up to 2 SCI (UART) modules – 16 × 16 dual MAC – Up to 2 CAN modules – Harvard bus architecture – One Inter-Integrated-Circuit (I2C) bus – Atomic operations • 12-bit ADC, 16 channels – Fast interrupt response and processing – 2 × 8 channel input multiplexer – Unified memory programming model – Two sample-and-hold – Code-efficient (in C/C++ and Assembly) – Single/simultaneous conversions • On-chip memory – Fast conversion rate: – F2809: 128K × 16 flash, 18K × 16 SARAM 80 ns - 12.5 MSPS (F2809 only) F2808: 64K × 16 -
PLC Based Timer Controller for Multiple Machines
International Journal of Emerging Technologies in Engineering Research (IJETER) Volume 4, Issue 8, August (2016) www.ijeter.everscience.org PLC Based Timer Controller for Multiple Machines T.Vignesh, Assistant professor/Project Guide/EEE, Jay Shriram Group of Institutions, India. N.Lakshmanakumar, S.Sethu, P.Kumarasamy, S.Gowthamraj UG Scholar /EEE Jay Shriram group of Institutions, India. Abstract – This paper describes the design and development of a 2. PROGRAMMABLE LOGIC CONTROLLER feedback control system that maintains the time of a process at a desired set point. The system consists of a PLC-based timer The Programmable Logic Controller (PLC) is a relatively new controller unit that provides input and output interfaces between technology that uses a computer to process the information. the PLC and the man machine interface and computer system. The control task is incorporated into a graphical program called The main difference from other computers is that PLCs are the Ladder Logic Diagram. Any control task modifications are armoured for severe conditions such as dust, moisture, heat, cold done by changing the program. Today, PLCs are used in many etc., and have the facility for extensive input/output (I/O) "real world" applications such as machining, packaging, arrangements. The paper will provide details about the timer material handling, automated assembly or countless other control unit, shows the implementation of the controller unit, and industrial processes. present test results. Index Terms – PLC, Ladder Language, Functional Block Basic PLCs are available on a single printed circuit board .They Diagram (FBD), Automation. are sometimes called single board PLCs or open frame PLCs. -
Design and Implementation of a Broadband RF-DAC Transmitter for Wireless Communications
Design and Implementation of a Broadband RF-DAC Transmitter for Wireless Communications Von der Fakultät für Elektrotechnik und Informationstechnik der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation vorgelegt von Diplom-Ingenieur Niklas Zimmermann aus Münster Berichter: Universitätsprofessor Dr.-Ing. Stefan Heinen Universitätsprofessor Dr.-Ing. Gerd Ascheid Tag der mündlichen Prüfung: 1. Juli 2011 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar. ISBN 978-3-8439-0042-3 D 82 (Diss. RWTH Aachen University, 2011) © Verlag Dr. Hut, München 2011 Sternstr. 18, 80538 München Tel.: 089/66060798 www.dr.hut-verlag.de Die Informationen in diesem Buch wurden mit großer Sorgfalt erarbeitet. Dennoch können Fehler nicht vollständig ausgeschlossen werden. Verlag, Autoren und ggf. Übersetzer übernehmen keine juristische Verantwortung oder irgendeine Haftung für eventuell verbliebene fehlerhafte Angaben und deren Folgen. Alle Rechte, auch die des auszugsweisen Nachdrucks, der Vervielfältigung und Verbreitung in besonderen Verfahren wie fotomechanischer Nachdruck, Fotokopie, Mikrokopie, elektronische Datenaufzeichnung einschließlich Speicherung und Übertragung auf weitere Datenträger sowie Übersetzung in andere Sprachen, behält sich der Autor vor. 1. Auflage 2011 To the memory of my father, Gebhard Zimmermann Acknowledgment First of all, I want to thank Prof. Dr.-Ing. Stefan Heinen. This thesis would not have been possible without him, as he gave me the opportunity to work on this exciting topic and shared his rich experience in the field of RF and analog circuit and system design with me.