Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program
Total Page:16
File Type:pdf, Size:1020Kb
ORNL/TM-2012/380 Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program September 2012 Prepared by Cyrus Smith Randy Nanstad Robert Odette Dwight Clayton Katie Matlack Pradeep Ramuhalli Glenn Light DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source. National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail [email protected] Web site http://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE) representatives, and International Nuclear Information System (INIS) representatives from the following source. Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Telephone 865-576-8401 Fax 865-576-5728 E-mail [email protected] Web site http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. ORNL/TM-2012/380 Computer Science and Engineering Division ROADMAP FOR NONDESTRUCTIVE EVALUATION OF REACTOR PRESSURE VESSEL RESEARCH AND DEVELOPMENT BY THE LIGHT WATER REACTOR SUSTAINABILITY PROGRAM Cyrus Smith ORNL Computer Science and Engineering Division Dr. Randy Nanstad ORNL Materials Science and Technology Division Dr. Robert Odette University of California – Santa Barbara Dwight Clayton ORNL Measurement Science and Systems Engineering Division Katie Matlack Georgia Institute of Technology Pradeep Ramuhalli Pacific Northwest National Laboratory Glenn Light Southwest Research Institute Date Published: September 2012 Prepared by OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6283 managed by UT-BATTELLE, LLC for the US DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 CONTENTS List of Figures .............................................................................................................................................. iv List of Tables ................................................................................................................................................ v Acknowledgments ........................................................................................................................................ vi Executive Summary .................................................................................................................................... vii 1. Introduction ........................................................................................................................................... 1 1.1 Background ................................................................................................................................. 1 1.2 Report Organization .................................................................................................................... 3 2. Problem Statement ................................................................................................................................ 4 2.1 Introduction to Reactor Pressure Vessel Embrittlement ............................................................. 4 2.2 Reactor Pressure Vessels, Materials, and Operating Conditions ................................................ 4 2.3 Mechanical Properties of RPV Materials .................................................................................... 4 2.4 Effects of Neutron Irradiation of RPV Materials ........................................................................ 6 2.5 Issues for Determination of RPV Fracture Toughness with NDE .............................................. 9 3. NDE for Reactor Pressure Vessels: Current State of the Art .............................................................. 11 3.1 NDE Technique Feasibility Overview ...................................................................................... 11 3.2 Promising NDE Technologies for Detection of Embrittlement in RPVs .................................. 14 3.2.1 Nonlinear Ultrasonic .................................................................................................... 14 3.2.2 Magnetic Barkhausen Effect ........................................................................................ 16 3.2.3 Thermoelectric Power .................................................................................................. 17 3.2.4 Other Electromagnetic NDE Methods ......................................................................... 18 3.3 Promising NDE Technologies for Detection of Defects in RPVs ............................................ 18 4. NDE Research Roadmap .................................................................................................................... 20 4.1 Short-Term Implementation Strategy ....................................................................................... 22 4.1.1 Assemble Comprehensive, Well-Characterized Sample Set for NDE Research – Priority 1 .......................................................................................... 22 4.1.2 Evaluate, Research, and Develop Candidate NDE Techniques for RPV Microstructure Characterization – Priority 1....................................................... 22 4.1.3 Establishment of NDE Modeling Efforts – Priority 2 .................................................. 22 4.1.4 Integration of MAaD Pathway RPV Lifetime Modeling with NDE Modeling Effort – Priority 2 ............................................................................... 23 4.1.5 Short-Term Implementation Notional Milestones and Budget .................................... 23 4.2 Long-Term Implementation Strategy ........................................................................................ 24 4.2.1 Long-Term Implementation Notional Milestones and Budget .................................... 24 5. Conclusions ......................................................................................................................................... 25 6. References ........................................................................................................................................... 27 Appendix A: List of Attendees for LWRS NDE RPV R&D Roadmap Workshop .................................... 33 Appendix B: LWRS NDE RPV R&D Workshop Agenda ......................................................................... 34 Appendix C: Summary of DOE LWRS NDE Workshop at ORNL on Non-Destructive Evaluation Methods for Nuclear Reactor Pressure Vessels .................................................................................. 35 iii LIST OF FIGURES Fig. 1. Pressure vessel steels exhibit a rapid transition from brittle to ductile behavior by measuring the energy to break a Charpy V-notch specimen under impact loading. ........................ 5 Fig. 2. Large compact specimens of 11 different heats of steel that were tested and the results used to construct a lower bound curve of KIc vs temperature normalized to the RTNDT. ................. 6 Fig. 3. Schematic diagrams depicting (left) how the irradiation-induced strength increase results in an upward shift in the Charpy impact toughness transition temperature, and (right) the significant role of copper content towards increasing radiation sensitivity. .................................... 7 Fig. 4. Schematic diagram showing potential drawback of performing NDE measurements at a fixed temperature. .................................................................................................................... 10 Fig. 5. Experimental schematic for typical laboratory NLU measurement on Charpy-type samples. ...... 15 Fig. 6. Measurements of the nonlinear ultrasonic parameter on RPV steel over neutron fluence. ........... 15 Fig. 7. Schematic of MBN measurement system. ..................................................................................... 16 Fig. 8. Sizing data from Kopp et al. .......................................................................................................... 19 iv LIST OF TABLES Table 1. Westinghouse feasibility comments on various NDE techniques ................................................. 12 Table 2. KAERI feasibility comments on various NDE techniques ........................................................... 12 Table 3. Project GRETE feasibility comments on various NDE techniques .............................................. 13 v ACKNOWLEDGMENTS The authors would like to express