Water Channel Reactor Fuels and Fuel Channels: Design, Performance, Research and Development

Total Page:16

File Type:pdf, Size:1020Kb

Water Channel Reactor Fuels and Fuel Channels: Design, Performance, Research and Development XA9846745- }t( IAEA-TECDOC-997 Water channel reactor fuels and fuel channels: Design, performance, research and development Proceedings of a Technical Committee meeting held in Vienna, 16-19 December 1996 INTERNATIONAL ATOMIC ENERGY AGENCY January 1998 fa. 2 9-20 The IAEA does not normally maintain stocks of reports in this series. However, microfiche copies of these reports can be obtained from IN IS Clearinghouse International Atomic Energy Agency Wagramerstrasse 5 P.O. Box 100 A-1400 Vienna, Austria Orders should be accompanied by prepayment of Austrian Schillings 100, in the form of a cheque or in the form of IAEA microfiche service coupons which may be ordered separately from the IN IS Clearinghouse. IAEA-TECDOC-997 Water channel reactor fuels and fuel channels: Design, performance, research and development Proceedings of a Technical Committee meeting held in Vienna, 16-19 December 1996 ffl INTERNATIONAL ATOMIC ENERGY AGENCY The originating Section of this publication in the IAEA was: Nuclear Fuel Cycle and Materials Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria WATER CHANNEL REACTOR FUELS AND FUEL CHANNELS: DESIGN, PERFORMANCE, RESEARCH AND DEVELOPMENT IAEA, VIENNA, 1998 IAEA-TECDOC-997 ISSN 1011^289 ©IAEA, 1998 Printed by the IAEA in Austria January 1998 FOREWORD The issues of BWR, PWR and WWER fuel technology and performance, and fuel thermal and mechanical designs providing sufficient safety margins under high burnup conditions have been a focus of IAEA activities during the last several years. C ANDU fuel and pressure tube performance and reliability have been also considered, especially taking into account the perspective of transfer from natural uranium to slightly enriched fuel. However, fuel and pressure tube/fuel channel performance and design aspects of other types of water cooled reactors including Atucha-I and II (Argentina), FUGEN (Japan) and RBMK (16 units in Lithuania, Russian Federation and Ukraine) have been considered to a rather lesser extent. With this in mind, the International Working Group on Water Reactor Fuel Performance and Technology (I WGFPT) recommended holding a Technical Committee Meeting on Water Channel Reactor Fuel including into this category fuels and pressure tubes / fuel channels for Atucha-I and II, BWR, CANDU, FUGEN and RBMK reactors. The IWGFPT considered that even if the characteristics of Atucha, CANDUs, BWRs, FUGEN and RBMKs differ considerably, there are also common features. These features include materials aspects, as well as core, fuel assembly and fuel rod design, and some safety issues. There is also some similarity in fuel power history and operating conditions (Atucha-I and II, FUGEN and RBMK). Experts from 11 countries participated at the meeting and presented papers on technology, performance, safety and design, and materials aspects of fuels and pressure tubes / fuel channels for the above types of water channel reactors. The IAEA wishes to thank all the participants for their contributions to this publication, which summarizes experience to date with fuel and pressure tube/fuel channel for water channel reactors, and ongoing research and development in participating countries. The IAEA officer responsible for this TECDOC was V. Onoufriev of the Division of Nuclear Power and the Fuel Cycle. EDITORIAL NOTE In preparing this publication for press, staff of the IAEA have made up the pages from the original manuscripts as submitted by the authors. The views expressed do not necessarily reflect those of the IAEA, the governments of the nominating Member States or the nominating organizations. Throughout the text names of Member States are retained as they were when the text was compiled. The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. The authors are responsible for having obtained the necessary permission for the IAEA to reproduce, translate or use material from sources already protected by copyrights. CONTENTS SUMMARY 7 WATER CHANNEL REACTOR FUEL DESIGN AND PERFORMANCE (Session I) CANDU fuel performance 19 A.M. Manzer Development of RBMK fuel assemblies. Features of design, research findings 35 V.G. Aden, Yu.M. Nikitin, E.G. Bek Fuel performance in Argentine heavy water channel reactor - pressure vessel type 53 J.A. Casario, R.O. Cirimello Transient thermal hydraulic behaviour of the fuel bundles during on-power unloading operation in the proposed 500 MWe PHWR 73 S.G. Markendeya, G. Pal, V. Venkat Raj The experience of RBMK-1000 fuel utilization in Ukraine (Chernobyl NPP) 81 A. Afanasyev, A. Novikov Modernization of the design, and optimization of the manufacturing technology of RBMK fuel rods and fuel assemblies 89 A.K. Panyushkin, V.A. Tsiboulia, E.G. Bek Fuel experience with burnable absorber fuel for RBMK-1500 95 B. Voroncov, A. Robotko, G. Krivoshein, A. Kulkov, A. Kupalov-Yaropolk, A. Markelov R&D ACTIVITIES ON WATER CHANNEL REACTOR FUELS (Session II) BWR fuel R&D programs at Studsvik 101 M. Grounes, C. Graslund, G. Lysell, A. Lassing, T. Unger, M. Carlsson Summary of the OECD Halden Reactor Project programme on high burnup fuel performance relevant for BWRs 131 A. McGrath RBMK fuel assemblies: current status and perspectives 143 A.I. Kupalov-Yaropolk, V.A. Nikolaev, Yu.M. Cherkashov, A.K. Panyushkin, A.M. Fedosov Status and development of RBMK fuel rods and reactor aterials 151 Yu.K. Bibilashvili, F.G. Reshetnikov, A.G. Ioltukhovsky, A.V. Kuznetsov, L.L. Malanchenko, A. V. Medvedev, O. V. Milovanov, A. V. Nikulina, F.F. Sokolov, V.S. Jamnikov, G.P. Kobyljansky, V.K. Shamardin Modelling of thermal-mechanical interaction of RBMK fuel pellets and claddings 167 M. Khmelevsky, E. Malakhova, V. Popov, V. Troyanov R&D ACTIVITIES ON FUEL CHANNELS (Session III) Post-irradiation examination and evaluation of Zr-2.5%Nb pressure tube of FUGEN 181 K. Takayam, RBMK fuel channel and ways to increase its lifetime 193 E. Yu. Rivkin, A.N. Semenov, V.N. Tyurin Aspects of safety assessment of RBMK-1500 fuel channels 199 K Petkevicius, G. Dundulis, J. Vilemas, E. Uspuras, A. Alejev Aspects regarding the lifetime of a fuel channel in a CANDU nuclear power plant 211 A. Calinescu LIST OF PARTICIPANTS 215 NEXT PAGE(S) left BLANK SUMMARY The International Working Group on Water Reactor Fuel Performance and Technology (IWGFPT) recommended to the IAEA to hold a Technical Committee Meeting (TCM) on Water Channel Reactor Fuel. This proposal was elaborated at 12th (May 1994) and 13th (September 1995) IWGFPT plenary meetings and discussed in detail at the consultants meeting in April 1996. It was suggested to consider both coolant channels in BWRs and PHWRs (which support only the pressure difference between inlet and outlet) and pressure tubes in CANDUs, RBMKs and FUGEN reactor as water channels due to the close thermohydraulic conditions (coolant temperature, pressure and flowrate). Pressure tube behaviour under irradiation and evaluation of their lifetime were recognized as subjects of high importance because retubing (if necessary) is a very costly and radiation hazardous operation. With respect to fuel (assemblies, rods, claddings and fuel itself) it was recommended to evaluate the impact of reload type (on-power or during outages) and coolant condition (boiling, not boiling) on fuel performance and safety margins. Subsequent analysis confirmed that, inspite of significant differences in design, burnup targets and performance requirements for the above mentioned reactor types, many common features were identified. Therefore, a comparison of fuel and pressure tube designs, performance experience and trends in technical development supported cross fertilization of ideas between countries and groupswith different reactor types. Major features of reactors which fuel and/or pressure tubes considered at the TCM are given in Table 1. Table 2 presents fuel rod and cladding operational parameters and some post-irradiation examination data (fission gas release - FGR), and Table 3 - the information on material and operational conditions of the pressure tubes. As can be seen from Table 1, CANDU, FUGEN and RBMK reactors have pressure tubes which withstand coolant pressure and serve as a pressure vessel. In BWRs and PHWRs, e.g. Atucha-1 (Argentina) and PHWR-500 (Indian design which is under development), the channels serve to distribute and adjust the coolant flow and withstand only the pressure difference between inlet and outlet. Coolant pressure is very close for all reactors considered, nevertheless coolant boiling is supressed in PHWRs. With regard to fuel utilization, it is very similar in FUGEN and RBMKs (burnups ~ 20 MWd/kg HM, enrichments ~ 2-2.5% fissile) and in CANDU and PHWRs (6-8 MWd/kg HM and natural U), while in BWRs both burnup and enrichment are significantly higher. However, there is a strong tendency for fuel utilization in all above-mentioned reactors, driven by economics, to increase fuel burnup. Fuel operate at CANDUs, FUGEN, PHWRs and RBMKs at rather high linear heat generation rates (LHGRs, Table2) that results in rather high fission gas release (FGR). Lower LHGR in combination with longer fuel residence time in BWRs could also result in high FGR. Power transients during fuel assembly reload (in CANDUs, PHWRs and RBMKs) and power transients during control rod manoeuvring (in BWRs and FUGEN) could result in high FGR and pellet-cladding interaction (PCI). Cladding water- side corrosion, especially nodular corrosion, is a serious issue for reactors with boiling coolant. Only one Zr-based alloy, namely Zr-2.5%Nb, was selected in Canada, Japan and Russia as material for the pressure tubes (Table 3).
Recommended publications
  • Reactor Physics Calculations in the Nordic Countries
    ESPOO 2003 VTT SYMPOSIUM 230 The eleventh biennial meeting on reactor physics calculations in the Nordic VTT SYMPOSIUM 230 countries was arranged by VTT Processes in Otaniemi, Espoo and on board Tallink´s m/s Romantika on April 9–10, 2003. General reactor physics, calculational methods, a code system adapted for RBMK reactor analyses, and transmutation of nuclear waste were presented by representatives of universities and programme developers. Computer programmes are the most important tools of reactor physics. At the meeting there were presentations of VTT Processes’ new deterministic 3- dimensional radiation transport code MultiTrans and BWR simulator ARES based upon the AFEN model, and also of new features in internationally wellknown codes like CASMO-4E and POLCA (POLCA-T) together with Reactor physics calculations in the Nordic countries results obtained by these programmes. A code for PWR loading pattern search, called LP-fun, is being developed by Westinghouse and others. On the subject of code validation, measurements on SVEA-96+ fuel bundles in the PROTEUS facility had been analyzed with the PHOENIX4 code, reactor scram experiments in the Loviisa and Mochovce VVER reactors using CASMO-4, MCNP4B and HEXTRAN, results of gamma scanning by the PHOENIX4/POLCA7 combination. Some difficulties in predicting the power distribution in the reactor core with sufficiently good accuracy using any of the available code systems were reported by OKG. Heating of non-fuel regions by gamma radiation and neutrons had been investigated using the HELIOS lattice code. Calculational results for heat deposition from gamma radiation in the moderator tank of the Forsmark-1 reactor were reported by Risø.
    [Show full text]
  • Vver and Rbmk Cross Section Libraries for Origen-Arp
    VVER AND RBMK CROSS SECTION LIBRARIES FOR ORIGEN-ARP Germina Ilas, Brian D. Murphy, and Ian C. Gauld, Oak Ridge National Laboratory, USA Introduction An accurate treatment of neutron transport and depletion in modern fuel assemblies characterized by heterogeneous, complex designs, such as the VVER or RBMK assembly configurations, requires the use of advanced computational tools capable of simulating multi-dimensional geometries. The depletion module TRITON [1], which is part of the SCALE code system [2] that was developed and is maintained at the Oak Ridge National Laboratory (ORNL), allows the depletion simulation of two- or three-dimensional assembly configurations and the generation of burnup-dependent cross section libraries. These libraries can be saved for subsequent use with the ORIGEN-ARP module in SCALE. This later module is a faster alternative to TRITON for fuel depletion, decay, and source term analyses at an accuracy level comparable to that of a direct TRITON simulation. This paper summarizes the methodology used to generate cross section libraries for VVER and RBMK assembly configurations that can be employed in ORIGEN-ARP depletion and decay simulations. It briefly describes the computational tools and provides details of the steps involved. Results of validation studies for some of the libraries, which were performed using isotopic assay measurement data for spent fuel, are provided and discussed. Cross section libraries for ORIGEN-ARP Methodology The TRITON capability to perform depletion simulations for two-dimensional (2-D) configurations was implemented by coupling of the 2-D transport code NEWT with the point depletion and decay code ORIGEN-S. NEWT solves the transport equation on a 2-D arbitrary geometry grid by using an SN approach, with a treatment of the spatial variable that is based on an extended step characteristic method [3].
    [Show full text]
  • Nuclear Fuel Optimization and Problem of Xa9953256 Increasing Burnup and Cost Efficiency of Light Water Reactors in Russia
    NUCLEAR FUEL OPTIMIZATION AND PROBLEM OF XA9953256 INCREASING BURNUP AND COST EFFICIENCY OF LIGHT WATER REACTORS IN RUSSIA M.I. SOLONIN, Yu. K. BIBLASHCVLI, F.G. RESHETNIKOV, F.F. SOKOLOV, A.A. BOCHVAR All-Russia Research Institute of Inorganic Materials, Moscow, Russia Abstract Brief analysis is given of the results of WWER-1000 and WWER-440 fuel assembly (FA) and fuel rod operation to the average burn-up of 44 and 34 MW-day/kg U, respectively. The reliable operation of the fuel is noted which made it possible to outline the paths of further improvements in their fuel cycles. Based on a series of improvements reactors are being switched on a 4-year cycle; a 5-year cycle is contemplated for the WWER- 440. The fuel cycle of the boiling RBMK reactors is subjected to essential alterations. Specifically, the use of erbium oxide as an integral burnable absorber allows a higher enrichment of uranium and bum-up. To extend the burn-up a new zirconium alloy E-635 is assumed to be used as fuel rod claddings and other FA components; the alloy has higher corrosion and irradiation resistance. INTRODUCTION The current technical level of the PWR and BWR fuel production and the perfected system of the reactor management have allowed to provide the successful operation of PWR NPP to the average burn-up of ~45 MW* day/kg U in all countries of developed nuclear power. The differences in the reliability and FA serviceability as well as in the number of leaky fuel rods are rather small and the attention is usually not focused on this issue.
    [Show full text]
  • Small Modular Nuclear Reactors: Parametric Modeling of Integrated Reactor Vessel Manufacturing Within a Factory Environment Volume 2, Detailed Analysis
    Small Modular Nuclear Reactors: Parametric Modeling of Integrated Reactor Vessel Manufacturing Within A Factory Environment Volume 2, Detailed Analysis Xuan Chen, Arnold Kotlyarevsky, Andrew Kumiega, Jeff Terry, and Benxin Wu Illinois Institute of Technology Stephen Goldberg and Edward A. Hoffman Argonne National Laboratory August 2013 This study continued the work, supported by the Department of Energy’s Office of Nuclear Energy, regarding the economic analysis of small modular reactors (SMRs). The study team analyzed, in detail, the costs for the production of factory-built components for an SMR economy for a pressurized-water reactor (PWR) design. The modeling focused on the components that are contained in the Integrated Reactor Vessel (IRV). Due to the maturity of the nuclear industry and significant transfer of knowledge from the gigawatt (GW)-scale reactor production to the small modular reactor economy, the first complete SMR facsimile design would have incorporated a significant amount of learning (averaging about 80% as compared with a prototype unit). In addition, the order book for the SMR factory and the lot size (i.e., the total number of orders divided by the number of complete production runs) remain a key aspect of judging the economic viability of SMRs. Assuming a minimum lot size of 5 or about 500 MWe, the average production cost of the first-of-the kind IRV units are projected to average about 60% of the a first prototype IRV unit (the Lead unit) that would not have incorporated any learning. This cost efficiency could be a key factor in the competitiveness of SMRs for both U.S.
    [Show full text]
  • Magnox Corrosion
    Department Of Materials Science & Engineering From Magnox to Chernobyl: A report on clearing-up problematic nuclear wastes Sean T. Barlow BSc (Hons) AMInstP Department of Materials Science & Engineering, The University of Sheffield, Sheffield S1 3JD, UK IOP Nuclear Industry Group, September 28 | Warrington, Cheshire, UK Department Of Materials Science & Engineering About me… 2010-2013: Graduated from University of Salford - BSc Physics (Hons) Department Of Materials Science & Engineering About me… 2013-2018: Started on Nuclear Fission Research Science and Technology (FiRST) at the University of Sheffield Member of the Immobilisation Science Laboratory (ISL) group • Wasteforms cement, glass & ceramic • Characterisation of materials (Trinitite/Chernobylite) • Corrosion science (steels) Department Of Materials Science & Engineering Department Of Materials Science & Engineering Fully funded project based PhD with possibility to go on secondment • 3-4 month taught course at Manchester • 2 mini-projects in Sheffield • 3 years for PhD + 1 year write up • Funding available for conferences and training • Lots of outreach work • Site visits to Sellafield reprocessing facility, Heysham nuclear power station & Atomic Weapons Authority Department Of Materials Science & Engineering Fully funded project based PhD with possibility to go on secondment • 3-4 month taught course at Manchester • 2 mini-projects in Sheffield • 3 years for PhD + 1 year write up • Funding available for conferences and training • Lots of outreach work • Site visits to Sellafield reprocessing facility, Heysham nuclear power station & Atomic Weapons Authority Department Of Materials Science & Engineering Department Of Materials Science & Engineering 2017: Junior Project Manager at DavyMarkham Department Of Materials Science & Engineering PhD projects… 4 main projects 1. Magnox waste immobilisation in glass 2.
    [Show full text]
  • Scaling Analysis of the Osu High Temperature Test Facility During a Pressurized Conduction Cooldown Event Using Relap5- 3D
    AN ABSTRACT OF THE THESIS OF Juan A. Castañeda for the degree of Master of Science in Nuclear Engineering presented on May 21, 2014. Tittle: SCALING ANALYSIS OF THE OSU HIGH TEMPERATURE TEST FACILITY DURING A PRESSURIZED CONDUCTION COOLDOWN EVENT USING RELAP5- 3D Abstract approved: Brian G. Woods In early 2000, the Generation IV International Forum (GIF) was created to perform research and development for the next generation nuclear systems. Among the selected nuclear systems was the Very High Temperature Gas-Cooled Reactor (VHTR). Then in 2008, the U.S. Department of Energy (DOE) decided that the Next Generation Nuclear Plant (NGNP) would be the VHTR. The VHTR was chosen because it has the capability to produce electricity, hydrogen and may be used for other high-temperature process heat applications. In support of licensing and validation of the VHTR, Oregon State University was tasked to develop a high temperature apparatus that will be able to capture the thermal fluids phenomena of the VHTR and perform integral effects tests for validation of existing safety codes. The design has been called the High Temperature Test Facility (HTTF), which is a scaled design of the Modular High Temperature Gas-Cooled Reactor (MHTGR). The objective of this study was to investigate the ability of the HTTF to simulate the Pressurized Conduction Cooldown (PCC) Event during the natural circulation phase in the MHTGR. This was achieved with the aid of a thermal hydraulic systems code, RELAP5-3D. ©Copyright by Juan A. Castañeda May 21, 2014 All Rights Reserved SCALING ANALYSIS OF THE OSU HIGH TEMPERATURE TEST FACILITY DURING A PRESSURIZED CONDUCTION COOLDOWN EVENT USING RELAP5-3D by Juan A.
    [Show full text]
  • Implications of the Accident at Chernobyl for Safety Regulation of Commercial Nuclear Power Plants in the United States Final Report
    NUREG-1251 Vol. I Implications of the Accident at Chernobyl for Safety Regulation of Commercial Nuclear Power Plants in the United States Final Report Main Report U.S. Nuclear Regulatory Commission p. o AVAILABILITY NOTICE Availability of Reference Materials Cited in NRC Publications Most documents cited in NRC publications will be available from one of the following sources: 1. The NRC Public Document Room, 2120 L Street, NW, Lower Level, Washington, DC 20555 2. The Superintendent of Documents, U.S. Government Printing Office, P.O. Box 37082, Washington, DC 20013-7082 3. The National Technical Information Service, Springfield, VA 22161 Although the listing that follows represents the majority of documents cited in NRC publica- tions, it is not intended to be exhaustive. Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC Office of Inspection and Enforcement bulletins, circulars, information notices, inspection and investi- gation notices; Licensee Event Reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence. The following documents in the NUREG series are available for purchase from the GPO Sales Program: formal NRC staff and contractor reports, NRC-sponsored conference proceed- ings, and NRC booklets and brochures. Also available are Regulatory Guides, NRC regula- tions in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances. Documents available from the National Technical Information Service include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.
    [Show full text]
  • Fundamentals of Nuclear Reactor Physics
    Fundamentals of Nuclear Reactor Physics E. E. Lewis Professor of Mechanical Engineering McCormick School of Engineering and Applied Science Northwestern University AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO ELSEVIER Academie Press is an imprint of Elsevier Contents Preface xiii 1 Nuclear Reactions 1 1.1 Introduction 1 1.2 Nuclear Reaction Fundamentals 2 Reaction Equations 3 Notation 5 Energetics 5 1.3 The Curve of Binding Energy 7 1.4 Fusion Reactions 8 1.5 Fission Reactions 9 Energy Release and Dissipation 10 Neutron Multiplication 12 Fission Products 13 1.6 Fissile and Fertile Materials 16 1.7 Radioactive Decay 18 Saturation Activity 20 Decay Chains 21 2 Neutron Interactions 29 2.1 Introduction 29 2.2 Neutron Cross Sections 29 Microscopic and Macroscopic Cross Sections 30 Uncollided Flux 32 Nuclide Densities 33 Enriched Uranium 35 Cross Section Calculation Example 36 Reaction Types 36 2.3 Neutron Energy Range 38 2.4 Cross Section Energy Dependence 40 Compound Nucleus Formation 41 Resonance Cross Sections 42 Threshold Cross Sections 46 Fissionable Materials 47 vii viii Contents 2.5 Neutron Scattering 48 Elastic Scattering 49 Slowing Down Decrement 50 Inelastic Scattering 52 3 Neutron Distributions in Energy 57 3.1 Introduction 57 3.2 Nuclear Fuel Properties 58 3.3 Neutron Moderators 61 3.4 Neutron Energy Spectra 63 Fast Neutrons 65 Neutron Slowing Down 66 Thermal Neutrons 70 Fast and Thermal Reactor Spectra 72 3.5
    [Show full text]
  • Section 3.9.5, "Reactor Pressure Vessel Internals," Revision 4
    NUREG-0800 U.S. NUCLEAR REGULATORY COMMISSION STANDARD REVIEW PLAN 3.9.5 REACTOR PRESSURE VESSEL INTERNALS REVIEW RESPONSIBILITIES Primary - Organization responsible for mechanical engineering reviews Secondary - None I. AREAS OF REVIEW Reactor pressure vessel (RPV) internals consist of all structural and mechanical elements inside the reactor vessel in nuclear power plants. The U.S. Nuclear Regulatory Commission (NRC) regulations in Title 10 of the Code of Federal Regulations (10 CFR) Part 50, “Domestic Licensing of Production and Utilization Facilities,” Appendix A, “General Design Criteria (GDC) for Nuclear Plants,” GDC 1, “Quality Standards and Records,” GDC 2, “Design Bases for Protection against Natural Phenomena,” GDC 4, "Environmental and Dynamic Effects Design Bases," and GDC 10, "Reactor Design,"; 10 CFR 50.55a, “General Provisions”; and 10 CFR Part 52, “Licenses, Certifications, and Approvals for Nuclear Power Plants”; require that structures and components important to safety be constructed and tested to quality standards commensurate with the importance of the safety functions performed and designed with appropriate margins to withstand effects of anticipated operational occurrences and normal operation, natural phenomena such as earthquakes, postulated accidents including loss-of-coolant accidents (LOCAs), and events and conditions outside the nuclear power unit. Revision 4 – March 2017 USNRC STANDARD REVIEW PLAN This Standard Review Plan (SRP), NUREG-0800, has been prepared to establish criteria that the U.S. Nuclear Regulatory Commission (NRC) staff responsible for the review of applications to construct and operate nuclear power plants intends to use in evaluating whether an applicant/licensee meets the NRC's regulations. The SRP is not a substitute for the NRC's regulations, and compliance with it is not required.
    [Show full text]
  • Integral Pressurized Water Reactor Simulator Manual
    65 @ Integral Pressurized Water Reactor Simulator Manual Simulator Reactor Pressurized Water Integral Integral Pressurized Water Reactor Simulator Manual TRAINING COURSE SERIES TRAINING ISSN 1018-5518 VIENNA, 2017 TRAINING COURSE SERIES 65 TCS-65_cov_+Nr.indd 1,3 2017-05-24 12:15:04 INTEGRAL PRESSURIZED WATER REACTOR SIMULATOR MANUAL The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GEORGIA OMAN ALBANIA GERMANY PAKISTAN ALGERIA GHANA PALAU ANGOLA GREECE PANAMA ANTIGUA AND BARBUDA GUATEMALA PAPUA NEW GUINEA ARGENTINA GUYANA PARAGUAY ARMENIA HAITI PERU AUSTRALIA HOLY SEE PHILIPPINES AUSTRIA HONDURAS POLAND AZERBAIJAN HUNGARY PORTUGAL BAHAMAS ICELAND QATAR BAHRAIN INDIA REPUBLIC OF MOLDOVA BANGLADESH INDONESIA ROMANIA BARBADOS IRAN, ISLAMIC REPUBLIC OF RUSSIAN FEDERATION BELARUS IRAQ RWANDA BELGIUM IRELAND SAN MARINO BELIZE ISRAEL SAUDI ARABIA BENIN ITALY SENEGAL BOLIVIA, PLURINATIONAL JAMAICA SERBIA STATE OF JAPAN SEYCHELLES BOSNIA AND HERZEGOVINA JORDAN SIERRA LEONE BOTSWANA KAZAKHSTAN SINGAPORE BRAZIL KENYA SLOVAKIA BRUNEI DARUSSALAM KOREA, REPUBLIC OF SLOVENIA BULGARIA KUWAIT SOUTH AFRICA BURKINA FASO KYRGYZSTAN SPAIN BURUNDI LAO PEOPLE’S DEMOCRATIC SRI LANKA CAMBODIA REPUBLIC SUDAN CAMEROON LATVIA SWAZILAND CANADA LEBANON SWEDEN CENTRAL AFRICAN LESOTHO SWITZERLAND REPUBLIC LIBERIA SYRIAN ARAB REPUBLIC CHAD LIBYA TAJIKISTAN CHILE LIECHTENSTEIN THAILAND CHINA LITHUANIA THE FORMER YUGOSLAV COLOMBIA LUXEMBOURG REPUBLIC OF MACEDONIA CONGO MADAGASCAR TOGO COSTA RICA MALAWI TRINIDAD AND TOBAGO CÔTE D’IVOIRE
    [Show full text]
  • System Studies of Fission-Fusion Hybrid Molten Salt Reactors
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2013 SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS Robert D. Woolley University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Nuclear Engineering Commons Recommended Citation Woolley, Robert D., "SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS. " PhD diss., University of Tennessee, 2013. https://trace.tennessee.edu/utk_graddiss/2628 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Robert D. Woolley entitled "SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Nuclear Engineering. Laurence F. Miller, Major Professor We have read this dissertation and recommend its acceptance: Ronald E. Pevey, Arthur E. Ruggles, Robert M. Counce Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Robert D.
    [Show full text]
  • Reactor Coolant System
    NUCLEAR SYSTEMS ENGINEERING Cho, Hyoung Kyu Department of Nuclear Engineering Seoul National University 4월6일보 강가? 능 Contents of Lecture Contents of lecture Chapter 1Principal Characteristics of Power Reactors Nuclear system . Will be replaced by the lecture note . Introduction to Nuclear Systems . CANDU . BWR and Fukushima accident . PWR (OPR1000 and APR1400) Chapter 4 Transport Equations for Single‐Phase Flow (up to energy equation) Chapter 6Thermodynamics of Nuclear Energy Conversion Systems: Nonflow and Steady Flow : First‐ and Second‐Law Applications Chapter 7 Thermodynamics of Nuclear Energy Conversion Systems : Nonsteady Flow First Law Analysis Thermodynamics Chapter 3 Reactor Energy Distribution Heat transport Chapter 8 Thermal Analysis of Fuel Elements Conduction heat transfer 3. PRESSURIZED WATER REACTOR References Lecture note 한수원 계통교재 Contents History of PWR Plant Overall Reactor Coolant System Steam and Power Conversion System Auxiliary System Plant Protection System Other systems History of PWR 1939: Nuclear fission was discovered. 1942: The world’s first chain reaction Achieved by the Manhattan Project (1942.12.02) 1951: Electricity was first generated from nuclear power EBR (Experimental Breeder Reactor‐1), Idaho, USA Power: 1.2 MWt, 200 kWe History of PWR 1950s: R&D USA: light water reactor . PWR: Westinghouse . BWR: General Electric (GE) USSR: graphite moderated light water reactor and WWER (similar to PWRs) UK and France: natural uranium fueled, graphite moderated, gas cooled reactor Canada: natural uranium fueled, heavy water reactor. 1954: initial success USSR: 5 MWe graphite moderated, light water cooled reactor was connected to grid. USA: the first nuclear submarine, the Nautilus (PWR) History of PWR 1956~1959 UK: Calder Hall‐1, 50 MWe GCR (1956) USA: Shippingport, 60 MWe PWR (1957) France: G‐2, 38 MWe GCR (1959) USSR: the ice breaker Lenin (1959) .
    [Show full text]