Csillagászati Évkönyv 1970

Total Page:16

File Type:pdf, Size:1020Kb

Csillagászati Évkönyv 1970 CSILLAGÁSZATI ÉVKÖNYV 1970 CSILLAGÁSZATI ÉVKÖNYV A Z 1970. É V R E SZERKESZTETTE A TUDOMÁNYOS ISMERETTERJESZTŐ TÁRSULAT CSILLAGÁSZATI ÉS ŰRKUTATÁSI SZAKOSZTÁLYAINAK ORSZÁGOS VÁLASZTMÁNYA GONDOLAT KIADÓ n BUDAPEST 1969 /! J CSILLAGÁSZATI ADATOK AZ 1970. ÉVRE Az I—XVI. táblázatokat összeállította TIT Hajdú-Bihar Megyei Csillagászati Szakosztálya MTA Napfizikai Obszervatórium közreműködésével (Debrecen) T. JANUÁR KÖZÉP-EURÓPAI zónaidőben (KÖZÉI) Budapestéii ----------- A NAP A HOLD AHOLD fény­ változásai nyug­ nyug­ kel delel szik kel szik DÁTUM Év Év hányadiknapja A A HÉT napjai Év Év hányadik hete h m h m h m h m li m h m 1 Cs (1) i 7 32 11 47 16 03 0 05 11 17 2 P 2 7 32 11 48 16 04 1 17 11 34 3 Sz 3 7 32 11 49 16 05 2 34 11 55 4 V 4 7 32 11 49 16 06 3 55 12 24 5 H 2 5 7 32 11 50 16 07 5 18 13 05 6 K 6 7 32 11 50 16 09 6 34 14 02 7 Sz 7 7 31 11 51 16 10 7 38 15 18 <0 21 36 8 Cs 8 7 31 11 51 16 11 8 26 16 45 9 P 9 7 31 11 51 16 12 9 00 18 16 10 Sz 10 7 30 11 52 16 13 9 25 19 44 11 V 11 7 30 11 52 16 14 9 45 21 08 * 12 H 3 12 7 29 11 52 16 16 10 03 22 28 13 K 13 7 29 11 53 16 17 10 19 23 44 14 Sz 14 7 29 11 53 16 18 10 36 — ) 14 ] 8 15 Cs 15 7 28 11 54 16 20 10 55 1 01 16 P 16 7 27 11 54 16 21 11 17 2 16 17 Sz ,17 7 27 11 54 16 22 11 45 3 29 18 V 18 7 26 11 55 16 24 12 21 4 38 19 H 4 19 7 25 11 55 16 25 13 07 5 40 20 K 20 7 24 11 55 16 27 14 04 6 31 21 Sz 21 7 23 11 56 16 28 15 08 7 11 22 Cs 22 7 22 11 56 16 30 16 19 7 42 0 1 3 55 23 P 23 7 21 11 56 16 31 17 25 8 06 24 Sz 24 7 20 11 56 16 32 18 32 8 25 25 V 25 7 19 11 56 16 34 19 39 8 41 26 H 5 26 7 18 11 57 16 35 20 46 8 55 27 K 27 7 17 11 57 16 37 21 53 9 09 28 Sz 28 7 16 11 57 16 38 23 03 9 22 29 Cs 29 7 15 11 57 16 40 — 9 38 30 P 30 7 14 11 57 16 41 0 16 9 57 ( 15 39 31 Sz 31 7 13 11 58 16 43 1 33 10 21 Hold: 8-án 1 lh-ltor földközelben 22-én 21h-kor földtávolban 4 HÓNAP Oh világidőkor NAP HOLD Júlián Csillagidő dátum (A = 0»-nál) 2440. .. látszó HA D sugara RA D h m s h m O / > ti h m o t ...587,5 6 40 55,338 18 44 —23 03 16 17 12 36 — 6 20 588,5 6 44 51,891 18 49 22 59 16 18 13 22 12 06 589,5 6 48 48,447 18 53 22 53 16 17 14 12 17 33 590,5 6 52 45,006 18 57 22 47 16 17 15 06 22 18 591,5 6 56 41,569 19 02 22 41 16 17 16 06 25 58 592,5 7 00 38,136 19 06 22 34 16 17 17 11 28 02 593,5 7 04 34,704 19 11 22 27 16 17 18 18 28 08 594,5 7 08 31,271 19 15 22 20 16 17 19 26 26 08 595,5 7 12 27,836 19 19 22 12 16 17 20 31 22 13 596,5 7 16 24,397 19 24 22 03 16 17 21 31 16 51 597,5 7 20 20,953 19 28 21 54 16 17 22 27 10 34 598,5 7 24 17,507 19 32 21 45 16 17 23 19 — 3 53 599,5 7 28 14,058 19 37 21 35 16 17 0 08 + 2 48 600,5 7 32 10,611 19 41 21 25 16 17 0 57 9 09 601,5 7 36 07,165 19 45 21 14 16 17 1 45 14 55 602,5 7 40 03,721 19 50 21 03 16 17 2 35 19 52 603,5 7 44 00,280 19 54 20 52 16 17 3 27 23 50 604,5 7 47 56,841 19 58 20 40 16 17 4 20 26 38 605,5 7 51 53,403 20 02 20 28 16 17 5 14 2g 08 606,5 7 55 49,965 20 07 20 15 16 17 6 09 28 17 607,5 7 59 46,528 20 11 20 02 16 17 7 02 27 06 608,5 8 03 43,089 20 15 19 49 16 17 7 54 24 42 609,5 8 07 39,648 20 19 19 35 16 17 8 43 21 14 610,5 8 11 36.204 20 24 19 21 16 16 9 30 16 56 611,5 8 15 32,758 20 28 19 07 16 16 10 14 11 58 612,5 8 19 29,311 20 32 18 52 16 16 10 58 6 34 613,5 8 23 25,862 20 36 18 37 16 16 11 40 + 0 53 614,5 8 27 22,412 20 40 18 22 16 16 12 23 — 4 55 615,5 8 31 18,963 20 44 18 06 16 16 13 08 10 38 616,5 8 35 15,516 20 48 17 50 16 16 13 55 16 04 617,5 8 39 12,072 20 53 — 17 33 16 16 14 46 —20 56 Föld: 1-én napközeiben 5 I. FE BRUÁR KÖZÉP-EURÓPAI zónaidőben (KözEI) Budapesten A NAP A HOLD AHOLD fény­ nyug­ nyug­ változásai kel delel szik kel szik DÁTUM napja A A HÉT napjai Év hányadik Év Év hányadik hete h m h m h m h m h m h m 1 V (5) 32 7 11 11 58 16 45 2 52 10 55 2 H 6 33 7 10 11 58 16 46 4 10 11 42 3 K 34 7 09 11 58 16 48 5 19 12 46 4 Sz 35 7 08 11 58 16 49 6 18 14 07 5 Cs 36 7 06 11 58 16 51 6 54 15 38 6 P 37 7 05 11 58 16 52 7 23 17 09 • 08 13 7 Sz 38 7 03 11 58 16 54 7 46 18 37 8 V 39 7 02 11 58 16 55 8 06 20 01 9 H 7 40 7 00 11 58 16 57 8 22 21 23 10 K 41 6 59 11 58 16 58 8 40- 22 42 11 Sz 42 6 57 11 58 17 00 8 58 _ 12 Cs 43 6 56 11 58 17 01 9 19 0 00 13 P 44 6 54 11 58 17 03 9 46 1 17 ) 05 10 14 Sz 45 6 52 11 58 17 05 10 19 2 29 15 V 46 6 51 11 58 17 06 11 03 3 34 16 H 8 47 6 49 11 58 17 08 11 56 4 29 17 K 48 6 48 11 58 17 09 12 58 5 13 18 Sz 49 6 45 11 58 17 11 14 05 5 45 19 Cs 50 6 44 11 58 17 13 15 13 6 11 20 P 51 6 42 11 58 17 15 16 12 6 31 21 Sz 52 6 40 11 58 17 10 17 30 6 48 Q 0 9 19 22 V 53 6 38 11 58 17 18 18 37 7 03 23 H 9 54 6 37 11 57 17 19 19 45 7 16 24 K 55 6 35 11 57 17 21 20 54 7 30 25 Sz 56 6 33 11 57 17 22 22 05 7 45 26 Cs 57 6 31 11 57 17 24 23 20 8 03 27 P 58 6 29 11 57 17 25 — 8 24 28 Sz 59 6 28 11 57 17 27 0 37 8 53 Hold: 6-án Oh-kor földközelben 18-án 23**-kor földtávolban HÓNAP Oh világidőkor NAP HOLD Júlián Csillagidő dátum (A = 0*>-nál) 2440... látszó RA D sugara RA D h m s h m O t r " h m 0 / ...6 1 8 ,5 8 43 08,631 20 57 — 17 17 16 15 15 42 —24 53 619,5 8 47 05,193 21 01 17 00 16 15 16 43 27 32 620,5 8 51 01,758 21 05 16 42 16 15 17 48 28 28 621,5 8 54 58,324 21 09 16 25 16 15 18 55 27 24 622,5 8 58 54,888 21 13 16 07 16 15 20 00 24 20 623,5 9 02 51,448 21 17 15 49 16 15 21 03 19 32 624,5 9 06 48,004 21 21 15 30 16 15 22 01 13 29 625,5 9 10 44,556 21 25 15 11 16 14 22 56 — 6 43 626,5 9 14 41,106 21 29 14 52 16 14 23 48 + o 16 627,5 9 18 37,655 21 33 14 33 16 14 0 39 7 02 628,5 9 22 34,206 21 37 14 14 16 14 1 29 13 15 629,5 9 26 30,759 21 41 13 54 16 14 2 20 18 38 630,5 9 30 27,315 21 45 13 34 16 13 3 12 23 00 631,5 9 34 23,873 21 49 13 14 16 13 4 06 26 10 632,5 9 38 20,432 21 53 12 54 16 13 5 00 28 00 633,5 9 42 16,993 21 56 12 33 16 13 5 55 28 29 634,5 9 46 13,553 22 00 12 12 16 13 6 49 27 36 635,5 9 50 10,111 22 04 11 51 16 13 7 41 25 29 636,5 9 54 06,668 22 08 11 30 16 12 8 31 22 15 637,5 9 58 03,223 22 12 11 09 16 12 9 18 18 08 638,5 10 01 59,775 22 16 10 47 16 12 10 03 13 17 639,5 10 05 56,325 22 20 10 25 16 12 .
Recommended publications
  • Very High Energy Emission from Blazars Interpreted Through Simultaneous Multiwavelength Observations
    UNIVERSITA` DEGLI STUDI DI SIENA FACOLTA` DI SCIENZE MATEMATICHE, FISICHE E NATURALI Dipartimento di Fisica Very High Energy emission from blazars interpreted through simultaneous multiwavelength observations Relatore/Supervisor: Candidato/Candidate: Dr. Antonio Stamerra Giacomo Bonnoli Tutore/Tutor: Prof. Riccardo Paoletti Ph.D. School in Physics Cycle XXI December 2010 Abstract In the framework of Astroparticle Physics the understanding of the particle acceleration process and related high energy electromagnetic emission within astrophysical sources is an issue of fundamental importance to unravel the structure and evolution of many classes of celestial objects, on different scales from micro{quasars to active galactic nuclei. This has an important role not only for astrophysics itself, but for many related topics of cosmic ray physics and High Energy physics, such as the search for dark matter. Also cosmology is interested, as deepening our knowledge on Active Galactic Nuclei and their interaction with the environment can help to clarify open issues on the formation of cosmic structures and evolution of universe on large scales. The present view on sources emitting high energy radiation is now gaining new insight thanks to multiwavelength observations. This approach allows to explore the spectral energy distribution of the sources all across the electromagnetic spectrum, therefore granting the best achievable understanding of the physical processes that originate the radiation that we see, and their mutual relationships. Our theories model the sources in terms of parameters that can be inferred from the observables quantities measured, and the multiwavelength observations are a key instrument in order to rule out or support some selected models out of the many that compete in the effort of describing the processes at work.
    [Show full text]
  • 1945Apj. . .102. .318S SIX-COLOR PHOTOMETRY of STARS III. THE
    .318S SIX-COLOR PHOTOMETRY OF STARS .102. III. THE COLORS OF 238 STARS OF DIFFERENT SPECTRAL TYPES* Joel Stebbins1 and A. E. Whiteord2 1945ApJ. Mount Wilson Observatory and Washburn Observatory Received June 8,1945 ABSTRACT Colors have been obtained for 238 stars of all spectral types from O to M by measuring intensities i six spectral regions from X 3530 to X 10,300 A (Tables 2 and 3). The early-type stars from O to B3 sho small dispersion in intrinsic color, but many are strongly affected by space reddening. A dozen late-tyx giants in low latitudes are likewise affected. The most marked effect of absolute magnitude is near spe< trum K0, where the colors of dwarfs, ordinary giants, and supergiants are all different {Fig. 1). The observed colors of the stars agree closely with the colors of a black body at suitable temperatur« (Fig. 2). The derived relative color temperatures are based upon the mean of ten stars of spectrum dG with an assumed temperature of 5500°K. On this scale the values are 23,000° for O stars, 11,000° for A( and 5950° for dGO. An alternative scale, with 6700° and spectrum dG2 for the sun, gives 140,000° fc O stars, 16,000° for A0, and 6900° for dGO (Table 7). A definitive zero point for the temperature seal has not been determined. The bluest O and B stars agree very well with each other, but there is still the possibility that all ai slightly affected by space reddening. A dozen bright stars of the Pleiades seem normal for their type.
    [Show full text]
  • Planetary Nebulae and Their Central Stars in the Magellanic Clouds 37 Eva Villaver, Letizia Stanghellini, and Richard A
    Astrophysics and Space Science Proceedings The Impact of HST on European Astronomy F. Duccio Macchetto Editor Space Telescope Science Institute (STScI), Baltimore, MD 21218, USA Editor Dr. F. Duccio Macchetto Space Telescope Science Institute (STScI) 3700 San Martin Dr. Baltimore, MD 21218 USA [email protected] ISSN 1570-6591 e-ISSN 1570-6605 ISBN 978-90-481-3399-4 e-ISBN 978-90-481-3400-7 DOI 10.1007/978-90-481-3400-7 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2009942446 © Springer Science+Business Media B.V. 2010 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Cover design: eStudio Calamar S.L. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Foreword Remembrance of Things Past It scarcely seems credible that it was almost exactly thirty years ago that I first met Duccio Macchetto at the first meeting of the newly formed Science Working Group of what was then called the Space Telescope project. We were there in slightly dif- ferent roles, Duccio as the project scientist for the Faint Object Camera and I as an interdisciplinary scientist. Henk van de Hulst was also there as the official repre- sentative of ESO.
    [Show full text]
  • Does the LMC Possess a Dark Bulge? A
    Astronomy Reports, Vol. 46, No. 3, 2002, pp. 173–181. Translated from Astronomicheski˘ı Zhurnal, Vol. 79, No. 3, 2002, pp. 195–204. Original Russian Text Copyright c 2002 by Zasov, Khoperskov. Does the LMC Possess a Dark Bulge? A. V. Zasov and A. V. Khoperskov Sternberg Astronomical Institute, Universitetski ˘ı pr. 13, Moscow, 119899 Russia Received June 15, 2001 Abstract—A series of numerical dynamical models for the LMC are constructed in order to fittheobserved rotational velocities and stellar velocity dispersions at various galactocentric distances.The models include a three-dimensional spherical disk and nonevolving spherical components with various relative masses. The two LMC rotation curves presented by Kim et al.(1998) and Sofue (2000), which di ffer strongly in the inner region of the galaxy, are compared.The latter curve requires the presence of a massive dark bulge. Models based on the rotation curve of Sofue (2000) cannot account for the observed velocity dispersion or the presence of a long-lived bar in the galaxy.A model with no dark bulge is in good agreement with the observations if we assume that the disk dominates over the halo in terms of the mass within the optical radius (about 7 kpc). c 2002 MAIK “Nauka/Interperiodica”. 1.INTRODUCTION to interpret the rotation curve reported by Kim et al. [1].To investigate whether or not the LMC has such The results of recent studies suggest that the mor- a dark, massive bulge, we constructed two series of phology of the Large Magellanic Cloud is more com- dynamical models for each of these rotation curves.
    [Show full text]
  • The Asiago Database on Photometric Systems (ADPS)?
    ASTRONOMY & ASTROPHYSICS DECEMBER II 2000, PAGE 361 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 147, 361–628 (2000) The Asiago Database on Photometric Systems (ADPS)? I. Census parameters for 167 photometric systems D. Moro1,2 and U. Munari1,3 1 Osservatorio Astronomico di Padova, Sede di Asiago, I-36012 Asiago (VI), Italy 2 Osservatorio Astrofisico di Asiago, Dipartimento di Astronomia, Universit`a di Padova, I-36012 Asiago (VI), Italy 3 CISAS, Centro Interdipartimentale di Studi ed Attivit`a Spaziali, Padova, Italy Received May 9; accepted August 14, 2000 Abstract. The Asiago Database on Photometric Systems Bessell (1993), in the books by Golay (1974) and Strai˘zys (ADPS) is a compilation of basic information and refer- (1995) and on the world wide web by Mermilliod et al. ence data on 167 optical, ultraviolet and infrared photo- (1997). The latter focuses mainly on the data collected in metric systems. Thirty-four additional systems are briefly various photometric systems (with entries for more than described. In compiling this census we have relied on pub- 2105 stars). At the same time, the Mermilliod et al. www lished information only. In Paper II the photometric sys- version available at the time of submission of the ADPS tems will be inter-compared, calibrated and parameterised provides a census of photometric systems by listing and by means of synthetic photometry using uniform criteria describing 82 of them. Even if our compilation was inde- and the same set of input spectra and extinction laws. pendent, we undoubtedly benefited by checking against Mermilliod et al.’s work. Key words: photometry — astronomical data bases — In compiling the ADPS we have tried to be as com- surveys plete as possible for the optical region (from 0.3 to 1.0 µm, where GAIA is currently planned to collect data), but ef- fort has also been made to include ultraviolet as well as infrared photometric systems (even if at a lower degree 1.
    [Show full text]
  • Intermediate-Brightness Spectrophotometric Standards. Standards Near +40 Declination
    Astronomy Reports, Vol. 45, No. 12, 2001, pp. 1002–1011. Translated from Astronomicheski˘ıZhurnal, Vol. 78, No. 12, 2001, pp. 1135–1145. Original Russian Text Copyright c 2001 by Tereshchenko. Intermediate-Brightness Spectrophotometric Standards. Standards Near +40◦ Declination V. M. Tereshchenko Fesenkov Astrophysical Institute, Academy of Sciences of Kazakhstan, Kamenskoe Plato, Almaty, 480068 Kazakhstan Received June 22, 2000 Abstract—The second stage in our program to compile a list of regional intermediate-brightness spec- trophotometric standards has been completed. We have obtained spectral energy distributions for 24 stars with magnitudes 7m. 0–8m. 5 near +40◦ declination. The range λλ3100–7600 A˚ was studied with a spectral resolution of 50 A.˚ The relative rms error of our results in the visible is 1–2%, increasing to 3–5% toward the edges of the studied wavelength interval. All the stars are referenced to a single standard, the circumpo- lar star HD 221525. The energy distributions were used to compute color indices in the UBV, WBVR,and UPXYZVS systems, as well as in the system of the TYCHO catalog. The computed and observed values for stars in common with the TYCHO catalog are compared. c 2001 MAIK “Nauka/Interperiodica”. 1. INTRODUCTION papers on spectrophotometry of faint stars present A star’s spectral energy distribution E(λ)isoneof data on fluxes or illuminations in the visible only for its principal observed, as well as physical, parameters. some wavelengths. Usually, the number of measured In addition, stars with well-studied energy distribu- positions in the spectrum does not exceed 20. tions can be used as spectrophotometric standards In [11], we proposed several stellar spectropho- for observations of other celestial bodies.
    [Show full text]