Planetary Nebulae and Their Central Stars in the Magellanic Clouds 37 Eva Villaver, Letizia Stanghellini, and Richard A

Total Page:16

File Type:pdf, Size:1020Kb

Planetary Nebulae and Their Central Stars in the Magellanic Clouds 37 Eva Villaver, Letizia Stanghellini, and Richard A Astrophysics and Space Science Proceedings The Impact of HST on European Astronomy F. Duccio Macchetto Editor Space Telescope Science Institute (STScI), Baltimore, MD 21218, USA Editor Dr. F. Duccio Macchetto Space Telescope Science Institute (STScI) 3700 San Martin Dr. Baltimore, MD 21218 USA [email protected] ISSN 1570-6591 e-ISSN 1570-6605 ISBN 978-90-481-3399-4 e-ISBN 978-90-481-3400-7 DOI 10.1007/978-90-481-3400-7 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2009942446 © Springer Science+Business Media B.V. 2010 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Cover design: eStudio Calamar S.L. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Foreword Remembrance of Things Past It scarcely seems credible that it was almost exactly thirty years ago that I first met Duccio Macchetto at the first meeting of the newly formed Science Working Group of what was then called the Space Telescope project. We were there in slightly dif- ferent roles, Duccio as the project scientist for the Faint Object Camera and I as an interdisciplinary scientist. Henk van de Hulst was also there as the official repre- sentative of ESO. The approval of the project was the end result of a great deal of lobbying and politicking both in the USA and Europe, the European contribution proving essential to the approval process in the USA. Those interested in the nitty- gritty of the process should read Robert Smith’s outstanding history of the Hubble Space Telescope. We should have realized early on that we were in for a rough time. At that first meeting of the Science Working Group I remember vividly NASA Headquarters telling us that the Space Telescope was a success-oriented programme that would cost M$ 680. Well, we could live with the cost-tag, but we should have had concerns about the expression “success-oriented”. This meant that everything should turn out exactly as planned, the project would be carried out within the projected time-scale and budget and the telescope would be launched in 1983. Well, the rest is history. We learned a lot of useful jargon along the way. During one particularly wor- risome period, the project manager announced with confidence “We have no prob- lems; we have the following concerns” — all spoken with a completely straight face. During the difficult years up to about 1983, the programme ran through a number of project managers. The root cause was the same — the project could not be car- ried through with the projected budget and the blame for this fell on the project managers. Duccio and I were bemused by the fact that each new project manager was introduced as the person who had large numbers of successful space projects under their belt and was exactly the right person to solve all the Space Telescope’s funding and management problems. They never lasted more than about two or three meetings before they were replaced by another outstanding manager with the same credentials who would soon suffer the same fate. Eventually, when the project was about to run out of money really seriously, a realistic budget for the project was agreed and Joe Rothenberg did a splendid job of bringing the whole mission to a successful conclusion. v vi Foreword The Europeans were in an interesting position since we only had a 15% stake in the project, but many of us had argued successfully that we had to be in the Space Telescope project as of right rather than as guests. Probably the most important thing the three of us had to do was to remind our American colleagues that this really was an international project and that Europe had a lot to contribute to the project in many different ways. It was interesting to contrast the ESA approach with that of our US colleagues who were largely University based, but supported by major aerospace companies. The professionalism of Duccio and his ESA colleagues shone through while all the agonizing was centred on the many problems which the US instruments had to overcome and building the telescope within a reasonable budget. Despite all the agonies, the telescope was launched in 1990 and then the spherical aberration problem with the primary mirror surfaced. This was the mirror which had completely blown our minds when we were shown the amazing interferometer fringes in the early 1980s. The late Bill Fastie, one of the two optics specialists on the Science Working Group, claimed it was the best large mirror that had ever been polished. He was right, but the problem was that the mirror had been tested with the same set-up which had been used to polish it. The interesting aspect of the story was that the Science Working Group could not actually get their hands dirty in participating in the tests. They simply had to accept what they were shown by the contractors. The very positive side of this story was the subsequent crash programme to rescue the mission and restore the full scientific capability of the telescope. The Space Tele- scope Science Institute and NASA worked together in an extraordinary endeavour which resulted in the successful refurbishment mission which took place in 1993. Again, the rest is history. Like the rest of the Science Working Group, I eventu- ally receive my guaranteed time observations in 1996. My student Philip Best did a splendid job in analyzing our wonderful images of large redshift radio galaxies. As he remarked in the colloquium he gave describing his excellent analysis of the data, he was only four years old when I had submitted the original proposal in 1977. What is really remarkable is the extraordinary change in astronomical perspective since the project was approved in 1977. It was a really brave decision to adopt CCD detectors for the Wide Field-Planetary Camera when there was not really any working CCD camera on any ground-based telescope. One of the great dramas of the construction programme was the remarkable ingenuity displayed by the late Jim Westphal, Jim Gunn and the team which constantly came up with innovative solutions to the many problems of implementing CCD cameras in space. The one really key lesson that we learned from the subsequent programme of observations was undoubtedly that the science which was undertaken by the HST was far more imaginative, creative and exciting than anything which the original proposers had imagined. That is what this ESLAB Symposium celebrated. The Eu- ropean contribution was essential to the success of the programme and brought with it a different astronomical perspective which I believe was very important scientifi- cally, as well as technically and politically. Equally amazingly, Duccio has seen the programme all the way through from 1977 to the present Symposium thirty years later. During this time, Duccio’s job Foreword vii has been to look after European interests in the construction, commissioning and operational phase of the Hubble Space Telescope. He has done this quite exception- ally well and it will be difficult to think of European involvement in the programme without him. I can even forgive him the time he nearly poisoned the whole Science Working Group in Paris by feeding them raw oysters. I was sorry I could not be at the Symposium, because of a wrecked right Achilles tendon, and share even more of my memories of these dramatic and ultimately su- perbly successful days. Memories will fade and we will only remember the fabulous success of the HST and Europe’s contribution to it. But there was a huge amount of human lifeblood and dedicated effort involved. Nobody epitomizes that spirit more than Duccio. His legacy is the superb quality of the science presented at this Symposium. Cambridge Malcolm Longair September 2007 Preface Since its launch in 1990 the Hubble Space Telescope has made major contribu- tions to all areas of astronomy and astrophysics. These range from the study of nearby planets, the processes of star and planet formation, the stellar and interstellar components of galaxies, the discovery that most, if not all, galactic nuclei harbor a massive black hole that profoundly affects their evolution, to the realisation that the universe as a whole is undergoing acceleration as a result of a yet unknown form of “dark energy”. European astronomers have made significant contributions to projects that have led to unprecedented progress in our understanding. However, the impact of HST goes beyond these direct contributions and continues to shape the key questions that need to be addressed not only with HST but with other space and ground based observatories. In addition Hubble has had an important role on the performance and productivity of several European facilities, such as the VLT or XMM-Newton, and in the near future it will benefit from the synergy with Herschel and ALMA. The primary aim of this symposium, the 41st in ESLAB series of the European Space Agency, was to review the key contribution that HST has made in all areas of astronomy and emphasise their impact on European astronomical research. The symposium took place from 29 May to 1 June 2007 at the European Space Research and Technology Centre in Noordwijk, the Netherlands, and this book contains the proceedings of the oral and poster papers that were presented and discussed during the meeting.
Recommended publications
  • Astronomie in Theorie Und Praxis 8. Auflage in Zwei Bänden Erik Wischnewski
    Astronomie in Theorie und Praxis 8. Auflage in zwei Bänden Erik Wischnewski Inhaltsverzeichnis 1 Beobachtungen mit bloßem Auge 37 Motivation 37 Hilfsmittel 38 Drehbare Sternkarte Bücher und Atlanten Kataloge Planetariumssoftware Elektronischer Almanach Sternkarten 39 2 Atmosphäre der Erde 49 Aufbau 49 Atmosphärische Fenster 51 Warum der Himmel blau ist? 52 Extinktion 52 Extinktionsgleichung Photometrie Refraktion 55 Szintillationsrauschen 56 Angaben zur Beobachtung 57 Durchsicht Himmelshelligkeit Luftunruhe Beispiel einer Notiz Taupunkt 59 Solar-terrestrische Beziehungen 60 Klassifizierung der Flares Korrelation zur Fleckenrelativzahl Luftleuchten 62 Polarlichter 63 Nachtleuchtende Wolken 64 Haloerscheinungen 67 Formen Häufigkeit Beobachtung Photographie Grüner Strahl 69 Zodiakallicht 71 Dämmerung 72 Definition Purpurlicht Gegendämmerung Venusgürtel Erdschattenbogen 3 Optische Teleskope 75 Fernrohrtypen 76 Refraktoren Reflektoren Fokus Optische Fehler 82 Farbfehler Kugelgestaltsfehler Bildfeldwölbung Koma Astigmatismus Verzeichnung Bildverzerrungen Helligkeitsinhomogenität Objektive 86 Linsenobjektive Spiegelobjektive Vergütung Optische Qualitätsprüfung RC-Wert RGB-Chromasietest Okulare 97 Zusatzoptiken 100 Barlow-Linse Shapley-Linse Flattener Spezialokulare Spektroskopie Herschel-Prisma Fabry-Pérot-Interferometer Vergrößerung 103 Welche Vergrößerung ist die Beste? Blickfeld 105 Lichtstärke 106 Kontrast Dämmerungszahl Auflösungsvermögen 108 Strehl-Zahl Luftunruhe (Seeing) 112 Tubusseeing Kuppelseeing Gebäudeseeing Montierungen 113 Nachführfehler
    [Show full text]
  • Very High Energy Emission from Blazars Interpreted Through Simultaneous Multiwavelength Observations
    UNIVERSITA` DEGLI STUDI DI SIENA FACOLTA` DI SCIENZE MATEMATICHE, FISICHE E NATURALI Dipartimento di Fisica Very High Energy emission from blazars interpreted through simultaneous multiwavelength observations Relatore/Supervisor: Candidato/Candidate: Dr. Antonio Stamerra Giacomo Bonnoli Tutore/Tutor: Prof. Riccardo Paoletti Ph.D. School in Physics Cycle XXI December 2010 Abstract In the framework of Astroparticle Physics the understanding of the particle acceleration process and related high energy electromagnetic emission within astrophysical sources is an issue of fundamental importance to unravel the structure and evolution of many classes of celestial objects, on different scales from micro{quasars to active galactic nuclei. This has an important role not only for astrophysics itself, but for many related topics of cosmic ray physics and High Energy physics, such as the search for dark matter. Also cosmology is interested, as deepening our knowledge on Active Galactic Nuclei and their interaction with the environment can help to clarify open issues on the formation of cosmic structures and evolution of universe on large scales. The present view on sources emitting high energy radiation is now gaining new insight thanks to multiwavelength observations. This approach allows to explore the spectral energy distribution of the sources all across the electromagnetic spectrum, therefore granting the best achievable understanding of the physical processes that originate the radiation that we see, and their mutual relationships. Our theories model the sources in terms of parameters that can be inferred from the observables quantities measured, and the multiwavelength observations are a key instrument in order to rule out or support some selected models out of the many that compete in the effort of describing the processes at work.
    [Show full text]
  • A Radio Continuum Study of the Magellanic Clouds
    ASTRONOMY & ASTROPHYSICS JUNE II 1998, PAGE 421 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 130, 421–440 (1998) A radio continuum study of the Magellanic Clouds VII. Discrete radio sources in the Magellanic Clouds? M.D. Filipovi´c1,2,3,R.F.Haynes3,1,G.L.White1, and P.A. Jones1 1 University of Western Sydney, Nepean, P.O. Box 10, Kingswood, NSW 2747, Australia e-mail: [email protected]; [email protected]; [email protected] 2 Max-Planck-Institut f¨ur extraterrestrische Physik, Giessenbachstraße, D-85740 Garching, Germany 3 Australia Telescope National Facility, CSIRO, P.O. Box 76, Epping, NSW 2121, Australia e-mail: mfi[email protected]; [email protected] Received November 28; accepted December 24, 1997 Abstract. We present a study of discrete radio sources in 1. Radio-continuum surveys of the Magellanic Clouds the Magellanic Clouds (MCs) using the latest large-scale radio surveys made with the Parkes radio telescope be- During the last few decades, the Magellanic Clouds (MCs) tween 1.4 and 8.55 GHz. These surveys achieved higher have been investigated over almost all of the electro- sensitivity then previous surveys done with the Parkes magnetic spectrum. Radio-continuum investigations of the telescope and so the number of discrete radio sources de- MCs started with the detection by Mills & Little (1953). tected towards the MCs has increased by factor of five. Since that time, numerous radio surveys have been un- Also, we have obtained improved positions, flux densities dertaken. These include: Mills (1955) at 85.5 MHz; Mills and radio spectral indices for all of these sources.
    [Show full text]
  • Annual Report 2005
    Max Planck Institute t für Astron itu o st m n ie -I k H c e n id la e l P b - e x r a g M M g for Astronomy a r x e b P l la e n id The Max Planck Society c e k H In y s m titu no Heidelberg-Königstuhl te for Astro The Max Planck Society for the Promotion of Sciences was founded in 1948. It operates at present 88 Institutes and other facilities dedicated to basic and applied research. With an annual budget of around 1.4 billion € in the year 2005, the Max Planck Society has about 12 400 employees, of which 4300 are scientists. In addition, annually about 11000 junior and visiting scientists are working at the Institutes of the Max Planck Society. The goal of the Max Planck Society is to promote centers of excellence at the fore- front of the international scientific research. To this end, the Institutes of the Society are equipped with adequate tools and put into the hands of outstanding scientists, who Annual Report have a high degree of autonomy in their scientific work. 2005 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. 2005 Public Relations Office Hofgartenstr. 8 80539 München Tel.: 089/2108-1275 or -1277 Annual Report Fax: 089/2108-1207 Internet: www.mpg.de Max Planck Institute for Astronomie K 4242 K 4243 Dossenheim B 3 D o s s E 35 e n h e N i eckar A5 m e r L a n d L 531 s t r M a a ß nn e he im B e e r r S t tr a a - K 9700 ß B e e n z - S t r a ß e Ziegelhausen Wieblingen Handschuhsheim K 9702 St eu b A656 e n s t B 37 r a E 35 ß e B e In de A5 r r N l kar ec i c M Ne k K 9702 n e a Ruprecht-Karls- ß lierb rh
    [Show full text]
  • Star Cluster Physics and Stellar Population Synthesis Beyond the Local Group’S “Comfort Zone”
    Star cluster physics and stellar population synthesis beyond the Local Group’s “comfort zone” Richard de Grijs | 何锐思 Kavli Institute for Astronomy and Astrophysics Peking University, China; 2017 Erskine Fellow, University of Canterbury, NZ Key questions for TMT How does star formation occur, proceed, and how is it triggered? What is the importance of the interactions of newly born stars with their environment? How does the resulting IMF inform our understanding of star formation as a function of environment? (if at all!) What range of environments can we probe with TMT ? Galactic centres Starburst clusters (e.g., Arches) Low-metallicity environments; different stellar and gas densities Giant elliptical versus dwarf galaxies How far down the IMF can we go? = Kroupa Universal or not? Clustered star formation Massive stars rarely form in isolation: most stars > 0.5 M¤ form in star clusters (OB/TT to YMCs) (Massive) star clusters are records of episodes of higher-than- average star formation in their host galaxies The massive stars are the primary source of heavy elements injected into the ISM (as well as the IGM) Need large aperture and diffraction-limited spatial resolution in the optical and near- to mid-IR to probe to low(er) masses ALMA provides superb spatial resolution at complementary, dust- penetrating (sub)mm wavelengths – probe into the cores of the most active, dust-enshrouded star-forming regions With TMT and ALMA, we will be able to study the early evolution and the transformation from the youngest star-forming, cluster-like
    [Show full text]
  • X-Ray Luminosities for a Magnitude-Limited Sample of Early-Type Galaxies from the ROSAT All-Sky Survey
    Mon. Not. R. Astron. Soc. 302, 209±221 (1999) X-ray luminosities for a magnitude-limited sample of early-type galaxies from the ROSAT All-Sky Survey J. Beuing,1* S. DoÈbereiner,2 H. BoÈhringer2 and R. Bender1 1UniversitaÈts-Sternwarte MuÈnchen, Scheinerstrasse 1, D-81679 MuÈnchen, Germany 2Max-Planck-Institut fuÈr Extraterrestrische Physik, D-85740 Garching bei MuÈnchen, Germany Accepted 1998 August 3. Received 1998 June 1; in original form 1997 December 30 Downloaded from https://academic.oup.com/mnras/article/302/2/209/968033 by guest on 30 September 2021 ABSTRACT For a magnitude-limited optical sample (BT # 13:5 mag) of early-type galaxies, we have derived X-ray luminosities from the ROSATAll-Sky Survey. The results are 101 detections and 192 useful upper limits in the range from 1036 to 1044 erg s1. For most of the galaxies no X-ray data have been available until now. On the basis of this sample with its full sky coverage, we ®nd no galaxy with an unusually low ¯ux from discrete emitters. Below log LB < 9:2L( the X-ray emission is compatible with being entirely due to discrete sources. Above log LB < 11:2L( no galaxy with only discrete emission is found. We further con®rm earlier ®ndings that Lx is strongly correlated with LB. Over the entire data range the slope is found to be 2:23 60:12. We also ®nd a luminosity dependence of this correlation. Below 1 log Lx 40:5 erg s it is consistent with a slope of 1, as expected from discrete emission.
    [Show full text]
  • "#$%&'() + '', %-./0$%)%1 2 ()3 4&(5' 456')5'
    rs uvvwxyuzyws { yz|z|} rsz}~suzywsu}u~w vz~wsw 456789@A C 99D 7EFGH67A7I P @AQ R8@S9 RST9AS9 UVWUX `abcdUVVe fATg96GTHP7Eh96HE76QGiT69pf q rAS76876@HTAs tFR u Fv wxxy @AQ 4FR 4u Fv wxxy UVVe abbc d dbdc e f gc hi` ij ad bch dgcadabdddc c d ac k lgbc bcgb dmg agd g` kg bdcd dW dd k bg c ngddbaadgc gabmob nb boglWad g kdcoddog kedgcW pd gc bcogbpd kb obpcggc dd kfq` UVVe c iba ! " #$%& $' ())01023 Book of Abstracts – Table of Contents Welcome to the European Week of Astronomy & Space Science ...................................................... iii How space, and a few stars, came to Hatfield ............................................................................... v Plenary I: UK Solar Physics (UKSP) and Magnetosphere, Ionosphere and Solar Terrestrial (MIST) ....... 1 Plenary II: European Organisation for Astronomical Research in the Southern Hemisphere (ESO) ....... 2 Plenary III: European Space Agency (ESA) .................................................................................. 3 Plenary IV: Square Kilometre Array (SKA), High-Energy Astrophysics, Asteroseismology ................... 4 Symposia (1) The next era in radio astronomy: the pathway to SKA .............................................................. 5 (2) The standard cosmological models - successes and challenges .................................................. 17 (3) Understanding substellar populations and atmospheres: from brown dwarfs to exo-planets .......... 28 (4) The life cycle of dust ...........................................................................................................
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • Unlocking Galactic Wolf-Rayet Stars with $\Textit {Gaia} $ DR2 II: Cluster
    MNRAS 000,1{19 (2019) Preprint 7 May 2020 Compiled using MNRAS LATEX style file v3.0 Unlocking Galactic Wolf-Rayet stars with Gaia DR2 II: Cluster and Association membership Gemma Rate,? Paul A. Crowther, Richard J. Parkery Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH, UK Accepted XXX. Received YYY; in original form ZZZ ABSTRACT Galactic Wolf-Rayet (WR) star membership of star forming regions can be used to constrain the formation environments of massive stars. Here, we utilise Gaia DR2 parallaxes and proper motions to reconsider WR star membership of clusters and associations in the Galactic disk, supplemented by recent near-IR studies of young massive clusters. We find that only 18{36% of 553 WR stars external to the Galac- tic Centre region are located in clusters, OB associations or obscured star-forming regions, such that at least 64% of the known disk WR population are isolated, in contrast with only 13% of O stars from the Galactic O star Catalogue. The fraction located in clusters, OB associations or star-forming regions rises to 25{41% from a global census of 663 WR stars including the Galactic Centre region. We use simu- lations to explore the formation processes of isolated WR stars. Neither runaways, nor low mass clusters, are numerous enough to account for the low cluster member- ship fraction. Rapid cluster dissolution is excluded as mass segregation ensures WR stars remain in dense, well populated environments. Only low density environments consistently produce WR stars that appeared to be isolated during the WR phase.
    [Show full text]
  • The Sub-Solar Initial Mass Function in the Large Magellanic Cloud† Dimitrios A
    The Magellanic System: Stars, Gas, and Galaxies Proceedings IAU Symposium No. 256, 2008 c 2009 International Astronomical Union Jacco Th. van Loon & Joana M. Oliveira, eds. doi:10.1017/S1743921308028524 The sub-solar initial mass function in the Large Magellanic Cloud† Dimitrios A. Gouliermis Max-Planck-Institut f¨ur Astronomie, K¨onigstuhl 17, 69117 Heidelberg, Germany email: [email protected] Abstract. The Magellanic Clouds offer a unique variety of star forming regions seen as bright nebulae of ionized gas, related to bright young stellar associations. Nowadays, observations with the high resolving efficiency of the Hubble Space Telescope allow the detection of the faintest infant stars, and a more complete picture of clustered star formation in our dwarf neighbors has emerged. I present results from our studies of the Magellanic Clouds, with emphasis in the young low-mass pre-main sequence populations. Our data include imaging with the Advanced Camera for Surveys of the association LH 95 in the Large Magellanic Cloud, the deepest observations ever taken with HST of this galaxy. I discuss our findings in terms of the initial mass function, which we constructed with an unprecedented completeness down to the sub-solar regime, as the outcome of star formation in the low-metallicity environment of the LMC. Keywords. Magellanic Clouds, galaxies: star clusters, open clusters and associations: individual (NGC 346, NGC 602, LH 52, LH 95), stars: evolution, stars: pre–main-sequence, stars: luminosity function, mass function 1. Introduction The conversion of gas to stars is determined by the star formation process, the outcome of which are stars with a variety of masses.
    [Show full text]
  • The Low-Mass Stellar Content of Westerlund 1
    The low-mass stellar content of Westerlund 1 Morten Andersen (Gemini South) Galactic young massive star clusters • Connection between local and global SF. • Can resolve the stellar populations to low masses • Star counts instead of integrated properties • Directly measure the IMF The IMF in resolved massive clusters Only scale-free part probed Westerlund 1 • Distance of ~4 Kpc, age 3-5 Myr • Total mass estimated to be 50000 Msun • High foreground extinction • Best opportunity for resolving the low mass content in a young massive cluster • HST J (F125W) and H (F160W) band imaging Westerlund 1 from ground 5pc 4.5’ SOfI JHK, Brandner et al. 2007, Gennaro et al. Early lessons • Probe down to ~3 Msun, normal (Salpeter) IMF • Total mass of ~50000 Msun assuming standard IMF • Mass segregated, at least for high masses • Elliptical cluster • Currently difficult to improve from the ground Westerlund 1 with HST 5pc 4.5’ WFC3 F125W, F160W. Andersen et al. 2016 Color-magnitude diagrams Andersen et al. 2016 Foreground population Andersen et al. 2016 Red Clump Andersen et al. 2016 Background contamination Andersen et al. 2016 Cluster main sequence MS/PMS turn-on Andersen et al. 2016 Field star subtraction Andersen et al. 2016 Mass Functions Log-normal fit below 1 Msun to the 50% completeness limit. Power-law fit above 1 Msun (Siess 4 Myr isochrone) Change of fit parameters as a function of radius M < 1 Msun, log-normal fits Comparable peak mass as the field. More narrow distribution Change of fit parameters as a function of radius M > 1 Msun Evidence for mass segregation out to 1.5-2 pc Andersen et al.
    [Show full text]
  • The Herschel Virgo Cluster Survey XVIII
    A&A 574, A126 (2015) Astronomy DOI: 10.1051/0004-6361/201424866 & c ESO 2015 Astrophysics The Herschel Virgo Cluster Survey XVIII. Star-forming dwarf galaxies in a cluster environment M. Grossi1,2,3,L.K.Hunt4,S.C.Madden5, T. M. Hughes6,R.Auld7, M. Baes6,G.J.Bendo8,S.Bianchi4, L. Bizzocchi1,9, M. Boquien10,A.Boselli11,M.Clemens12,E.Corbelli4,L.Cortese13,J.Davies7, I. De Looze6, S. di Serego Alighieri4, J. Fritz6, C. Pappalardo1,2,3, D. Pierini14, A. Rémy-Ruyer5,M.W.L.Smith7, J. Verstappen6, S. Viaene6, and C. Vlahakis15 1 Centro de Astronomia e Astrofísica da Universidade de Lisboa, OAL, Tapada da Ajuda, 1349-018 Lisbon, Portugal e-mail: [email protected] 2 Instituto de Astrofísica e Ciências do Espaço, Universidade de Lisboa, OAL, Tapada da Ajuda, 1349-018 Lisbon, Portugal 3 Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Edifício C8, Campo Grande, 1749-016 Lisbon, Portugal 4 INAF – Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, 50125 Firenze, Italy 5 Laboratoire AIM, CEA/DSM – CNRS – Université Paris Diderot, Irfu/Service d’Astrophysique, CEA Saclay, 91191 Gif-sur-Yvette, France 6 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, 9000 Gent, Belgium 7 School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA, UK 8 UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK 9 Center for Astrochemical Studies, Max-Planck-Institut für extraterrestrische Physik (MPE), Giessenbachstraße, 85748 Garching, Germany 10 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 11 Laboratoire d’Astrophysique de Marseille, UMR 6110 CNRS, 38 rue F.
    [Show full text]