The Rio Scale Introduction Go to Rio Scale Calculator
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cross-References ASTEROID IMPACT Definition and Introduction History of Impact Cratering Studies
18 ASTEROID IMPACT Tedesco, E. F., Noah, P. V., Noah, M., and Price, S. D., 2002. The identification and confirmation of impact structures on supplemental IRAS minor planet survey. The Astronomical Earth were developed: (a) crater morphology, (b) geo- 123 – Journal, , 1056 1085. physical anomalies, (c) evidence for shock metamor- Tholen, D. J., and Barucci, M. A., 1989. Asteroid taxonomy. In Binzel, R. P., Gehrels, T., and Matthews, M. S. (eds.), phism, and (d) the presence of meteorites or geochemical Asteroids II. Tucson: University of Arizona Press, pp. 298–315. evidence for traces of the meteoritic projectile – of which Yeomans, D., and Baalke, R., 2009. Near Earth Object Program. only (c) and (d) can provide confirming evidence. Remote Available from World Wide Web: http://neo.jpl.nasa.gov/ sensing, including morphological observations, as well programs. as geophysical studies, cannot provide confirming evi- dence – which requires the study of actual rock samples. Cross-references Impacts influenced the geological and biological evolu- tion of our own planet; the best known example is the link Albedo between the 200-km-diameter Chicxulub impact structure Asteroid Impact Asteroid Impact Mitigation in Mexico and the Cretaceous-Tertiary boundary. Under- Asteroid Impact Prediction standing impact structures, their formation processes, Torino Scale and their consequences should be of interest not only to Earth and planetary scientists, but also to society in general. ASTEROID IMPACT History of impact cratering studies In the geological sciences, it has only recently been recog- Christian Koeberl nized how important the process of impact cratering is on Natural History Museum, Vienna, Austria a planetary scale. -
Lecture-29 (PDF)
Life in the Universe Orin Harris and Greg Anderson Department of Physics & Astronomy Northeastern Illinois University Spring 2021 c 2012-2021 G. Anderson., O. Harris Universe: Past, Present & Future – slide 1 / 95 Overview Dating Rocks Life on Earth How Did Life Arise? Life in the Solar System Life Around Other Stars Interstellar Travel SETI Review c 2012-2021 G. Anderson., O. Harris Universe: Past, Present & Future – slide 2 / 95 Dating Rocks Zircon Dating Sedimentary Grand Canyon Life on Earth How Did Life Arise? Life in the Solar System Life Around Dating Rocks Other Stars Interstellar Travel SETI Review c 2012-2021 G. Anderson., O. Harris Universe: Past, Present & Future – slide 3 / 95 Zircon Dating Zircon, (ZrSiO4), minerals incorporate trace amounts of uranium but reject lead. Naturally occuring uranium: • U-238: 99.27% • U-235: 0.72% Decay chains: • 238U −→ 206Pb, τ =4.47 Gyrs. • 235U −→ 207Pb, τ = 704 Myrs. 1956, Clair Camron Patterson dated the Canyon Diablo meteorite: τ =4.55 Gyrs. c 2012-2021 G. Anderson., O. Harris Universe: Past, Present & Future – slide 4 / 95 Dating Sedimentary Rocks • Relative ages: Deeper layers were deposited earlier • Absolute ages: Decay of radioactive isotopes old (deposited last) oldest (depositedolder first) c 2012-2021 G. Anderson., O. Harris Universe: Past, Present & Future – slide 5 / 95 Grand Canyon: Earth History from 200 million - 2 billion yrs ago. Dating Rocks Life on Earth Earth History Timeline Late Heavy Bombardment Hadean Shark Bay Stromatolites Cyanobacteria Q: Earliest Fossils? Life on Earth O2 History Q: Life on Earth How Did Life Arise? Life in the Solar System Life Around Other Stars Interstellar Travel SETI Review c 2012-2021 G. -
Using a Nuclear Explosive Device for Planetary Defense Against an Incoming Asteroid
Georgetown University Law Center Scholarship @ GEORGETOWN LAW 2019 Exoatmospheric Plowshares: Using a Nuclear Explosive Device for Planetary Defense Against an Incoming Asteroid David A. Koplow Georgetown University Law Center, [email protected] This paper can be downloaded free of charge from: https://scholarship.law.georgetown.edu/facpub/2197 https://ssrn.com/abstract=3229382 UCLA Journal of International Law & Foreign Affairs, Spring 2019, Issue 1, 76. This open-access article is brought to you by the Georgetown Law Library. Posted with permission of the author. Follow this and additional works at: https://scholarship.law.georgetown.edu/facpub Part of the Air and Space Law Commons, International Law Commons, Law and Philosophy Commons, and the National Security Law Commons EXOATMOSPHERIC PLOWSHARES: USING A NUCLEAR EXPLOSIVE DEVICE FOR PLANETARY DEFENSE AGAINST AN INCOMING ASTEROID DavidA. Koplow* "They shall bear their swords into plowshares, and their spears into pruning hooks" Isaiah 2:4 ABSTRACT What should be done if we suddenly discover a large asteroid on a collision course with Earth? The consequences of an impact could be enormous-scientists believe thatsuch a strike 60 million years ago led to the extinction of the dinosaurs, and something ofsimilar magnitude could happen again. Although no such extraterrestrialthreat now looms on the horizon, astronomers concede that they cannot detect all the potentially hazardous * Professor of Law, Georgetown University Law Center. The author gratefully acknowledges the valuable comments from the following experts, colleagues and friends who reviewed prior drafts of this manuscript: Hope M. Babcock, Michael R. Cannon, Pierce Corden, Thomas Graham, Jr., Henry R. Hertzfeld, Edward M. -
A Direct Communication Proposal to Test the Zoo Hypothesis
Space Policy 38 (2016) 22e26 Contents lists available at ScienceDirect Space Policy journal homepage: www.elsevier.com/locate/spacepol Viewpoint A direct communication proposal to test the Zoo Hypothesis Joao~ Pedro de Magalhaes~ Institute of Integrative Biology, University of Liverpool, Biosciences Building, Room 245, Crown Street, Liverpool, L69 7ZB, UK article info abstract Article history: Whether we are alone in the universe is one of the greatest mysteries facing humankind. Given the >100 Received 3 March 2016 billion stars in our galaxy, many have argued that it is statistically unlikely that life, including intelligent Accepted 16 June 2016 life, has not emerged anywhere else. The lack of any sign of extraterrestrial intelligence, even though on a Available online 26 July 2016 cosmic timescale extraterrestrial civilizations would have enough time to cross the galaxy, is known as Fermi's Paradox. One possible explanation for Fermi's Paradox is the Zoo Hypothesis which states that Keywords: one or more extraterrestrial civilizations know of our existence and can reach us, but have chosen not to Active SETI disturb us or even make their existence known to us. I propose here a proactive test of the Zoo Hy- Astrobiology fi Fermi's Paradox pothesis. Speci cally, I propose to send a message using television and radio channels to any extrater- Messaging to extraterrestrial intelligence restrial civilization(s) that might be listening and inviting them to respond. Even though I accept this is METI unlikely to be successful in the sense of resulting in a response from extraterrestrial intelligences, the possibility that extraterrestrial civilizations are monitoring us cannot be dismissed and my proposal is consistent with current scientific knowledge. -
The Tumbling Spin State of (99942) Apophis
The tumbling spin state of (99942) Apophis P. Pravec a, P. Scheirich a, J. Durechˇ b, J. Pollock c, P. Kuˇsnir´ak a, K. Hornoch a, A. Gal´ad a, D. Vokrouhlick´y b, A.W. Harris d, E. Jehin e, J. Manfroid e, C. Opitom e, M. Gillon e, F. Colas g, J. Oey h, J. Vraˇstil a,b, D. Reichart f, K. Ivarsen f, J. Haislip f, A. LaCluyze f aAstronomical Institute, Academy of Sciences of the Czech Republic, Friˇcova 1, CZ-25165 Ondˇrejov, Czech Republic bInstitute of Astronomy, Faculty of Mathematics and Physics, Charles University, Prague, V Holeˇsoviˇck´ach 2, CZ-18000 Prague 8, Czech Republic cPhysics and Astronomy Department, Appalachian State University, Boone, NC 28608, U.S.A. dMoreData! Inc., 4603 Orange Knoll Avenue, La Ca˜nada, CA 91011, U.S.A. eInstitut d’Astrophysique de l’Universit´ede Li`ege, Alle du 6 Aout 17, B-4000 Li`ege, Belgium f Physics and Astronomy Department, University of North Carolina, Chapel Hill, NC 27514, U.S.A. gIMCCE-CNRS-Observatoire de Paris, 77 avenue Denfert Rochereau, 75014 Paris, France hLeura Observatory, Leura, N.S.W., Australia 2014 January 22 Preprint submitted to Elsevier 22 January 2014 Proposed running head: Apophis tumbling Editorial correspondence to: Dr. Petr Pravec Astronomical Institute AS CR Friˇcova 1 Ondˇrejov CZ-25165 Czech Republic Phone: 00420-323-620352 Fax: 00420-323-620263 E-mail address: [email protected] 2 Abstract Our photometric observations of asteroid (99942) Apophis from December 2012 to April 2013 revealed it to be in a state of non-principal axis rotation (tumbling). -
Negotiating Uncertainty: Asteroids, Risk and the Media Felicity Mellor
Accepted pre-publication version Published at: Public Understanding of Science 19(1): (2010) 16-33. Negotiating Uncertainty: Asteroids, Risk and the Media Felicity Mellor ABSTRACT Natural scientists often appear in the news media as key actors in the management of risk. This paper examines the way in which a small group of astronomers and planetary scientists have constructed asteroids as risky objects and have attempted to control the media representation of the issue. It shows how scientists negotiate the uncertainties inherent in claims about distant objects and future events by drawing on quantitative risk assessments even when these are inapplicable or misleading. Although the asteroid scientists worry that media coverage undermines their authority, journalists typically accept the scientists’ framing of the issue. The asteroid impact threat reveals the implicit assumptions which can shape natural scientists’ public discourse and the tensions which arise when scientists’ quantitative uncertainty claims are re-presented in the news media. Keywords: asteroids, impact threat, astronomy, risk, uncertainty, science journalism, media, science news Introduction Over the past two decades, British newspapers have periodically announced the end of the world. Playful headlines such as “The End is Nigh” and “Armageddon Outta Here!” are followed a few days later by reports that there’s no danger after all: “PHEW. The end of the world has been cancelled” (Britten, 1998; Wickham, 2002; Evening Standard , 1998). These stories, and others like them appearing in news media around the world, deal with the possibility that an asteroid or comet may one day collide with the Earth causing global destruction. The threat posed by near-Earth objects (NEOs) has been actively promoted by a group of astronomers and planetary scientists since the late 1980s. -
Revised Asteroid Scale Aids Understanding of Impact Risk 12 April 2005
Revised asteroid scale aids understanding of impact risk 12 April 2005 Astronomers led by an MIT professor have revised object is almost always likely to reduce the hazard the scale used to assess the threat of asteroids level to 0, once sufficient data are obtained." The and comets colliding with Earth to better general process of classifying NEO hazards is communicate those risks with the public. roughly analogous to hurricane forecasting. The overall goal is to provide easy-to-understand Predictions of a storm's path are updated as more information to assuage concerns about a potential and more tracking data are collected. doomsday collision with our planet. The Torino scale, a risk-assessment system similar According to Dr. Donald K. Yeomans, manager of to the Richter scale used for earthquakes, was NASA's Near Earth Object Program Office, "The adopted by a working group of the International revisions in the Torino Scale should go a long way Astronomical Union (IAU) in 1999 at a meeting in toward assuring the public that while we cannot Torino, Italy. On the scale, zero means virtually no always immediately rule out Earth impacts for chance of collision, while 10 means certain global recently discovered near-Earth objects, additional catastrophe. observations will almost certainly allow us to do so." "The idea was to create a simple system The highest Torino level ever given an asteroid was conveying clear, consistent information about near- a 4 last December, with a 2 percent chance of Earth objects [NEOs]," or asteroids and comets hitting Earth in 2029. And after extended tracking of that appear to be heading toward the planet, said the asteroid's orbit, it was reclassified to level 0, Richard Binzel, a professor in MIT's Department of effectively no chance of collision, "the outcome Earth, Atmospheric and Planetary Sciences and correctly emphasized by level 4 as being most the creator of the scale. -
Planetary Defense: Near-Earth Objects, Nuclear Weapons, and International Law James A
Hastings International and Comparative Law Review Volume 42 Article 2 Number 1 Winter 2019 Winter 2019 Planetary Defense: Near-Earth Objects, Nuclear Weapons, and International Law James A. Green Follow this and additional works at: https://repository.uchastings.edu/ hastings_international_comparative_law_review Part of the Comparative and Foreign Law Commons, and the International Law Commons Recommended Citation James A. Green, Planetary Defense: Near-Earth Objects, Nuclear Weapons, and International Law, 42 Hastings Int'l & Comp.L. Rev. 1 (2019). Available at: https://repository.uchastings.edu/hastings_international_comparative_law_review/vol42/iss1/2 This Article is brought to you for free and open access by the Law Journals at UC Hastings Scholarship Repository. It has been accepted for inclusion in Hastings International and Comparative Law Review by an authorized editor of UC Hastings Scholarship Repository. Planetary Defense: Near-Earth Objects, Nuclear Weapons, and International Law BY JAMES A. GREEN ABSTRACT The risk of a large Near-Earth Object (NEO), such as an asteroid, colliding with the Earth is low, but the consequences of that risk manifesting could be catastrophic. Recent years have witnessed an unprecedented increase in global political will in relation to NEO preparedness, following the meteoroid impact in Chelyabinsk, Russia in 2013. There also has been an increased focus amongst states on the possibility of using nuclear detonation to divert or destroy a collision- course NEO—something that a majority of scientific opinion now appears to view as representing humanity’s best, or perhaps only, option in extreme cases. Concurrently, recent developments in nuclear disarmament and the de-militarization of space directly contradict the proposed “nuclear option” for planetary defense. -
NASA's Near-Earth Object Program Overview Don Yeomans/JPL
NASA’sNational Aeronautics and Near-Earth Object Program Overview Space Administration Jet Propulsion Laboratory California Institute of Technology Don Yeomans/JPL Pasadena, California National Aeronautics and Space Administration The Population of Near-Earth Objects is Jet Propulsion Laboratory California Institute of Technology Pasadena, California Made Up of Active Comets (1%) and Asteroids (99%) Comets (Weak and very black icy dust balls) •Weak collection of talcum-powder sized silicate dust •About 30% ices (mostly water) just below surface dust •Fairly recent resurfacing and few impact craters •Some evidence that comet Tempel 1 does not have a uniform composition (i.e., more CO2 in south) Asteroids (run the gamut from wimpy ex-comet fluff balls to slabs of iron •Most are shattered fragments of larger asteroids •Rubble rock piles - like Itokawa •Shattered (but coherent) rock - like Eros •Solid rock •Solid slabs of iron - like Meteor crater object National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology History of Known NEO Population Pasadena, California 201018001900195019901999 The Inner Solar System in 2006 Known • 500,000 minor planets Earth • 7100 NEOs • ~1100 PHOs Crossing New Survey Will Outside Likely Find Earth’s • 25,000+ NEOs Orbit (> 140m) • 5,000+ PHOs Scott Manley Armagh Observatory National Aeronautics and Space Administration NASA’s Current Jet Propulsion Laboratory California Institute of Technology Pasadena, California NEO Search Surveys NEO Program Office @ JPL LINEAR, Socorro NM • Program coordination • Automated SENTRY http://neo.jpl.nasa.gov/ Minor Planet Center (MPC) • IAU sanctioned • Discovery Clearinghouse • Initial Orbit Determination Spacewatch Tucson, AZ NASA’s NEO Observations Catalina Sky Program run by Lindley Johnson Survey (SMD) Tucson AZ & Australia National Aeronautics and Space Administration Jet Propulsion Laboratory NASA NEO Survey California Institute of Technology Pasadena, California Discoveries NASA goal is to discover 90% of NEAs larger than 1 km. -
Art on Mars: a Foundation for Exoart
THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF CANBERRA AUSTRALIA by TREVOR JOHN RODWELL Bachelor of Design (Hons), University of South Australia Graduate Diploma (Business Enterprise), The University of Adelaide ART ON MARS: A FOUNDATION FOR EXOART May 2011 ABSTRACT ART ON MARS: A FOUNDATION FOR EXOART It could be claimed that human space exploration started when the former Soviet Union (USSR) launched cosmonaut Yuri Gagarin into Earth orbit on 12 April 1961. Since that time there have been numerous human space missions taking American astronauts to the Moon and international crews to orbiting space stations. Several space agencies are now working towards the next major space objective which is to send astronauts to Mars. This will undoubtedly be the most complex and far-reaching human space mission ever undertaken. Because of its large scale and potentially high cost it is inevitable that such a mission will be an international collaborative venture with a profile that will be world- wide. Although science, technology and engineering have made considerable contributions to human space missions and will be very much involved with a human Mars mission, there has been scant regard for artistic and cultural involvement in these missions. Space agencies have, however, realised the influence of public perception on space funding outcomes and for some time have strived to engage the public in these space missions. This has provided an opportunity for an art and cultural involvement, but there is a problem for art engaging with space missions as currently there is no artform specific to understanding and tackling the issues of art beyond our planet. -
An Evolving Astrobiology Glossary
Bioastronomy 2007: Molecules, Microbes, and Extraterrestrial Life ASP Conference Series, Vol. 420, 2009 K. J. Meech, J. V. Keane, M. J. Mumma, J. L. Siefert, and D. J. Werthimer, eds. An Evolving Astrobiology Glossary K. J. Meech1 and W. W. Dolci2 1Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 2NASA Astrobiology Institute, NASA Ames Research Center, MS 247-6, Moffett Field, CA 94035 Abstract. One of the resources that evolved from the Bioastronomy 2007 meeting was an online interdisciplinary glossary of terms that might not be uni- versally familiar to researchers in all sub-disciplines feeding into astrobiology. In order to facilitate comprehension of the presentations during the meeting, a database driven web tool for online glossary definitions was developed and participants were invited to contribute prior to the meeting. The glossary was downloaded and included in the conference registration materials for use at the meeting. The glossary web tool is has now been delivered to the NASA Astro- biology Institute so that it can continue to grow as an evolving resource for the astrobiology community. 1. Introduction Interdisciplinary research does not come about simply by facilitating occasions for scientists of various disciplines to come together at meetings, or work in close proximity. Interdisciplinarity is achieved when the total of the research expe- rience is greater than the sum of its parts, when new research insights evolve because of questions that are driven by new perspectives. Interdisciplinary re- search foci often attack broad, paradigm-changing questions that can only be answered with the combined approaches from a number of disciplines. -
A Profile of Humanity: the Cultural Signature of Earth's Inhabitants
International Journal of A profile of humanity: the cultural signature of Astrobiology Earth’s inhabitants beyond the atmosphere cambridge.org/ija Paul E. Quast Beyond the Earth foundation, Edinburgh, UK Research Article Abstract Cite this article: Quast PE (2018). A profile of The eclectic range of artefacts and ‘messages’ we dispatch into the vast expanse of space may humanity: the cultural signature of Earth’s become one of the most enduring remnants of our present civilization, but how does his pro- inhabitants beyond the atmosphere. tracted legacy adequately document the plurality of societal values and common, cultural heri- International Journal of Astrobiology 1–21. https://doi.org/10.1017/S1473550418000290 tage on our heterogeneous world? For decades now, this rendition of the egalitarian principle has been explored by the Search for Extra-Terrestrial Intelligence community in order to draft Received: 18 April 2018 theoretical responses to ‘who speaks for Earth?’ for hypothetical extra-terrestrial communica- Revised: 13 June 2018 tion strategies. However, besides the moral, ethical and democratic advancements made by Accepted: 21 June 2018 this particular enterprise, there remains little practical exemplars of implementing this gar- Key words: nered knowledge into other experimental elements that could function as mutual emissaries Active SETI; data storage; deep time messages; of Earth; physical artefacts that could provide accessible details about our present world for eternal memory archives; future archaeology; future archaeological observations by our space-faring progeny, potential visiting extrasolar long-term communication strategies; SETI; time capsules denizens or even for posterity. While some initiatives have been founded to investigate this enduring dilemma of humanity over the last half-century, there are very few comparative stud- Author for correspondence: ies in regards to how these objects, time capsules and transmission events collectively dissem- Paul E.