CT&F Ciencia, Tecnología y Futuro ISSN: 0122-5383 [email protected] ECOPETROL S.A. Colombia

Silva-Arias, Alejandro; Páez-Acuña, Liliana-Andrea; Rincón-Martínez, Daniel; Tamara- Guevara, Javier-Alfonso; Gomez-Gutierrez, Pedro-David; López-Ramos, Eduardo; Restrepo-Acevedo, Sandra-Milena; Mantilla-Figueroa, Luis-Carlos; Valencia, Victor BASEMENT CHARACTERISTICS IN THE LOWER MAGDALENA VALLEY AND THE SINÚ AND SAN JACINTO FOLD BELTS: EVIDENCE OF A LATE MAGMATIC ARC AT THE SOUTH OF THE COLOMBIAN CARIBBEAN CT&F Ciencia, Tecnología y Futuro, vol. 6, núm. 4, diciembre, 2016, pp. 5-35 ECOPETROL S.A. Bucaramanga, Colombia

Available in: http://www.redalyc.org/articulo.oa?id=46550993001

How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative CT&FBASEMENT - Ciencia, CHARACTERISTICSTecnología y Futuro - INVol. THE 6 Num. LOWER 4 Dec. MAGDALENA 2016 ag. VALLEY - 6 AND THE SINÚ AND SAN JACINTO FOLD BELTS: EVIDENCE OF A MAGMATIC ARC AT THE SOUTH OF THE COLOMBIAN CARIBBEAN

ISSN rint 0122- ISSN Online 22-41 Journal of oil, gas and alternative energy sources BASEMENT CHARACTERISTICS IN THE LOWER MAGDALENA VALLEY AND THE SINÚ AND SAN JACINTO FOLD BELTS: EVIDENCE OF A LATE CRETACEOUS MAGMATIC ARC AT THE SOUTH OF THE COLOMBIAN CARIBBEAN CARACTERÍSTICAS DEL BASAMENTO EN EL VALLE INFERIOR DEL MAGDALENA Y CINTURONES PLEGADOS DE SINÚ Y SAN JACINTO: EVIDENCIAS DE UN ARCO MAGMÁTICO DEL CRETÁCICO TARDÍO EN EL CARIBE SUR COLOMBIANO

CARACTERÍSTICAS DO SUBSOLO NO VALE INFERIOR DO MAGDALENA E NAS FAIXAS DE DOBRAMENTO DE SINÚ E SAN JACINTO: EVIDÊNCIA DE UM ARCO MAGMÁTICO DO CRETÁCICO TARDIO NO SUL DO CARIBE COLOMBIANO

Alejandro Silva-Arias 1*; Liliana-Andrea Páez-Acuña 2; Daniel Rincón-Martínez 1; Javier-Alfonso Tamara-Guevara 3; Pedro-David Gomez-Gutierrez 1; Eduardo López-Ramos 4; Sandra-Milena Restrepo-Acevedo 1; Luis-Carlos Mantilla-Figueroa 2 and Victor Valencia 5 1 ECOETROL S.A., Intituto Colomiano el etrleo IC, Colomia 2 Uni eria Inutrial e Santaner, Bucaramanga, Santaner, Colomia, Ecuela e Geología.  Royal Hollo ay. Uni erity o Lonon, Englan. 4 ECOETROL S.A. Gerencia e E loracin Oore, Colomia.  Scool o Eart an En ironmental Science, Waington State Uni erity, ullman, USA.

e-mail: aniel.rinconeco etrol.com.co

(Received: Dec. 22, 2015; Accepted: Dec 09, 2016) ABSTRACT e onet o uuction in te Cariean late uner te Sout American late allo e te e elo - ment o an Acti e Continental Margin te age o onet, te mecanim an te late in ol e are a Ticuion to ic, e ecially at te Colomian Sout Cariean Margin, ue to te lac o geological inormation relate to te aement. Ti article integrate etrogra ic, geocemical analye an U ating o aement am le, in aition to te incluion o ulie magnetic anomalie ma  rom te Nort o Colomia, in orer to generate a com oitional itriution ma o te aement an etermine te reence o a magmatic arc uner te eiment o te Lo er Magalena Valley LMV, ic u ort te eitence o a Late Cretaceou acti e continental margin re reente y a magmatic arc, calle Magmatic Arc o Magangu. Dating o te arc yiel a Late Cretaceou Age 4-4 Myr, an etrogra ic an geocemical e ience ugget it i com rie o igneou oie o elic to intermeiate com oition, ic intrue te LMV continental crut, originate in a uuction etting. Te origin o te LMV continental crut eem to e relate to te continent-continent colliion conoliation o angaea uring te ermian 00 Ma ago, an to te ot-Alleganian etenion e ent o Triaic age 22 Ma ago.

Keywords: Magmatic Arc, U-Pb geochronology, subduction, Caribbean, South America.

How to cite: Sil a-Aria, A., e-Acua, L. A., Rincn-Martíne, D., Tamara-Gue ara, J. A., Gome-Gutierre, . D., L e-Ramo, E., Retre o-Ace eo, S. M., Mantilla-Figueroa, L. C., & Valencia, V. 2016. Baement caracteritic in te Lo er Magalena Valley an te Sin an San Jacinto Fol Belt: E ience o a Late Cretaceou Magmatic Arc at te Sout o te Colomian Cariean. CT&F - Ciencia, Tecnología y Futuro , 64, -6.

*To whom correspondence should be addressed

CT&F - Ciencia, Tecnología y Futuro - Vol. 6 Num. 4 Dec. 2016 5 ALEJANDRO SILVA-ARIAS et al.

RESUMEN

l inicio e la uuccin e la laca Carie ao la laca Suramericana ermiti el earrollo e una Margen Continental Actia la ea e inicio, el mecanimo y la laca inolucraa on tema e Eeate en eecial en el Margen Carie Sur colomiano, eio a la alta e in ormacin geolgica el aamento. En ete artículo e integran anlii etrogr ico, geo uímico y atacione U e muetra el aamento, aem e la incluin e maa e anomalía magntica ulicao el Norte e Colomia, ara generar un maa e itriucin comoicional el aamento y eterminar la eitencia e un arco magmtico ao lo eimento el Valle In erior el Magalena VIM ue aoyan la eitencia e una Margen Continental Actia ee el Cretcico Tarío. La eitencia e ete arco, enominao como Arco Magmtico e Magangu e ea Cretcico Tarío 4-4 Ma, et comueto or cuero ígneo e comoicin lica a intermeia ue intruyen la corte a continental el VIM, originao en un amiente e uuccin. El origen e la corte a continental el VIM arece etar ligaa a la coliin continente- continente conoliacin e angea urante el rmico 00Ma, y al eento e etenin ot-Alleganiano e ea Triica 22Ma.

Palabras clave: Arco Magmtico, geocronología U-, uuccin, Carie, Sur Amrica.

RESUMO início a uuco a laca Carie o a laca Sul-americana oiilitou o eenolimento e uma Margem Continental Atia a iae e início, o mecanimo e a laca enolia a em arte Oo mito e icuo no ue tange eecialmente  Margem Carie Sul colomiana, eio  alta e in ormao geolgica o uolo. Ete artigo integra anlie etrogr ico, geo uímico e atae U e amotra o uolo, incluino tamm maa e anomalia magntica ulicao o Norte a Colmia, iano a criao e um maa e itriuio comoicional o uolo e a eterminao a eitncia e um arco magmtico o o eimento o Vale In erior o Magalena VIM ue uortam a eitncia e uma Margem Continental Atia ee o Cretcico Tario. A eitncia ete arco, enominao como Arco Magmtico e Magangu e iae Cretcico Tario 4-4 Ma,  comota or coro ígneo e comoio lica e intermia ue intruem a crota continental o VIM, originao em um amiente e uuco. A origem a crota continental o VIM arece etar relacionaa com a colio continente-continente conoliao e angeia urante o rmico 00Ma, e com o eento e eteno o-alleganiano a era Triica 22Ma.

Palavras-chave: Arco Magmtico, geocronologia U-, uuco, Carie, Amrica o Sul.

6 CT&F - Ciencia, Tecnología y Futuro - Vol. 6 Num. 4 Dec. 2016 BASEMENT CHARACTERISTICS IN THE LOWER MAGDALENA VALLEY AND THE SINÚ AND SAN JACINTO FOLD BELTS: EVIDENCE OF A LATE CRETACEOUS MAGMATIC ARC AT THE SOUTH OF THE COLOMBIAN CARIBBEAN

1. INTRODUCTION 1988). However, some researchers treat these Great Arc components as separate entities, given that they appear to have different tectonic histories and have started as The tectonic evolution of NW South America, individual arc systems at different times during the between the and Late Cretaceous-Paleogene, Cretaceous through Paleogene (E.g Wright & Wyld was related to the complex interaction of South 2011; Xie & Mann, 2014). American, Caribbean (Plateau and proto-Caribbean) and Farallones plates. The Permian recorded the Pangaea consolidation and the Allaganian Mountains generation Finally, and also valid for both, the autochtonous and (Condie & Sloan, 1997; Yañez, Ruiz, Patchett, Ortega- the allochtonous models during the Cenozoic the region Gutierrez, & Gehrels, 1991). During the , the is characterized by accretionary prisms occurence, post-Alleganian event marked the rifting onset between which NE oriented faults activation and small oceanic Gondwana-Laurentia. Meanwhile, for the - crust sections attached to the continental margin of Late Cretaceous intra-continental rift (E.g. Cediel, Ecuador, Colombia and Venezuela, suggest a behavior Shaw, & Caceres, 2003 Pindell & Kennan, 2009) or similar to an active margin (E.g. Santamaría & Schubert, extensional subduction scenarios (E.g. Aspden et al ., 1974; Duque-Caro, 1984; Taboada et al ., 2000; Vallejo 1987; Villagómez et al ., 2011; Cochrane et al ., 2014) et al ., 2006; Cerón, Kellogg, & Ojeda, 2007; Mantilla- have been set out. Two tectonic models explain the Pimiento, 2007; Toro, Gómez, & Moreno, 2014). geological evolution in the area after these events. First, the allochthone-related models that suggest a At the north of Colombia (Figure 1), evidence of an Caribbean plate origin (Plateau) linked to the Pacic active continental margin during the Late Cretaceous, Plate geological history (E.g. Pindell et al ., 1988; have been reported in magmatic bodies emplaced at Pindell, 1990; Mann et al ., 2002; Pindell & Kennan, the North of the Cordillera Central (CC) (E.g. Ordóñez 2009; Escalona & Mann; 2011). In such models, the NW & Pimentel, 2001a, b; Restrepo-Moreno et al ., 2007a, South America is considered a passive margin between b; Ordoñez, Pimentel, & Laux, 2008; Villagómez et 120 and 84 Myr; and for the Late Cretaceous suggest al ., 2011), and in the Guajira Peninsula (PG; Cediel an arc-continent collision between the Caribbean plate et al ., 2003; Weber et al ., 2009, 2011). However, in (Plateau) and South America. This collision must have other continental margin areas, such as the Lower given rise to oceanic crust subduction (Pacic-originated Magdalena Valley (LMV), there are no reports of Plateau) occurring since the (approximately igneous activity for the same period and therefore; it has 72 Myr ago; Cediel et al ., 2003). On the other hand, not been considered as part of the geodynamic history. autochtone-related models assume that the Caribbean This is a peculiar fact given that for many authors (i.e. plate was formed between North America and South Duque-Caro, 1979; Flinch, 2003; López & Barrero, America. In autochtonous models, subduction is 2003; Cerón et al ., 2007) this area is located at the restricted to the proto-Caribbean opening during the transpressional limit which connected the terranes of Jurassic-Late Cretaceous, and the continental margin the Great Caribbean Arc, the Caribbean plate front limit starts to behave actively since the Late Cretaceous (86- and the South America North margin. 70 Myr) (E.g. Ball et al ., 1969; Aubouin et al ., 1982; Sykes et al ., 1982; Donnelly, 1985; Meschede & Frisch, This article integrates information from petrographic 1998; James, 2006). analyses of basement samples (crystalline metamorphic and plutonic rocks) from exploratory wells in LMV and In both scenarios of allochtonous/autochtonous outcrops in the San Jacinto Fold Belt (SJFB) area, along origin, the southeastern margin of the Caribbean/proto- with some geochronological dating and geochemical Caribbean plate is characterized by an intra-oceanic analyses, in addition to a qualitative analysis of magnetic arc system called the “Great Caribbean Arc” (sensu anomalies maps (i.e. Graterol, 2006; Mantilla-Pimiento, Burke, Fox, & Sengor, 1978; Burke, 1988). At the 2007). The integration of this information allowed beginning, it was proposed that crystalline rocks from the correlation of basement lithologies existence the Greater Antilles, Ave Ridge, Lesser Antilles and with magnetic anomalies, providing the basis for Dutch-Venezuelan Antilles represented a single history a compositional distribution map of the igneous- of the Caribbean Arc (sensu Burke et al ., 1978; Burke, metamorphic basement and to propose the existence of

CT&F - Ciencia, Tecnología y Futuro - Vol. 6 Num. 4 Dec. 2016 7 ALEJANDRO SILVA-ARIAS et al.

76 °W 75 °W 74 °W _11 °N Salamanca-1 Barranquilla * N Medialuna-1 Remolino-1

Cartagena * Pivijay-1 Danta-1

Algarrobo-1 _10 °N SanAngel-1 Alejandria-1 Apure PlSb ElDificil-1

Morrosquillo LMV Gulf . Piragua-1 Astrea-1 Ayhombe-1 SanPedro-1 Monterrey-1 Coveñas . Tolú-6 Lobita-1 SanSebastian-1 Lorica SanJorge-1 Cicuco . Momposina-1 Chilloa-1 (30110 ) Tiron-2 Boquete Mompos-1 Pto. Escondido . SJFB 9°N_ Sitio Nuevo-1 ChPl Montería Mojana-1 LosCayos-1 Achí-1 ElCabano-1 SJSb SnFB El Clan* . (30311, 30312 ) Hechizo-1 Caimancito-1 SJeA

Coral-9 Ayapel-1 Urabá Gulf 30317 30314 . Pta.Negra-1 Tenche-1 8°N_ Analysis: *Petrography 30318 . 30319 0km 100 *U-Pb

Figure1. Location ma o eloratory ell tat rille aement Cern et al ., 200. Alo inclue te analye eeloe in ome o te ell an te location o to SJFB outcro amle in ti tuy. SnFB: Sin Fol Belt SJFB: San Jacinto Fol Belt SJeA: San Jernimo Anticline SJA: San Jacinto Anticline LA: Luruaco Anticline LMV: Loer Magalena Valley SJB: San Jorge u-Bain lB: lato u-Bain MaHi: Magangu Hig Cl: Cimicagua lat orm SNSM: Sierra Neaa e Santa Marta SLR: San Luca Range G: Guaira eninula. a magmatic arc in the continental margin at the North San Jacinto (SJA) and San Jerónimo (SJeA) anticlines, of Colombia, specically in the LMV. and it is approximately 360 km long and 60 km wide, with a N20°E trend at the surface (Figure 1; Duque- Caro, 1984). The SnFB is part of the Sinú Accretionary Geological framework Wedge, which extends to the Colombian offshore, and The study area comprises SJFB, part of the Sinú to the east, it is separated from SJFB by the Sinú Fault Fold Belt (SnFB), and LMV (Figure 1). The SJFB is (Figure 1). The SnFB is over 500 km long and about between LMV and SnFB, and is separated from them 125 km wide. Finally, LMV is delimited to the west by by the Romeral Fault (Northern prolongation of the the Romeral Fault and to the east by the Bucaramanga- Romeral Fault System; Grosse, 1926 in: Kammer, 1993; Santa Marta fault. It is sub-divided in the Plato sub-basin Duque-Caro, 1980; Camargo, 1995; Reyes & Camargo, (PlsB), to the North, and the San Jorge sub-basin (SJsB), 1995; Reyes & Clavijo, 1996 in: Ujueta-Lozano, 2007) to the South, both separated by the Magangué High and the Sinú Fault (Duque-Caro, 1979; Camargo, 1995; (MaHi), which, according to Barrero, Pardo, Vargas, Reyes & Camargo, 1995; Reyes & Clavijo, 1996 in: & Martínez, (2007), controlled the sedimentation in Ujueta-Lozano, 2007), respectively. It encompasses the the two depocenters since the Eocene to Late Miocene.

8 CT&F - Ciencia, Tecnología y Futuro - Vol. 6 Num. 4 Dec. 2016 BASEMENT CHARACTERISTICS IN THE LOWER MAGDALENA VALLEY AND THE SINÚ AND SAN JACINTO FOLD BELTS: EVIDENCE OF A LATE CRETACEOUS MAGMATIC ARC AT THE SOUTH OF THE COLOMBIAN CARIBBEAN

The LMV basement has been interpreted as a complex of basalt and diabase ows interbedded with continental crust integrated by intrusive and extrusive sedimentary rocks (Driscoll & Diebold, 1999). igneous rocks, and metamorphic rocks (INGEOMINAS, 1997; ICP, 2000; Cerón et al ., 2007). The oceanic- 2. METHODOLOGY afnity basement is exposed in isolated blocks in SJFB (Dueñas & Duque-Caro, 1981; Duque-Caro, 1984; This study incorporated the petrographic information Guzmán, 2007: Cerón et al ., 2007; Lara et al ., 2013). of 60 exploratory wells (Cerón et al ., 2007) and was The tectonic limit or suture between the continental updated with the inclusion of 14 new petrographic crust, to the East, and the considered allochthonous, analyses from nine wells (Table 1, Figure 1). Additionally, accretionated terrane of SJFB has been established as the eld work was carried out in the localities of Puerto Romeral Fault System (Laverde, 2000). Further West, Escondido, Lorica, Montería and San Jerónimo to the in the offshore Colombian basin, the seismic refraction south of SJFB, in order to take samples and verify the and gravity data have identied an anomalously thick nature of outcropping crystalline rocks, through their oceanic basement with thicknesses of 8 to >20 km petrographic characterization (Table 1). The wells and (Donnelly, 1994), which consists on a Cretaceous outcrops samples were classied using a 250-point

Table1. Tin ection analye in ti tuy Figure 1, location, amle tye an etrograic ecrition NA: Not Aaila le : etrograic ecrition ta en rom Cern et al ., 200.

riae ell  alii e  a le ergra i  a le   e e ri i a  g 

Aleanría-1 4. 404.02 202. Well Cutting Granoiorite 46.6 Well Cutting Baalt Aure-1 16.4 41.62 4.0 Well Cutting Baalt .4 Well Cutting Aneite . Well Cutting Aneite Cicuco-2 1624.1 4.0 2401. NA Monogranite Cicuco- 16. 41.1 24.2 NA 206.4 Well Core Syenogranite Cicuco-22 1. 46.0 20.6 Well Core Syenogranite 20.4 Well Core Syenogranite Cicuco-24 120.1 442.41 24.1 NA Granoiorite Cilloa-1 122. 4006.6 1. Well Cutting Monogranite Coral- 24.1 2. 10. Well Cutting Monogranite 226. NA Granoiorite Lo ita-1 10. 4400. 2060.4 Well Cutting Diorite 204.2 Well Cutting uart iorite Salamanca-1 10.2 42.06 26.1 Well Cutting uart iorite San Se atian-1 16.4 414.16 11.6 Well Cutting Su litareniteSyenogranite 1216.2 Well Cutting uart yenite Sitio Nueo-1 04.6 4446.41 161. Well Core Ga ro 1624.6 Well Core yroenite Remolino-1 104111. 4.41 1. Well Core Aneite Lorica 0110-2 1446. 42.22 0.0 Outcro DioriteGa roAnortoite 01-1 1426.6 .21 0.0 Outcro Baalt San 014-2 1. 4. 0.0 Outcro Serentinite Jernimo 01-1 120.4 .6 0.0 Outcro Serentinite 01-1 426.4 . 0.0 Outcro Serentinite Tara 02-2 22.62 144.6 0.0 Outcro Tonalite

CT&F - Ciencia, Tecnología y Futuro - Vol. 6 Num. 4 Dec. 2016 9 ALEJANDRO SILVA-ARIAS et al. count, in Q A PF diagram s (Streckeisen 1976, 1979). and in three outcrop samples (Table 1, Figure 1). ICP- The qualitative analysis of m agnetic anom alies in the O E S (inductively coupled plasm a optical em ission C olom bian C aribbean m argin delineated the m ain spectrom etry, equipm ent type: Perkin Elm er 2100 anom alies using m agnetic intensity m aps reduced- D V ) and ICP-MS (inductively coupled plasm a m ass to-pole (IMT R P. Graterol, 2006. Figure 2a, and spectrom etry, equipm ent type: Perkin Elm er ELA N Mantilla-Pim iento, 2007. Figure 2B). The latter allow ed 6000) were used as analytical techniques. In addition, the expansion of anom alies coverage tow ards the U-Pb geochronological dating using the LA -ICP-MS C him ichagua Platform (ChPl) area. technique w as perform ed in zircons from four (4) LMV core sam ples from w ells (Coral-9, Cicuco-22, Major, minor and trace elem ents (MMT) geochem ical Sitio N uevo-1 w ells) and one in SJeA (30325; Table characterization w as perform ed in three w ell core 1S). Sam ples from localities 30110, 30311, 30313, sam ples (Cicuco-22, Rem olino-1 and Sitio N uevo-1) and 30314 of the SjeA w ere also included in the

76 °W 75 °W 74 °W _11 °N Barranquilla * Salamanca-1

N Medialuna-1 Remolino-1

* Pivijay-1 Danta-1 PlSb _10 °N SJFB Apure Alejandria-1

Morrosquillo Gulf . Tolú-6 (a) Coveñas * Chilloa-1 SanJorge- 1 Lorica * Cicuco-22 (30110) Momposina-1 34319.1 Pto. Escondido * 34150.0 9°N_ Sitio Nuevo-1 34120.0 34090.0 ChPl 34070.0 Mojana-1 34050.0 Achí-1 34040.0 SnFB 34030.0 * SJSb 34020.0 El Clan * 34010.0 34000.0

(30311, 30312) Coral-9SJeA 33900.0 33900.0 33970.0 33950.0 . 30317 33950.0 30314 . 33940.0 33930.0 Urabá 33920.0 Gulf 33910.0 8°N_ 33890.0 33880.0 33880.0 30319 33830.0 30321 . 33345.3 . IMTRP (b) 0km 100 nT

Figure 2. IMTR magnetic anomalie ma magnetic reuce-to-ole in te erion o a Graterol 2006, an  Mantilla-imiento 200 it te location o ell an analye outcro Ta le 1. SnFB: Sin Fol Belt SJFB: San Jacinto Fol Belt SJeA: San Jernimo Anticline SJA: San Jacinto Anticline LA: Luruaco Anticline LMV: Loer Magalena Valley SJB: San Jorge u -Bain lB: lato u -Bain MaHi: Magangu Hig Cl: Cimicagua lat orm SNSM: Sierra Neaa e Santa Marta SLR: San Luca Range G: Guaira eninula.

10 CT&F - Ciencia, Tecnología y Futuro - Vol. 6 Num. 4 Dec. 2016 BASEMENT CHARACTERISTICS IN THE LOWER MAGDALENA VALLEY AND THE SINÚ AND SAN JACINTO FOLD BELTS: EVIDENCE OF A LATE CRETACEOUS MAGMATIC ARC AT THE SOUTH OF THE COLOMBIAN CARIBBEAN geochronological analyses, nevertheless zircons were in a N10°E trend over the area connected to the SJsB absent and no dating was obtained. The details related (Figure 2a). Towards the LMV, the complete spectrum to the zircon separation process and the corresponding of magnetic anomalies is included, from low to high isotopic analysis was summarized in Chang, Vervoort, levels, with magnetic anomalies easily delineated and McClelland, & Knaack, (2006). Finally, petrographic, interpreted as medium- and high-intensity (33960 and geochemical and geochronological information was 34320 nT), opposed to an environment of predominantly integrated to the qualitative interpretation of magnetic low magnetic anomalies (33345-33960 nT; Figure 2a). anomalies maps. The main LMV magnetic anomaly is located in the MaHi, where the San Jorge-1, San Pedro-1 and Cicucos 3. RESULTS wells are located. The anomaly has a N60°W trend, ~70 km long and 40-25 km wide, and separates the basin into two depocenters. To the NE, PlsB includes Distribution of basement magnetic anomalies small anomalies of high magnetic intensity along the Our qualitative interpretation of the magnetic Romeral Fault (<25 km to the SE; Apure-1, Pivijay-1, anomalies reduced-to-pole (IMTRP) from Graterol Remolino-1 and Salamanca-1 wells) (Figure 2a); and (2006; Figure 2a) and Mantilla-Pimiento (2007; to the SW, SJsB has some larger anomalies of high Figure 2b), shows a differentiation in the intensity of intensity facing SJeA, where Coral-9 and Ayapel-1 wells magnetic anomalies along the Romeral Fault. This are located (Figure 2a). limit separates a scenario of generally-high magnetic anomalies towards the SJFB and SnFB, contrasting Petrography with a wide spectrum in intensity of magnetic anomalies towards the LMV (Figure 2a). In SJFB and SnFB, the The petrographic analysis of some LMV well magnetometric values are estimated between 33950 and samples allowed the identication of igneous rocks 34320 nT (according to Graterol’s scale, 2006) including (plutonic and volcanic) in nine of the analyzed wells high magnetic anomalies (34020-34320 nT) distributed (Table 1, Figure 1). The felsic plutonic rocks were widely along the SnFB shoreline (i.e. Cartagena and classied as in PlsB (Alejandría-1 well) Puerto Escondido), or with a larger extension but and monzogranite in the ChPl and SJsB (Chilloa-1 following the direction of the Romeral Fault (at ~30 km and Coral-9 wells, respectively) (Figures 2 and 3a). to the W) in SJFB (i.e. Montería, Lorica, Coveñas and The monzogranite from the Chilloa-1 well has an Tolú). The main SJFB magnetic anomaly is identied inequigranular allotriomorphic texture with local on the Romeral Fault at SJeA, where it has a clear perthitic textures (Figure 4a). The mafic plutonic elongated shape (~150 km long and < 25km wide), rocks were classied as quartz diorites-diorites in PlsB

: uart  OI  A: Al aline elar Ol: Oliine : uart 1 : lagioclae 1a 0 0 O: Ortoyroene A: Al aline elar 0 0  : Monogranite C: Clinoyroene : lagioclae 4: Granoiorite 2  4 : Aneite-Baalt yroenite: Maic 10: DioriteGa ro 6: Oliine We terite 10a: -iorite 1 40 40  : T oleiitic Ba alt 10 : DioriteGa ro Sitio Nueo-1  : Al ali Ba alt  6  60 60 10Sitio Nueo 10 60 60 Aleanría-1   10 O C

2 a Coral-  4  1 2 

Meialuna-1 20 20 20 20 Cilloa-1 Remolino-1 Salamanca-1 a a a  6a a a a 10a 4a Meialuna-1     6    10 4  6 Aure-2 a  A  A  Sitio Nueo-1 Aure-1

a   Figure 3. a Strec eien 16 clai ication iagram or lutonic, elic, ma ic an ultrama ic roc  rom ell: Aleanría-1, Coral- an Cilloa-1, Salamanca-1, Meialuna-1, Strec eien, 1 an Sitio Nueo-1.  Strec eien 1 clai ication iagram o olcanic roc  rom te Remolino-1, Aure-1 an Aure-2 ell.

CT&F - Ciencia, Tecnología y Futuro - Vol. 6 Num. 4 Dec. 2016 11 ALEJANDRO SILVA-ARIAS et al.

0.5mm 1mm

a  

1mm 0.5mm

c  

1000um 1000um

e 

Figure 4. a Monogranite ragment in t e C illoa-1 ell cutting , it ineuigranular allotriomor ic teture o an e ral uart cry tal t, otaic elar F an lagioclae l  o ing a local ert itic te ture o l lamella it in t e F an inciient e eloment o ericite a a rouct o yrot ermal alteration.  Garo rom t e Sitio Nue o-1 ell it lagioclae crytal l, ioie Di an augite Aug, altere to calcite Ca. c yro enite rom t e Sitio Nue o-1 ell it yro ene   an oli ine Ol an eigenetic uart einlet t.  Aneite rom t e Remolino-1 ell it glomerooriic te ture it lagioclae  enocryt l it a l-t- matri . e Serentinite it euomor ic te ture it lig t reer ation o t e te ture eature o Ol an  ic a e een trongly altere to liarite L an antigorite Atg rom t e original laneta Rica eriotite.  Serentinite it euomor ic te ture till reer ing relict oli ine crytal Ol altere to antigorite Atg, coming rom t e original eriotite rom t e aic an ultraaic Ur Comle

12 CT&F - Ciencia, Tecnología y Futuro - Vol. 6 Num. 4 Dec. 2016 BASEMENT CHARACTERISTICS IN THE LOWER MAGDALENA VALLEY AND THE SINÚ AND SAN JACINTO FOLD BELTS: EVIDENCE OF A LATE CRETACEOUS MAGMATIC ARC AT THE SOUTH OF THE COLOMBIAN CARIBBEAN

(Medialuna-1 and Salamanca-1 wells) and as - settings (Figures 5c-f). The Ba/La ratio in these igneous pyroxenite in MaHi (Sitio Nuevo-1 well) (Figures 2, 4b rocks (Remolino-1=110,21; Cicuco-22=80,90 and Sitio and 4c). On the other hand, the volcanic rocks identied Nuevo-1=47,84), allows to suggest more specically in LMV were classied as andesites (Remolino-1 and that these lithologies were formed in an arc settings Apure-2 wells) (Figure 3b) and calc-alkaline basalts (threshold values >20). The La/Yb vs. Sc/Ni ratios (Apure-1 well) in the PlsB (Figure 2). The andesites allow to propose that the magmatism generated by the show a glomeropordic texture (Figure 4d); while the PlsB igneous rocks (Remolino-1 well), took place in a basalts have an amigdaloid texture formed by vacuoles thinned continental crust, while those found in MaHi lled with chlorite (towards the borders). (Cicuco-22 well), seem to be more related to a thicker continental crust ( type). An analysis was also performed on outcropping serpentinized samples in SJeA. The rst ones correspond Regarding the samples collected in the SJeA, it is to Planeta Rica Peridotites (stations 30314 and 30317; evident that the classication of igneous materials, Figure 2), which have a pseudomorphic texture according to their chemical composition, is clearly (olivine and pyroxene-like texture) with minerals such inconsistent with the rock lithology (Annex 2). Such is as lizardite (91.3%), chrysolite (1.2%) and antigorite the case of the basalt (station 30313) and serpentinite (1.1%) (Figure 4e). Estimated age from those peridotites (station 30314) from the Planeta Rica area, which is Upper Cretaceous according to Dueñas & Duque- reach SiO 2 values of 71.60% and 63.99% in weight, Caro (1981). A second sample cluster correspond to which would project these rocks towards the field the Uré basic and ultrabasic Complex (stations 30318 of acidic rocks. Even though contamination is not and 30319; Figure 2), which present a pseudomorphic discarded, their high SiO 2 content may also suggest the texture and relicts (olivine crystals) with minerals such presence of quartz veinlets in the sample, or possible as lizardite (78.5%), antigorite (5.6%) and chrysolite alterations caused by silicication. More specically, (5.2%) (Figure 4f). Estimated age of these basic and the serpentinite sample (station 30314) from the Planeta ultrabasic complex is Lower Cretaceous according Rica area shows a high MgO content (Annex 2), which Zapata & Cossio (2001). Finally, in the Tarazá area is characteristic of peridotitic materials (ultramac, (station 30325), the composition of tonalite from the primitive rocks). This rock shows serpentinization of Puquí Complex (Lower Triassic; Carmona & Pimentel, its mac minerals and might be related to materials 2002) was classied as follows: plagioclase (41-36%), characteristic of the lithospheric mantle upperparts quartz (40-35%), biotite (10-6%), moscovite (6-4%), (due to the presence of plagioclase), which may have potassic feldspar (4.8-4.1%) and opaque minerals experienced hydration processes (serpentinization) as (4.4%) lling interstitial spaces, with inequigranular a response to the uids seepage leakage derived from hipiodiomorphic texture, and myrmekite-like local dehydration (uid release) of the subducted materials texture. (located under the peridotitic materials).

Geochemistry On the other hand, the basalt analysis from Planeta Annex 1 contains detailed results of chemical Rica area (station 30313) and tonalite from Tarazá area composition of core samples from the LMV, on the (station 30325), allows to conclude that these materials basis of different relationships between the main oxides, are related to supra-subduction magmatic arcs (Annex and between these and trace elements and Rare Earths 2), which have a different maturity degree, being basalt study. The samples from Sitio Nuevo-1, Remolino-1 (station 30313) originated from a slightly more primitive and Cicuco-22 wells are projected toward the eld magmatic arc, as compared to tonalite (station 30325). of sub-alkaline magmatic rocks (Figure 5a), and are geochemically classied as follows: Basaltic-Andesite Geochronology (Sitio Nuevo-1 well) and Rhyolite (Cicuco-22 well) in In this study, four geochronological datings were MaHi, and Dacites in PlsB (Remolino-1 well) (Figure performed (Table 2). In the MaHi, a gabbro from Sitio 5b). The results allow establishing a link between the Nuevo-1 well (core) was dated; its analytical data and igneous lithologies analyzed from the Remolino-1, the U-Pb isotopic relationships determined in different Cicuco-22 and Sitio Nuevo-1 wells, and subduction growth areas of the zircons analyzed with the LA-

CT&F - Ciencia, Tecnología y Futuro - Vol. 6 Num. 4 Dec. 2016 13 ALEJANDRO SILVA-ARIAS et al.

20.0 1 .0 1 .0 1 .0 16.0 onolite 14.0 12.0 -N Tracyte 12.0 -T Benmorite 10.0 .0 Ryolite BT Mugearite Remolino-1 .0 Al aline Remolino-1 Cicuco-22 Tracyaneit Neelin Haaiite Dacite Na2O2O Na2O2O 6.0 6.0 Cicuco-22 B-A Aneite 4.0 Sitio Nueo-1 .0 Baalt Sitio Nueo-1 2.0 Su al aline 0.0 0.0  40 4 0 60 6 0  0  4 6 

SiO 2 SiO 2 a  

200 2000 1000 100 Cicu co-22 C ic uc 100 o- Sitio Nueo-1 22 R em o 10 S lin it o Remolino-1 io -1 N u 10 e o SamleC1 Conrite -

Samlerimitie Mantle 1

1 1 Lar Eu T Ho Tm Lu C Ba U Ta La Sr H Sm T  Ce N Sm G Dy Er Y R T N Ce N r Y c  20 1000

10 WG 100 A Cicuco-22 N

rY VAG Syn-COLG 10 Remolino-1 B C Sitio Nueo-1 ORG 1 1 10 100 1000 1 10 100 10002000 r Y e  Figure 5. Geocemical iagram or te claiication o amle rom te Sitio Nueo-1, Cicuco-22 an Remolino-1 ell. a Diagram or icrimination o magma erie accoring to Irine & Baragar 1 1  TAS claiication Co et al ., 1   c Rare Eart attern, normalie to Conrite C1  Trace element, normalie to te rimitie Mantle e Diagram or icrimination o te tectonic etting y earce & Norry 1  . Etruie analogou o te lutonic roc erein analye.  N . Y iagram or te icrimination o te tectonic etting or magma emlacement earce et al ., 1 4. ICP-MS technique (34 analyses performed), indicate Annex 3). In SJsB, monzogranite from the Coral-9 the presence of a single group showing an age of 300 well (cuttings) was dated; its analytical data and the ± 1.3 Myr (Figure 6a; Annex 3). Also in the MaHi, a U-Pb isotopic relationships (38 analyses performed) syenogranite from the Cicuco-22 well (core) was dated; indicate the presence of eight age groups: the most its analytical data and the U-Pb isotopic relationships recent group shows an age range for monzogranite of (37 analyses performed) indicate the presence of six 74.5 ± 1.9 Myr (21%), and the second group shows age groups, even though the largest group has an an age of 232 ± 3.2 Myr (55%) (Figure 6c; Annex 3). age range related to the syenogranite crystallization, This second age group is considered as inherited and of 84.6 ± 0.6 Myr (68%, 25 data points) (Figure 6b; derived from zircons coming from Triassic rocks. To

14 CT&F - Ciencia, Tecnología y Futuro - Vol. 6 Num. 4 Dec. 2016 BASEMENT CHARACTERISTICS IN THE LOWER MAGDALENA VALLEY AND THE SINÚ AND SAN JACINTO FOLD BELTS: EVIDENCE OF A LATE CRETACEOUS MAGMATIC ARC AT THE SOUTH OF THE COLOMBIAN CARIBBEAN

Table 2. Ditriution o ell an outcro y: tructural omain, location, lit ology, etimate intenity o magnetic anomaly IMTR y Graterol, 2006 an U- age. ID: In eterminate€ : etrogra ic ecrition ta•en rom Cern et al ., 200€ : U‚ ating ta•en rom Monte et al ., 2010€ : Ar-Ar ating ta•en rom Lara et al ., 201.

age i  ei  ai Aal a i i lg T b  a i  ell T a ig

1 Cartagena  ID Mi -Hig 4000-420  CSn uerto 2 Econ i o Cant. El rieto 111 6 Baalt Hig 400-4120 1-14Ma 3 Tolu Tolu-6 Dolerite-Diaae Hig 400-4120 Ar-Ar 4 Coea  ID Mi -Hig 4010-4040 Lorica Cant. San Carlo CSJ 5 0110 Sarolite Mi  0-4000  Cant. El Clan 011 6 Montería Laterite Mi -Hig 4010-4040 Cant. Loma Gran e 012 Nueo araio 01 Baalt Cant. Santa Ine 014 CSJ Serentinite Hig 400-420  Anticlinorium El Guayao 01 7 San o Jernimo 01 San Jernimo Viera Arria Serentinite 01 Tara 02 Tonalite 21.4Ma 8 La Aarta a  ID Mi -Hig 4000-41 0   Ayael Coral- Monogranite Hig 400-420 4. 1. Ma LMV 1 Sucre  ID Mi  0-4010 San Jorge Su-Bain 11 San Benito  ID Mi  0-4000 12 Tenc e  ID   13 Caimancito  ID  14 Ac í Ac i-1 Grano iorite Mi  0-4010 San Jorge-1 uart iorite 15 Ay ome Mi -Hig 4000-4120  San e ro-1 uart iorite 16 Magangu Loita-1 Grano iorite Mi -Hig  0-420 2 .6  2. Ma Cicuco-2 Monogranite 241.4  . Ma Cicuco- Tonalite 241.6  . Ma LMV Cicuco-6 Monogranite Hig o 17 Cicuco-  Magangu Bouete -Tonalite Lo-Mi  40- 0 Cicuco-22 Syenogranite 4.60.6Ma Cicuco-24 Grano iorite  Bouete-10 Granitoi  18 Sitio Nueo Sitio Nueo-1 Garo-yroenite  001.Ma 1 Momo San Seatian-1 Syenogranite  LMV C illoa- C illoa-1 Monogranite latorm o 2 Mi  60-400  Atrea Atrea-1 Grano iorite C imic agua 21 Monterrey Monterrey-1 uart iorite  22 amrano  ID Mi -Hig  0-41 0 Aure-1 Baalt 23 Aure Mi -Hig  60-4040 Aure-2 An eite 24 aayan  ID Mi -Hig  60-4040 LMV An eite-Latite 25 Dant Danta-1 Lo-Mi  0- 60 lato -Trac yte  Su-Bain An eite iiay- iiay-1 26 -R yo acite Mi -Hig  60-420 Remolino Remolino-1 An eite 27 Me ialuna Me ialuna-1 Diorite-uart iorite Lo-Mi  0- 60 28 Salamanca Salamanca-1 uart iorite Mi  0- 0

CT&F - Ciencia, Tecnología y Futuro - Vol. 6 Num. 4 Dec. 2016 15 ALEJANDRO SILVA-ARIAS et al.

Samle SITI00001- 11 12   Well: Sitio Nueo-1 Mean00.0 -1. 0.44 con . Wt y ata- t err only, 0 o 4 re. MSWD0.4, ro a ility0.  0

6 04

4 00 Numer

 26 2

1 22

0 20 2 2 0 2 00 0 10 1 20 2 2 Age My a

0 Sam le CICU002 Well: Cicuco-22 4 Mean4.6 -0. 0.6 con . Wt y ata- t err only, 0 o 2 re. 2 2 MSWD1., ro a ility0.16

20 0

 1 Num er 6 10 4

 2

0 0 0 00 1000 100 2000 200 000 Age My 

2 1 Sam le CORA000 Mean4. -1. 2.6 con . Well: Coral- Wt y ata- t err only, 0 o  re. MSWD.0, ro a ility0.00  20

 1  Num er 10 

 1

0 6 0 00 1000 100 2000 Age My c

Figure 6. Age ro a ility i tri ution or te ircon am le in te Sitio Nueo-1 a, Cicuco-22 , Coral- c ell an tation 02. At te rigt o eac i togram, te o i le age o a ement an a ummary o eery age o te ircon calculate u ing te 206 2U ratio are illu trate , inclu ing te error uc a 2 uncertaintie  ee i cu ion in tet.

16 CT&F - Ciencia, Tecnología y Futuro - Vol. 6 Num. 4 Dec. 2016 BASEMENT CHARACTERISTICS IN THE LOWER MAGDALENA VALLEY AND THE SINÚ AND SAN JACINTO FOLD BELTS: EVIDENCE OF A LATE CRETACEOUS MAGMATIC ARC AT THE SOUTH OF THE COLOMBIAN CARIBBEAN

20 Sam le: 02-2 26  1 Site: 02 Mean21. -4.0 1. con . Wt y ata- t err only, 1 o 1 re. MSWD.2, ro a ility0.000 16 2 14

12 24

10 Num er  2

6

4 22

2

0 21 0 200 400 600 00 1000 1200 1400 1600 Age My  

Figure 6. continuation Age ro a ility i tri ution or te ircon am le in te Sitio Nueo-1 a, Cicuco-22 , Coral- c ell an tation 02. At te rigt o eac i togram, te o i le age o a ement an a ummary o eery age o te ircon calculate u ing te 206 2U ratio are illu trate , inclu ing te error uc a 2 uncertaintie  ee i cu ion in tet. the South, the tonalite from the Puquí Complex in the bodies of mac and ultramac composition (Table 2). Cordillera Central foothills (station 30325) was dated; They are identied from North to South as follows: (3) the U-Pb isotopic relationships (65 analyses performed) high intensity anomaly from the Tolú-6 well diabase, indicate the presence of at least six age groups: the most which can be extended to the SE toward the (4) Coveñas recent group (52%, 34 data points) shows an age range area (Figure 7). To the SSW, the medium to high intensity for tonalite of 231.8 ± 4 Myr, while the second group anomalies correspond to the saprolitized peridotites (42%, 27 data points) shows an age of 850 My (Figure from (5) Lorica (San Carlos quarry) and the lateritized 6d; Annex 3). peridotites from (6) Montería (El Clan and Loma Grande quarries). In both areas, peridotites outcrop in imbricate thrusts underlying the Upper Cretaceous 4. DISCUSSION Cansona Formation (Annex 4). To the East, the high- intensity anomaly of (7) San Jerónimo, corresponds to Correlation between Magnetic anomalies and serpentinites (metamorphized peridotites), identied in basement lithologies the El Guayabo, Santa Inés Quarry and Viera Arriba area The combination of lithological composition (Table 2). In addition, basalts were identied in Late and qualitative interpretation of magnetic anomalies Cretaceous rocks (Cansona Formation) and (IMTRP), allowed generating a basement lithological (San Cayetano Formation), in the Nuevo Paraíso and occurrences map for the South Caribbean Colombian Quebrada Nueva areas (station 30321; Table 1) (Figures margin (Figure 7, Table 2). On this map, two high- 2 and 7). intensity magnetic anomalies were identied in SnFB: (1) the undetermined anomaly to the North of Cartagena, To the SW of the LMV, 14 anomalies (medium which extends towards SJFB, and, (2) the anomaly to to high intensity) are identified and distributed as the South, corresponding to basalts emplaced in Middle follows: seven anomalies in SJsB, ve anomalies in Miocene rocks from the Puerto Escondido area (station MaHi and two anomalies in ChPl, which correspond to 11156, Table 2, Figure 2a) (Lara et al ., 2013) (Figure felsic and intermediate intrusive rocks (syenogranite, 7). The prolongation of these anomalies towards the monzogranite, granodiorite and quartz diorite), in offshore is limited by the IMTRP maps extension. addition to mac intrusive rocks (gabbro-pyroxenite; Sitio Nuevo-1 well) (Table 2; Figure 7). On the In the SJFB, ve high intensity magnetic anomalies contrary, to the NE of LMV, in PlsB, seven magnetic were identied, which mainly correspond to igneous anomalies are identied (medium to high intensity)

CT&F - Ciencia, Tecnología y Futuro - Vol. 6 Num. 4 Dec. 2016 17 ALEJANDRO SILVA-ARIAS et al.

Figure 7. Ma o a ement litological occurrence e ine rom te correlation o ell com o ition ata, outcro an magnetic anomalie li te in Ta le 2. SnFB: Sin Fol Belt SJFB: San Jacinto Fol Belt SJeA: San Jernimo Anticline SJA: San Jacinto Anticline SJ B: San Jorge u -Ba in l B: lato u -Ba in MaHi: Magangu Hig Cl: Cimicagua lat orm. and correlated to extrusive felsic to mafic rocks Cicuco-2 and -3: 241.4 ± 3.9 Myr; Montes et al . 2010), (trachyte, andesite, rhyodacite and basalt) and some and (Sitio Nuevo-1: 300 ± 1.3 Myr, Figure anomalies corresponding to intermediate-composition 6a) identied at the MaHi. The gabbro´s presence in a intrusive rocks (diorite-quartz diorite; Medialuna-1 and continental crust stands out since they are of metaluminic Salamanca-1 wells) (Table 2; Figure 7). On the map, nature (type-I magma), which corresponds to a supra- the Romeral Fault seems to dene the surface contact subduction setting (Figure 5e). As emplacement between the oceanic-like mafic rocks, outcroping mechanism it is proposed the occurrence of cortical to the NW, and the intrusive and extrusive, felsic to ssures. Other locations where magmatic crystallization intermediate rocks, intruded in a continental basement has been recorded from the Late Permian to the Early to the SE (Duque-Caro, 1979; Flinch, 2003; Cerón et Triassic are: the SNSM (288.1 ± 4.5 Myr and 276.5 ± al ., 2007; Mantilla-Pimiento, 2007) (Figure 7). 5.1 Myr; Cardona et al ., 2010), the North of the CC (248 ± 17 Myr; Ordoñez and Pimentel, 2001a, b), and the Tectonic evolution Puquí Complex (Tarazá, station 30325), which tonalite According to the U-Pb datings (Table 2), there is sample exhibits an age of 231.8 ± 4 Myr (Figure 6d; a Permo-Triassic (300 - 235 Myr) magmatic pulse, Annex 3). This rst tectono-thermal event occur in recorded in granitoids (Lobita-1: 239.6 ± 2.9 Myr , the frame of the Pangaea´s collision and Allaganian

18 CT&F - Ciencia, Tecnología y Futuro - Vol. 6 Num. 4 Dec. 2016 BASEMENT CHARACTERISTICS IN THE LOWER MAGDALENA VALLEY AND THE SINÚ AND SAN JACINTO FOLD BELTS: EVIDENCE OF A LATE CRETACEOUS MAGMATIC ARC AT THE SOUTH OF THE COLOMBIAN CARIBBEAN

Mountains formation during the Permian (Woodward, Even though the Magangué Magmatic Arc reects a 1957 in: Secor, Snoke, & Dallmeter, 1986); as well as the Late Cretaceous active margin, it does not necessarily post-Alleganian event marking the rifting onset between imply its juxtaposition with an oceanic Magmatic Arc, Gondwana-Laurentia during the Early-Mid Triassic in represented by the Planeta Rica basalts (station 30313). the LMV basement. At the moment of its formation, the oceanic basement must have been in a different location and subsequently A second, Late Cretaceous, magmatic pulse, is must have been accretioned to the continental plate, recorded in different LMV locations. In the MaHi, during the Late Cretaceous/Paleogene as evidenced by a syenogranite of peraluminic nature (metaluminic the saprolitized and lateritized peridotite folded and magma fractionation or cortical contamination), and thrusted below the Cansona Formation (Annex 4). characteristic of a thick continental crust, generated in a subduction setting (Figure 5f) yields an age of 84.6 Additionally, establishing the petrogenetic and ± 0.6 Myr (Cicuco-22 well; Figure 6b). In the SJsB, a chronological relationship of these igneous bodies, of monzogranite yields an age of 74.5 ± 1.9 Myr (Coral-9 mac and ultramac composition, as reported in the well; Figure 6c), in addition to an inherited age from the Planeta Rica, Montería and Lorica areas, with other rst Triassic magmatic pulse (232 ± 3.2 Myr; Figure 6c). allochtonous fragments from the Caribbean Plate This evidence suggests the existence of a magmatic arc attached to the northern margin of South America is a of Late Cretaceous age in the LMV basement, dened difcult task. To the north of the LMV, in the SNSM, in this paper as Magangué Magmatic Arc. Its existence Cardona et al . (2010) have reported a magmatic event, is based upon the igneous bodies occurrence along the associated to subduction (90 – 65 Myr), which generated Romeral Fault (Figure 7), among which Permian mac the crystallization of an orthogneiss and intra-plate (Sitio Nuevo-1) and Triassic felsic sources (Montes et volcanic-arc granitoids formed by melting of metabasalt al . 2010) are identied in the MaHi; as well as Late sources (50 – 68 Myr). In the Guajira Peninsula, Weber Cretaceous sources (Cicuco-22, Coral-9 wells) in the et al . (2009) associate the Cabo de la Vela Mafic MaHi and SJsB (Table 2), in addition to the presence Complex (and possibly the Etpana Formation) with of intermediate intrusive-extrusive bodies in the PlsB back-arc settings, occurring over on oceanic crust over (Table 2). the Benioff Zone, which then experienced a transition toward an intraoceanic island arc. Furthermore, to the The ages (84-72 Myr) and geochemical characteristics East of Colombia, in the Paraguaná Peninsula, Los of the magmatic bodies in the LMV are similar to those Monjes Island, Curaçao Island, Gran Roque Island, reported in a group of outcropping igneous rocks in the mac composition lithologies are displayed (Santamaría Cordillera Central (CC), as those from the Antioquia & Schubert, 1974; Toro et al ., 2014). These rocks Batholith (E.g. Restrepo-Moreno et al ., 2007a, b; represent a tholeitic series, characteristic of oceanic Ibañez, Tassinari, & Jaramillo, 2007; Ibañez, Jaramillo, ridges and, by extension, of sea oor in general. Further & Valencia, 2008; Ibañez, Vinasco, Cardona, Valencia, to the East, in the Aves Ridge and Lesser Antilles areas, & Weber, 2010); as well as to other small intrusive there is basaltic and doleritic lithologies to which an bodies, including the Sonsón and Segovia batholiths, intraoceanic-arc origin was attributed (Neill, Kerr, distributed in the North segment of CC (Ordóñez Hastie, Stanek, & Millar, 2011; Santamaría & Schubert, & Pimentel, 2001a, b; Restrepo-Moreno, Foster, & 1974; Bouysse et al ., 1990). However, the uncertainty Kamenov, 2007a), b; Ordóñez et al ., 2008; Villagómez et regarding the formation age of serpentinites and basalts al ., 2011). Therefore, this study proposes the continental from the Planeta Rica area, as well as genetic processes basement continuity from the Tahami Terrane (sensu difference, make it impossible to establish a link Restrepo & Toussant, 1988) up to the LMV (Figure 8), between these rocks and what are considered relicts of with the existence of at least two important magmatic the Great Caribbean Arc. arcs, developed within the same context of supra- subduction and as a response to the interaction between 5. CONCLUSIONS the Farallones or the ancient proto-Caribbean plates and the South American plate (E.g. Aspden et al ., 1987; ● The described and delimited lithologies from the LMV Ordoñez et al ., 2008; Pindell & Kennan, 2009; Restrepo- basement, as well as new well data ages reported here, Moreno et al ., 2009; Villagómez et al ., 2011). support a basement correlation to the lithologies and

CT&F - Ciencia, Tecnología y Futuro - Vol. 6 Num. 4 Dec. 2016 19 ALEJANDRO SILVA-ARIAS et al.

y

y

y

Figure 8. Di tri ution o te Magangue Magnetic Arc in te LMV to te Nort an continuity o intru ie o ie o te to magmatic ul e i enti ie in te LMV ermo-Tria ic an Late Cretaceou  mo i ie rom Ayala et al ., 2012. Age rom Monte et al . 2010 Re tre o et al . 200 I ae et al . 200 I ae et al . 200 Ro rigue-Jimene 2010 Car ona et al ., 2010 an Lara et al . 201. SnFB: Sin Fol Belt SJFB: San Jacinto Fol Belt l B: lato u -Ba in MaHi: Magangu Hig C: Cimicagua lat orm SJ B: San Jorge u -Ba in SNSM: Sierra Nea a e Santa Marta.

ages identied in the CC, being the LMV basement Margin for the Late Cretaceous, implying the onset of the northern extension of the Tahami Terrane from subduction of the Farallon or proto-Caribbean plates the CC. underlying the North of the South American Plate, with the intrusion of felsic to intermediate magmas (some peraluminic) in the LMV continental crust. ● The Magangué Magmatic Arc of the LMV has a Late Cretaceous age (84 - 70 Myr) and consist of felsic to intermediate igneous bodies (Coral-9 and Cicuco-22 ● In the aforementioned tectonic setting, the differences wells), which intrude an older tectono-thermal event between the Magangué Magmatic Arc and the of Permo-Triassic age (300-235 Myr), also identied Antioquia Batholith would be related to the Wadati- in the MaHi (Sitio Nuevo-1 well and wells dated by Benioff zone depth, and its corresponding implications: Montes et al ., 2010) and in SJsB (inherited zircons a progressive decrease in volatiles contribution in the Coral-9 well). toward the mantle wedge (as the subducted plate became deeper), and the subsequent reduction of the ● The existence of the Magangué Magmatic Arc and its mantle wedge partial fusion percentage, among other close tectono-temporal relationship with an important aspects. The knowledge of the relationship between group of igneous rocks outcropping in CC (i.e. the two aforementioned magmatic arcs has an evident Antioquia, Sonsón, Segovia, and other batholiths) implication in the mineral deposits exploration and supports the establishment of an Active Continental the evolution of Colombian sedimentary basins.

20 CT&F - Ciencia, Tecnología y Futuro - Vol. 6 Num. 4 Dec. 2016 BASEMENT CHARACTERISTICS IN THE LOWER MAGDALENA VALLEY AND THE SINÚ AND SAN JACINTO FOLD BELTS: EVIDENCE OF A LATE CRETACEOUS MAGMATIC ARC AT THE SOUTH OF THE COLOMBIAN CARIBBEAN

ACKNOWLEDGEMENTS Barrero, D., Pardo, A., Vargas, C., & Martínez, J. F. (2007). Colombian Sedimentary Basins: Nomenclature, Boundaries and Petroleum Geology, a New Proposal, 92p. This research was funded by Instituto Colombiano del Petróleo ICP-Ecopetrol S.A on the framework of Bayona G., Cardona A., Jaramillo C., Mora A., Montes C., the project “Estudio de rocas pre-Neógenas en el Caribe Valencia V., Ayala C., Montenegro O., & Ibañez, M. (2012). Colombiano a través de cronoestratigrafía, geoquímica, Early Paleogene magmatism in the northern Andes: Insights análisis de proveniencia y termocronología”. We thank on the effects of Oceanic Plateau–continent convergence. Gabriel Mendoza, Carlos Acuña, Edward Salazar, Earth Planet. Sci. Lett., 331-332, 97–111. Gyna Rincón, and some other Colombian geoscientist for sample collecting, eld observations and benecial Bouysse, P., Westercamp, D., & Andrieff, P. (1990), The Lesser discussions. Additional support during the data synthesis Antilles island arc, Proc. Ocean Drill. Program Sci. Results , phase of this research was provided by Mauricio Pinzón 110, 29–44. and Davis Guerra, whom organized this valuable information in a very practical georeferenced database. Burke, K. (1988). Tectonic evolution of the Caribbean. Ann. L. F. Peña and staff of Geologic Samples Laboratory Rev. Earth Planet. Sci. , 16, 210–230. DOI: 10.1146/ at the Instituto Colombiano del Petróleo are also annurev.ea.16.050188.001221 acknowledged for their help with sample preparation. We are thankful to the anonymous reviewers for their Burke, K., Fox, P. J., & Sengor, A. M. C. (1978). Buoyant ocean comments and suggestions that allowed us to improve oor and the evolution of the Caribbean. J. Geophys. Res. , and clarify the manuscript. 83, 3949–3954.

Cardona, A., Ruiz, J., Valencia, V., Garzón, A., Ojeda, G., & REFERENCES Weber, M. (2010). Tectonomagmatic setting and provenance of the Santa Marta Schists, northern Colombia: Insights on Aspden, J. A., McCourt, W., & Brook, M. (1987). Geochemical the growth and approach of Cretaceous Caribbean oceanic control of subduction-related magmatism: the Mesozoic and terranes to the South American continent. J. South Am. Cenozoic plutonic history of Western Colombia. J. Geol. Earth Sci., , 29, 784–804. Soc. Lond ., 144, 893-905. Carmona, O., & Pimentel, M. (2002). Rb-Sr and Sm-Nd Aubouin, J., Baltuck, M., Arnott, R. J., Bourgois, J., Filewiez, isotopic of the Puquí Complex, Colombian Andes. J. South M., Helm, R., Kvenvolden, K. A., Lienert, B., Mc Donald, Am. Earth Sci., 15, 173-182. T., Mc Dougall l. K., Ogawa, Y., Taylor, E., & Winsborough, B. (1982). Leg 84 of the Deep Sea Drilling Project, Cediel, F., Shaw, R. P., & Caceres, C. (2003). Tectonic assembly subduction without accretion, Middle America Trench off of the Northern Andean Block. In: Bartolini, C., Bufer, R. Guatemala. Nature , 297, 458-460. T., Blickwede, J. (Ed). The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation, and Ayala R. C., Bayona G., Cardona A., Ojeda C., Montenegro Plate Tectonics. AAPG Memoir, 79, 815-848. O. C., Montes C., Valencia V., & Jaramillo C. (2012). The paleogene synorogenic succession in the northwestern Cerón, J. F., Kellogg, J., & Ojeda G. (2007). Basement Maracaibo block: Tracking intraplate uplifts and changes in conguration of the northwestern South America-Caribbean sediment delivery systems. J. South Am. Earth Sci. , 39, 93- margin from recent geophysical data. CTyF - Ciencia, 111. DOI: http://dx.doi.org/10.1016/j.jsames.2012.04.005. Tecnología y Futuro , 3 (3), 25-49.

Bailey, J. C. (1981). Geochemical criteria for a rened tectonic Chang, Z., Vervoort, J. D., McClelland, W. C., & Knaack, C. discrimination of orogenic andesites. Chem. Geol. , 32 (1- (2006). U-Pb dating of zircon by LA-ICP-MS. Geochem. 4), 139-154. Geophys. Geosyst., 7, 1-14.

Cochrane, R., Spikings, R., Gerdes, A., Winkler, W., Ulianov, Ball, M. M., Harrison, C. G. A., & Supko, P. R. (1969). Atlantic A., Mora, A., & Chiaradia, M. (2014). Distinguishing opening and the origin of the Caribbean. Nature , 223, between in-situ and accretionary growth of continents along 167-168. active margins. Lithos , 202-203, 382-394.

CT&F - Ciencia, Tecnología y Futuro - Vol. 6 Num. 4 Dec. 2016 21 ALEJANDRO SILVA-ARIAS et al.

Condie, K. C., & Sloan, R. E. (1997). Origin and evolution Guzmán, G. (2007). Stratigraphy and sedimentary environment of earth: Principles of historical geology . New Jersey: and implications in the Plato Basin and the San Jacinto Prentice-Hall. belt Northwestern Colombia . Ph.D. Thesis. Université de Liege. Liege 487pp. Donnelly, T. W. (1985). Mesozoic and Cenozoic plate evolution of the Caribbean region. En: Stehli, F. G. & Webb, S. D. Ibañez, M., Vinasco, C., Cardona, A., Valencia, V. & Weber, (Ed). The Great American Biotic Interchange . New York, M. (2010). Permian–Triassic orogenesis in the northern Springer, 89-121. andes: a record of arc magmatism, accretion, anatexis and relaxation of a continental terrane in the Proto-Andes in the wake of Pangaea. Geological Society of America, Annual Donnelly, T.W. (1994). The Caribbean Cretaceous basalt meeting, 197. association: A vast igneous province that includes the Nicoya Complex of Costa Rica, in: Seyfried, H. & Hellman, Ibañez, M., Tassinari, C. & Jaramillo, J. (2007). U-Pb Zircon W. (Ed). Geology of and evolving island arc: The Isthmus Ages of the “Antioquian Batholith”: Geochronological of southern Nicaragua, Costa Rica and western Panamá. Constraints of Late Cretaceous Magmatism in the Central Stuttgart , Alemania, Prole (Band 7), Institut fur Geologie Andes of Colombia. XI Congreso Colombiano de Geología. un Paleontologie, 17-45. Bucaramanga, Colombia.

Driscoll, N. W. & Diebold, J. B. (1999). Tectonic and Ibañez, M., Jaramillo, J. & Valencia, V. (2008). U-Th/Pb Stratigraphic development of the Eastern Caribbean: New Zircon Geochronology by multicollector LA-ICP-MS of Constraints from Multichannel seismic data. En: Mann, P. the Samaná Gneiss: A Middle Triassic Syn-Tectonic body (Ed). Caribbean Basins. Sedimentary Basins of the World in the Central Andes of Colombia, related to the latter stages 4. Amsterdam. Elsevier. Science B.V., 591-626. of Pangaea assembly. VI South American Symposium on Isotope Geology. San Carlos de Bariloche, Argentina. Dueñas, H. & Duque-Caro, H. (1981). Geología del Cuadrángulo F-8, Planeta Rica. Boletin Geológico ICP. (2000). Evaluación regional integrada de la cuenca del INGEOMINAS , 24 (1), 1-35. Valle Inferior del Magdalena . Piedecuesta: ECOPETROL- ICP. 10 tomos. Duque-Caro, H., (1979). Major structural elements and evolution of northwestern Colombia. In: Watkins, J. S., INGEOMINAS. (1997). Atlas geológico digital de Colombia. Montadert, L., & Dickerson, P. W. (Ed). Geological and Ministerio de Minas y Energía, República de Colombia, geophysical investigations of continental margins . AAPG Sheets 1, 3, 4, and 6. Memoir, 29, 329-351. James, K. H. (2006). Arguments for and against the Pacic origin of the Caribbean Plate: discussion, nding for an Duque-Caro, H. (1984). Structural style, diapirism and inter-American origin. Geol. Acta , 4 (1-2), 279-302. DOI: accretionary episodes of the Sinú-San Jacinto terrane 10.1344/105.000000370. southwestern Caribbean borderland. GSA , 162, 303-316. Kammer, A. (1993). Las Fallas de Romeral y su relación con la Escalona, A., & Mann, P. (2011). Tectonics, basin subsidence tectónica de la Cordillera Central. Geologia Colombiana , mechanisms, and paleogeography of the Caribbean- 18, 27-46. South American plate boundary zone. Mari Petrol. Geol ., 28 (1), 8-39. DOI: http://dx.doi.org/10.1016/j. Lara, M., Cardona, A., Monsalve, G., Yarce, J., Montes, C., marpetgeo.2010.01.016. Valencia, V., Weber, M., De La Parra, F., Espitia, D., & M. López-Martínez. (2013). Middle Miocene near trench Flinch, J. F. (2003). Structural Evolution of the Sinú-Lower volcanism in northern Colombia: A record of slab tearing Magdalena Area (Northern Colombia). In: Bartolini, C., due to the simultaneous subduction of the Caribbean Bufer, R. T., & Blickwede, J. (Ed). The Circum-Gulf Plate under South and Central America?. J. South Am. of Mexico and the Caribbean: Hydrocarbon habitats, Earth Sci., 45, 24-41. DOI: http://dx.doi.org/10.1016/j. basin formation, and plate tectonics. AAPG Memoir, 79, jsames.2012.12.006. 776–796. Laverde, F. (2000). The Caribbean Basin of Colombia, a Graterol, V. (2006). Levantamiento aerogravimétrico y composite Cenozoic Accretionary Wedge with Under- aeromagnético. Adquisición, procesamiento e interpretación Explored Hydrocarbon Potential. VII Simposio Bolivariano de datos de aeromagnetogravimetría en el litoral Caribe . de Exploración Petrolera en Cuencas Subandinas . Caracas, Bogotá: ANH. Venezuela.

22 CT&F - Ciencia, Tecnología y Futuro - Vol. 6 Num. 4 Dec. 2016 BASEMENT CHARACTERISTICS IN THE LOWER MAGDALENA VALLEY AND THE SINÚ AND SAN JACINTO FOLD BELTS: EVIDENCE OF A LATE CRETACEOUS MAGMATIC ARC AT THE SOUTH OF THE COLOMBIAN CARIBBEAN

Mann, P., Calais, E., Ruegg, J. C., DeMets, C., Jansma, Restrepo-Moreno, S., Foster, D. A., & Karmenov, G. (2009). P., & Mattioli, G. (2002). Oblique collision in the Crystallization age and magma source of the Antioqueño northeastern Caribbean from GPS measurements and and Ovejas Batholiths, Central Cordillera, Colombia; geological observations, Tectonics, 21 (6), 1057. DOI: evidence from combined LA–ICP-MS U–Pb dating 10.1029/2001TC001304. and Hf-isotope analysis of zircon grains and whole rock geochemistry. Geol. Soc. Am. Abstracts with programs, Mantilla-Pimiento, A.M. (2007). Crustal structure of the 41 (7), 222 p. southwestern Colombian Caribbean margin. Geological interpretation of geophysical data. Ph.D. Thesis Insitut für Pindell, J. L. (1990). Geological arguments suggesting a Pacic Geowissenschaften. Friedrich-Schiller-Universität Jena. origin for the Caribbean Plate. En: Larue, D. K., & Draper, Jena, Alemania, 121 pp. G. (Ed). Transactions of the 12th Caribbean Geological Conference . Miami Geological Society, St. Croix, 1–4. Meschede, M, & Frisch, W. (1998). A plate-tectonic model for the Mesozoic and Early cenozoic history of the Caribbean Pindell, J. L., Cande, S. C., Pitman Iii, W. C., Rowley, D. B., Plate. Tectonophysics, 296 (3-4), 269–291. http://dx.doi. Dewey, J. F., Labrecque, J., & Haxby, W. (1988). A plate- org/10.1016/S0040-1951(98)00157-7. kinematic framework for models of Caribbean evolution. Tectonophysics , 155, 121-138. Montes, C., Guzman, G., Bayona, G., Cardona, A., Valencia, V., & Jaramillo, C. (2010). Clockwise rotation of the Santa Restrepo, J. J., & Toussant, J. F. (1988). Terranes and Marta massif and simultaneous Paleogene to Neogene continental accretion in the Colombian Andes. Episodes, deformation of the Plato-San Jorge and Cesar-Ranchería 11 (3), 189-193. basins. J. South Am. Earth Sci ., 29, 832–848. DOI: http:// dx.doi.org/10.1016/j.jsames.2009.07.010. Restrepo-Moreno, S., Foster, D.A., & Kamenov, G. (2007a). Formation age and magma sources for the Antioqueño Neill, I., Kerr, A. C., Hastie, A. R., Stanek, K.-P., & Millar, I. Batholith derived from LA-ICP-MS Uranium–Lead dating and Hafnium-isotope analysis of zircon grains. Geol. Soc. L. (2011). Origin of the Aves Ridge and Dutch Venezuelan Am. , Annual Meeting, Abstracts, 181-28 (Paper). Antilles: interaction of the Cretaceous “Great Arc” and Caribbean-Colombian Oceanic Plateau? J. Geol. Soc. Restrepo-Moreno, S., Foster, D., & Kamenov, G. (2007b). London , 168, 333–347. DOI: 10.1144/0016-76492010-067. Formation age and magma sources for the Antioqueño and Ovejas batholiths derived from U-Pb dating and Hf isotope Ordoñez, O., Pimentel, M. & Laux, J. H. (2008). Edades U–Pb analysis of zircon grains by LA-ICP-MS. GSA Abstracts del Batolito Antioqueño. Bol. Ciencias de la Tierra , 22, with Programs , 39 (6), 493. 125-140. Santamaría, F., & Schubert, C. (1974). Geochemistry and Ordoñez, O., & Pimentel, M. M. (2001a). Rb–Sr and Sm–Nd geochronology of the Southern Caribbean-Northern isotopic study of the Puquı ́ complex, Colombian Andes. Venezuela plate boundary. Bull. Geol. Soc. Am ., 85, (7), J. South Am. Earth Sci ., 15 (2), 173–182. DOI: 10.1016/ 1085-1098. DOI: 10.1130/0016-7606(1974)85<1085:GA S0895-9811(02)00017-2. GOTS>2.0.CO;2.

Ordóñez, O., & Pimentel, M. M (2001b). Consideraciones Secor, D.T., Snoke, A.W. & Dallmeter, R.D. (1986). Character geocronológicas e isotópicas del Batolito Antioqueño. Rev. of the Alleghanian orogeny in the southern Appalachians: Aced. Cienc. Exactas: Fisic. Natural. , 25, 27-35. Part III. Regional tectonic relations. GSA Bulletin , 97, 1345-1353. Pindell, J. L., & Kennan, L. (2009). Tectonic evolution of the Gulf of Mexico, Caribbean and Northern South America in Streckeisen, A. (1976). To each plutonic rock its proper the mantle reference frame: an update. Geol. Soc. London name. Earth Sience Rev. , 12 (1), 1-33. DOI: https://doi. Special Public ., 328, 1-55. DOI: 10.1144/SP328.1. org/10.1016/0012-8252(76)90052-0.

Pindell, J., Kennan, L., Stanek, K. P., Maresch, W. V., & Draper, Streckeisen, A., (1979). A classication and nomenclature G., (2006). Foundations of Gulf of Mexico and Caribbean of volcanic rocks, lamprophyres and melilitic rocks. evolution: eight controversies resolved. Geol. Acta , 4, Recommendations and suggestion of the IUGS on the 303–341. DOI: 10.1344/105.000000371. Systematic of igneous Rocks. Geology , 7, 331-335.

CT&F - Ciencia, Tecnología y Futuro - Vol. 6 Num. 4 Dec. 2016 23 ALEJANDRO SILVA-ARIAS et al.

Sykes, L. R., Mc Cann, W. R. & Kafka, A. L. (1982). Motion Xie, X. & Mann, P. (2014). U–Pb detrital zircon age patterns of the Caribbean plate during the last 7 million years and of Cenozoic clastic sedimentary rocks in Trinidad and its implications for earlier Cenozoic movements. Journal implications. Sedimentary Geology , 307, 7–16. Geophysical Research , 87, 10656-10676. Yañez, P., Ruiz, J., Patchett, P. J., Ortega-Gutierrez, F. & Taboada, A., Rivera, L., Fuenzalida, A., Cisternas, A., Philip, H. Gehrels, G. (1991). Isotopic studies of the Acatlan complex, Bijwaard, H., Olaya, J., & Rivera, C. (2000). Geodynamics southern Mexico; implications for Paleozoic North America of the northern Andes: subductions and intracontinental tectonics. GSA Bulletin , 103, 817-828. deformation (Colombia). Tectonics , 19, 787-813. Zapata, G, & Cossio, U. (2001). Mapa fotogeológico con control de campo de la Plancha 93 Cáceres . Bogota: Toro, L., Gómez, A., & Moreno, M. (2014). Metagabros de la Ingeominas. 59p. isla Gran Roque (Venezuela). Geoquímica y petrografía. Ciencias De La Tierra , 38, 1-9. AUTHORS Ujueta-Lozano G. (2007). Tectónica de bloques, delimitados por lineamientos de dirección NO-SE y NNE-SSO a NE-SO Alejandro Silva Arias en el Norte y Nordeste de Colombia y en el Noroccidente Aliation: ECOPETROL S.A. Instituto Colombiano del Petróleo (ICP) de Venezuela. Geología Colombiana. 32, 3-20. e-mail: [email protected]

Vallejo, C., Spikings, R. A., Luzieux, L., Winkler, W., Chew, Liliana Andrea Páez Acuña D. & Page, L. (2006). The early interaction between the Aliation: Universidad Industrial de Santander, Caribbean Plateau and the NW South American Plate. Terra Escuela de Geología Nova , 188 (4), 264–269. e-mail: [email protected]

Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, Javier Alfonso Tamara Guevara W., & Beltrán, A., (2011). Geochronology, geochemistry Aliation: University of London, Royal Holloway and tectonic evolution of the Western and Central e-mail: [email protected] Cordilleras of Colombia. Lithos , 125, 875-896. Pedro David Gómez Gutiérrez Weber, M.B.I., Cardona, A., Paniagua, F., Cordani, U., Aliation: ECOPETROL S.A. Instituto Colombiano del Petróleo (ICP) Sepúlveda, L., & Wilson, R. (2009). The Cabo de la e-mail: [email protected] Vela mac-ultramac complex, Northeastern Colombian Luis Carlos Mantilla Figueroa Caribbean region – a record of multi stage evolution of Aliation: Universidad Industrial de Santander, a Late Cretaceous intra- oceanic arc. En: James, K. H., Escuela de Geología Lorente, M. A. & Pindell, J. L. (Ed). Caribbean–South e-mail: [email protected] American Plate Interactions. London: GSL Spec. Publ., 394, 549-568. Sandra Milena Restrepo Acevedo Aliation: ECOPETROL S.A. Instituto Colombiano del Petróleo (ICP) Weber, M. B. I., Cardona, A., Valencia, V., Altenberger, U., e-mail: [email protected] López-Martinez, M., Tobón, M., Zapata, G., & Concha, A.E. (2011). Geochemistry and Geochronology of the Victor Valencia Guajira Eclogites, northern Colombia – evidence of a Aliation: Washington State University metamorphosed primitive Cretaceous Caribbean Island-arc. School of Earth and Enviromental Sciences Geologica Acta , 9, 425-443. e-mail: [email protected]

Woodward, H.P. (1957). Chronology of Appalachian folding. Eduardo López Ramos AAPG Bulletin , 41, 2312-2327. Aliation: ECOPETROL S.A. Gerencia de Exploración Offshore, Colombia Wright, J. E. & Wyld, S. J. (2011). Late Cretaceous e-mail: [email protected] subduction initiation on the southern margin of the Caribbean-Colombian oceanic plateau: One great arc of Daniel Andrés Rincón Martínez Aliation: ECOPETROL S.A. Instituto Colombiano del Petróleo (ICP) the Caribbean?. Geosphere , 7(2), 468–493. e-mail: [email protected]

24 CT&F - Ciencia, Tecnología y Futuro - Vol. 6 Num. 4 Dec. 2016 BASEMENT CHARACTERISTICS IN THE LOWER MAGDALENA VALLEY AND THE SINÚ AND SAN JACINTO FOLD BELTS: EVIDENCE OF A LATE CRETACEOUS MAGMATIC ARC AT THE SOUTH OF THE COLOMBIAN CARIBBEAN

ANNEX 1. K2O/ Al 2O3 relationship (in molar values; Davies and Whitehead, 2006) allows to establish that the PlsB´s andesite (Remolino-1 well: 0.43 vs. 0.28) and the Correlation between Magnetic anomalies and MaHi´s syenogranite (Cicuco-22 well: 0.3 vs. 0.36) basement lithologies have not experienced significant hydrothermal or Table A.1 shows the general differences in the supergene alteration (meaning near the potassic-biotite geochemical results for igneous lithologies studied in plagioclase-feldspar line). Furthermore, according to the the LMV. From ‘ Sigma Index ’ (K 2O+Na 2O vs. SiO 2 Alumina saturation index ( Shand Index or ASI; Maniar ratio; Irvine and Baragar, 1971) we can interpret that and Piccoli, 1989) the andesite sample (Remolino-1 samples from the Sitio Nuevo-1, Remolino-1, and well) is projected towards the eld of metaluminic rocks Cicuco-22 wells are projected towards the eld of sub- characteristic of type-I magmas (Chappell and White, alkaline magmatic rocks (Figure 5a); and according 1992), as well as the gabbro-pyroxenite from the MaHi to the Cox et al . diagram (1979; Figure 5b) they are (Sitio Nuevo-1 well). On the other hand, the syenogranite geochemically classied as follows: Basaltic Andesites found in the MaHi (Cicuco-22 well) is projected towards (Sitio Nuevo-1 well) and Rhyolites (Cicuco-22 the eld of peraluminic rocks, possibly suggesting well) located in the MaHi and Dacites from the PlsB a fractionation process of metaluminic magmas or a

(Remolino-1 well). Additionally, the Na 2O/ Al 2O3 vs. cortical contamination process. Table A1. Total roc geocemi try ata rom core am le , collecte rom i erent ell rille in te Loer Mag alena Valley LMV.

ell 1  22 T   1 641642 € 82278233 € 5311.42 € e 1•53.81•56.8 257.625•.4 1618.• arb i er uƒeria Age eeriae ae reae u‚84 a ‚3 a   e Aeie  re ra i rie  re abbr  re

a r elee 

SiO 2 6.0 6.6 .

Al2O  12.4 1. 1.

Fe2O  .2 2.2 12.1 MgO 1.12 0.4 2.0 CaO 2. 0.0 .2 Na2O .42 2.46 1.02 €2O .4 4.60 0.64

TiO 2 0.6 0.26 2.01

2O  0.2 0.1 0.11 MnO 0.12 0.02 0.1 Cr  m 12.2 10.00 11. Ni  m 6.4 4.44 .62 Sc  m 11.16 . 42.0 LOI : 1000•C 0.0 2. .2 Total um o oi e .6 4.1 2.4

i r a rae elee 

Ba 1.00 26.00 10.00 Co 1. .62 12.00 C 0.4 1.2 0.6 Ga 1. 22. 20.6 H 0.4 0.4 1.0 N . 1.2 .4 R 2.1 26.00 14.

CT&F - Ciencia, Tecnología y Futuro - Vol. 6 Num. 4 Dec. 2016 25 ALEJANDRO SILVA-ARIAS et al.

Table A1. Continuation Total roc geocemi try ata rom core am le , collecte rom i erent ell rille in te Loer Mag alena Valley LMV.

„ell 1  22 T   1 641642 € 82278233 € 5311.42 € e 1•53.81•56.8 257.625•.4 1618.• arb i er uƒeria Age eeriae ae reae u‚84 a ‚3 a   e Aeie  re ra i rie  re abbr  re

a r elee  N . 1.2 .4 SiOR 6.02.1 26.006.6 .14. Sr 22.00 10.00 464.00 Ta 0.4 1. 0.1 T 4.4 20.44 2.62 U 1.4 4.40 .41 V 12.00 . 610.00 ‚r 101.00 40. 2. Y 1. 20.2 2.  . 44.01 1.60 Mo 1.6 1.4 .6 Cu 21.2 4.62 206.00 La 12.14 1.6 10.66 Ce 26. 1. 2.2 r .62 .12 .41 N 1.40 2.4 1.21 Sm . .0 4.02 Eu 0.4 0. 1.0 G . 6. 4.2 T 0. 1.0 0.4 Dy . . 4. Ho 0.6 0. 0. Er 1.1 2.14 2. Tm 0.26 0.2 0.42 Y 1.6 1. 2.4

The Rare Earth Elements (REE) normalized to The Eu anomaly values (EuN/√SmN*GdN; Figure chondrite C1 (Figure 5c) show that, when compared to 5c) from the samples of wells Remolino-1 (0.76), gabbro-pyroxenite (Sitio Nuevo-1 well) and andesite Cicuco-22 (0.38), and Sitio Nuevo-1 (0.76), point (Remolino-1 well), the MaHi´s syenogranite (Cicuco-22 towards a fractionation of plagioclase, indicating a well: 2.81/3.55) has a higher enrichment in light relatively anhydrous indigenous magma which favored REE (LREE, [La/Sm] N) than heavy REE (HREE, the nucleation of plagioclase over the . [Gd/Yb] N). On the other hand, the fractionation Additionally, negative anomalies in Nb, Ta and Y value corresponding to HREE in the MaHi´s gabbro- (Figure 5d), show that the castings related to the three pyroxenite (Sitio Nuevo-1 well: [Gd/Yb] N: 1.26) (3) samples are projected towards the typical range seems to be related to magmas formed from the partial of subduction. Geochemical afnity and Zr vs. Zr/Y melting of a plagioclase-spinel mantle. Although there ratios suggest that the gabbros (pyroxenites) from the are signicant differences in the degree of fractionation MaHi (Sitio Nuevo-1 well), are characteristic of supra- of REE in the analyzed samples; this same mantle might subduction settings (Figure 5e). be the magmatic source of the syenogranite from the MaHi (Cicuco-22 well: [Gd/Yb] N: 3.55) and andesite The Ba/La ratio of samples (Remolino-1: 110.21; from the PlsB (Remolino-1 well: [Gd/Yb] N: 1.9). Cicuco-22: 80.90 and Sitio Nuevo-1: 47.84 wells)

26 CT&F - Ciencia, Tecnología y Futuro - Vol. 6 Num. 4 Dec. 2016 BASEMENT CHARACTERISTICS IN THE LOWER MAGDALENA VALLEY AND THE SINÚ AND SAN JACINTO FOLD BELTS: EVIDENCE OF A LATE CRETACEOUS MAGMATIC ARC AT THE SOUTH OF THE COLOMBIAN CARIBBEAN allow to suggest that these lithologies were formed in ANNEX 2. arc environments (threshold values >20). In addition, according to the tectonic discrimination diagram by Pearce, Harris, & Tindle, (1984) , based upon the Nb Geochemistry from outcrop samples, collected vs. Y ratio, andesite (Remolino-1 well) and syenogranite from different localities in the anticlinorium of (Cicuco-22 well) are projected towards the eld of San Jerónimi (ASJe) granitoids, formed in Volcanic Arc environments (Figure In SJeA, the SiO 2 content in the basalt (30313 5f). On the other hand, La/Yb vs. Sc/Ni ratios (Bailey, station) and serpentinite (30314 station) samples from 1981) show the andesite (Remolino-1 well: 7.36 vs. the Planeta Rica sector reaches values of 71.60% and 1.10) as characteristic of a thinned continental crust, 63.99% (Table A.2), respectively. Such facts would while the syenogranite (Cicuco-22 well: 19.95 vs. 1.78) project these rocks toward the eld of acidic rocks, is closer to the thick continental crust eld (Andes-like). with an inconsistency between lithology and chemical composition. According to the diagrams proposed by Winchester and Floyd (1977) for the classication of the REFERENCES analyzed igneous materials, there is once again, evidence of great differences in terminology when using the SiO Chappell, B. W., & White, A. J. R. (1974). Two contrasting 2 vs. Zr/TiO 2*0.0001 and Zr/TiO 2 vs. Nb/Y relationships types. Pacic Geology, 8, 173-174. classication diagrams for volcanic rocks (also used to classify intrusive similar samples; Figure A2.1). Cox, K., Bell, J., & Pankhurst, R. (1979). The interpretation of According to SiO 2 vs. Zr/TiO 2*0.0001 diagram the igneous rocks. London: George, Allen and Unwin, 450p. basalt (station 30313) and tonalite (station 30325) points towards the eld of rhyodacitic-dacitic rocks. This fact Davies, J.F., & Whitehead, R.E. (2006). Alkali-alumina may be related to the aforementioned high values of SiO 2 and MgO-alumina molar ratios of altered and unaltered and therefore, the following chemical interpretations rhyolites. Exploration and Mining Geology, 15, 75-88. must be considered with caution. However, excluding

SiO 2 from the classication diagram, in other words, Hastie, A. R., Kerr, A. C., Pearce, J. A., & Mitchell, S. F. using the Zr/TiO 2 vs. Nb/Y diagram, it is evident that (2007). Classication of altered volcanic Island arc rocks the lithologies analyzed are projected towards the elds using immobile trace eements: development of the Th-Co of andesites/basalts and to the limit of alkaline and sub- discrimination diagram. J. Petrol., 48, 2341- 2357. DOI: alkaline basalts. https://doi.org/10.1093/petrology/egm. 0 Ryolite Coman Irvine, T. N., & Baragar, W. R. A. (1971). A guide to the 0 Ryoacite-Dacite chemical classication of the common volcanic rocks. Tractye Canad. J. Earth Sci., 8 (5), 523-548. DOI: 10.1139/e71-055. 60 Aneite TrAn SiO2 onolite Maniar, P.D., & Piccoli, P.M. (1989). Tectonic discriminations 0 Su -A A of granitoids. GSA Bulletin, 101, 635-643. Ba-Trac-Ne 40 Pearce, J. A., Harris, N. B. W., & Tindle, A. J. (1984) .001 0.01 0.1 1 10 rTiO 20.0001 Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol., 25 (4), 956-983. Comant onoline DOI: https://doi.org/10.1093/petrology/25.4.956. 1 Ryolite Tracyte Sun, S. -S., & McDonough. Chemical and isotopic systematics 0.1 RyoaciteDacite TracyAn

of oceanic basalts: implications for mantle composition and rTiO20.0001 Aneite BnN processes. Geol. Soc. London. Sp. Public. DOI: 10.1144/ 0.01 AneiteBaalt Al Ba GSL.SP.1989.042.01.19. Su Al aline Ba alt .001 .01 0.1 1 10 Winchester, J. A., & Floyd, P. A. (1977). Geochemical N Y discrimination of different magma series and their 01-1 02 -2 differentiation products using immobile elements. Chemi. Geol., 20, 325-343. DOI: https://doi.org/10.1016/0009- Figure A2.1. Volcanic roc  claiication iagram, accoring to SiO 2 . rTiO 20.0001 an rTiO 2 . N Y ratio Winceter an Floy, 2541(77)90057-2. 1 , ic o te roection o te analye amle.

CT&F - Ciencia, Tecnología y Futuro - Vol. 6 Num. 4 Dec. 2016 27 ALEJANDRO SILVA-ARIAS et al.

Table A2. Total roc geocemitry ata rom core amle, collecte rom ierent ell rille in te Loer Magalena Valley LMV.

ai 33131 33142 33252

 e a al ereiie Talie a ue ara  aa  uarr l e ai laea ia laea ia Tara € ar elee

SiO 2 1.60 6 . 2.

Al 2O 1 . 1.14 1 .

Fe 2O .6 . 1. MgO 1. 2 42. 0. 4 CaO 2.66 0.0 1. 1

Na 2O .6 0.0 4.

2O 0. 0.0 .2

TiO 2 1.24 0.02 0. 0

2O 0.2 0.04 0.11 MnO 0.1 0.12 0.0 Cr m 6.0 12.2 22.4 Ni m . 1 2 .10 1 .2 Sc m .26 16. 4.1 LOI : 1000C .4 16.1 1.2 Total um o oie 110. 11 .10 10 .

ir a rae elee 

Ba 44 . 1 22 Co 2. 124 4.462 C 0.4 4 0.0 4 1.1

Ga 21. 1. 1 20.4 H .26 0.46 0.2 N 6. 0 0. 6 6.622 R 1 .1 2.0 2 4.64 Sr 16 6 .6 62 Ta 1.2 0. 1 1.061 T 1.4 1 0.264 16.1 U 0.40 0.12 0. 0 V 2 0.16 21. 1 r 1 6 2 .24 1 .02 Y 2 .2 1. 10.1 Ru 0.00 0.00 0.00 R 0.2 0.2 0.2 Ir 0.16 0.16 0.16 Re 0.14 0.14 0.14  .6 1 1.16 . Mo .0 0. 1.4 Cu 1 4 10. 1 6. W 1.2 1.2 .12 La 12. 1. 0 6 . Ce 26.0 1. 12 12

28 CT&F - Ciencia, Tecnología y Futuro - Vol. 6 Num. 4 Dec. 2016 BASEMENT CHARACTERISTICS IN THE LOWER MAGDALENA VALLEY AND THE SINÚ AND SAN JACINTO FOLD BELTS: EVIDENCE OF A LATE CRETACEOUS MAGMATIC ARC AT THE SOUTH OF THE COLOMBIAN CARIBBEAN

Table A2. Total roc geocemitry ata rom core amle, collecte rom ierent ell rille in te Loer Magalena Valley LMV.Cont

ai 33131 33142 33252

 e a al ereiie Talie a ue ara  aa  uarr l e ai laea ia laea ia Tara €

ir a rae elee 

r . 0.22 14. 4 N 1 .21 0. 46 1.6 Sm 4. 22 0.1 2 .1 1 Eu 1.4 4 0.11 1. 1 G 4. 4 0.1 .22 T 0. 6 0.1 0. 02 Dy .1 0.24 . 62 Ho 1.0 1 0.1 0.446 Er 2. 4 0.16 0. 6 Tm 0.42 0.0 0.10 Y 2.2 1 0.21 0.6 2

T m is also possible to suggest that the rocks from the Planeta 100 Rica basalt (station 30313) are comparatively more 0 2 -2 primitive (formed in a relatively less evolved-primitive 10 Hig--calc-alaline arc) than the Tonalite (station 30325).

0 1 -1 400 Calc-alaline 1 R G  y r B a o A a n l i n  i t t e  a e , e l , t   i 100 c g i a t r e a 0.1 n c , n i o t e   Toleiite  , i e i o o  r i r i t i t e t e e , 0.01 0 20 40 60 0 10

Co m Man Samlerimitie

Figure A2.2. Co . T Diagram Hatie et al ., 200 , ic o tat te amle rom te laneta Rica ector  0 1 -1 i roecte toar 2 C Ba U Ta La Sr H Sm T  te Calc-Alaline iel, ile te Tara ector roc  0 2 -2 are R T N Ce N r Y roecte toar te ig-otaium calc-alaline roc. 1000 According to the classication of the Hastie et al . diagram, (2007), which uses stable elements such as 100 Th and Co (Figure A2.2), we observe that Tonalite (station 30325), is more differentiated (calc-alkaline 10 high in potassium); while Basalt (station 30313) is less differentiated (close to the limit separating the Conrite SamleC1 1 calc-alkaline fields with medium potassium and tholeitics). The difference observed in the Th vs. .1 Co diagram seems to be conrmed in the diagrams La r Eu T Ho Tm Lu represented in Figure A2.3, which show a higher Ce N Sm G Dy Er Y enrichment of Light Rare Earths in the Tonalite sample 0 1 -1 0 2 -2 (station 30325), with respect to the Planeta Rica Basalt (station 30313). On the other hand, the trace elements Figure A2.3. Trace element normalie accoring to te rimitie of these samples (normalized according to the Primitive Mantle an Rare Eart attern otaine rom te amle analye in Mantle), show that these lithologies are characteristic of ti tuy, normalie accoring to Conrite C1 ata taen rom Sun subduction settings. Likewise, based on these analyses it an McDonoug, 1 .

CT&F - Ciencia, Tecnología y Futuro - Vol. 6 Num. 4 Dec. 2016 29 ALEJANDRO SILVA-ARIAS et al.

The SiO 2 vs. K 2O+Na 2O diagram (Figure A2.4; of peridotitic materials (ultramac, primitive rocks) Irvine and Baragar, 1971) shows that the samples from as of komatiitic, picritic and boninite materials. The stations 30313 and 30325 are projected towards the REE pattern for serpentinite also shows a primitive eld of sub-alkaline rocks, which opens the possibility characteristic, although it has a light enrichment in that these samples are directly related to subduction LREE (Figure A2.5). This may be interpreted as related settings. According to the Shand Index (Maniar and to mantle wedge hydration processes from allochtonous Piccoli, 1989), the Basalt sample from the Planeta Rica fluids released from dehydration processes of the sector (station 30313) is projected towards the eld of materials that were then subducted. In this sense, it is metaluminic rocks, linked to type-I magmas (Chappell proposed that the serpentization of these ultrabasic rocks and White, 1992); while the Tonalite from the Tarazá was the result of a hypogene hydrothermal alteration sector (station 30325) is projected towards the eld of process (processes implying metasomatism). peraluminic rocks, linked to type-S magmas. The latter may suggest either a fractionation process of initially REFERENCES metaluminic magmas, or simply cortical contamination processes. Chappell, B. W., & White, A. J. R. (1974). Two contrasting 20 granite types. Pacic Geology, 8, 173-174. 1 16 Cox, K., Bell, J., & Pankhurst, R. (1979). The interpretation of 14 igneous rocks. London: George, Allen and Unwin, 450p. 12 10 Davies, J.F., & Whitehead, R.E. (2006). Alkali-alumina  Alaline and MgO-alumina molar ratios of altered and unaltered Na20  20 6 rhyolites. Explor. Mining Geol ., 15, 75-88. DOI: 10.2113/ 4 gsemg.15.1-2.75. 2 Sualaline 0  40 4 0  60 6 0  0  Hastie, A. R., Kerr, A. C., Pearce, J. A., & Mitchell, S. F. SiO2 (2007). Classication of altered volcanic island arc rocks using immobile trace elements: development of the Th-Co 01-1 02-2 discrimination diagram. J. Petrol. , 48, 2341- 2357. DOI: https://doi.org/10.1093/petrology/egm062. Figure A2.4. SiO 2 .  2ONa 2O Geoc emical Diagram Ir ine an Baragar, 11,  ic o t e magma erie , roecting t e to amle analye rom t e CSJ a ement. Irvine, T. N., & Baragar, W. R. A. (1971). A guide to the chemical classication of the common volcanic rocks. 1000 Canad. J. Earth Sci ., 8, 523-548. DOI: 10.1139/e71-055.

100 Maniar, P.D., & Piccoli, P.M. (1989). Tectonic discriminations of granitoids. GSA Bulletin , 101, 635-643.

10 Pearce, J.A., Harris, N. B. W., & Tindle, A.J. (1984) Trace element discrimination diagrams for the tectonic 1 interpretation of granitic rocks. J. Petrol ., 25 (4), 956-83. SamleC1 C on rite DOI: https://doi.org/10.1093/petrology/25.4.95. .1 Sun, S. -S., & McDonough. Chemical and isotopic systematics La r Eu T Ho Tm Lu of oceanic basalts: implications for mantle composition and Ce N Sm G Dy Er Y processes. Geol. Soc. London. Sp. Public . DOI: 10.1144/ Figure A2.5. Rare Eart attern otaine rom t e analye erentinic GSL.SP.1989.042.01.19. amle 014-2. Normaliation accor ing to C on rite C1 ata taen rom Sun an McDonoug , 1. Winchester, J. A., & Floyd, P. A. (1977). Geochemical Considering that it has the highest content of MgO discrimination of different magma series and their differentiation products using immobile elements. Chem. (42.78%) and the lowest content of Al 2O3 (1.14%) the Serpentinite (station 30314) represents the more Geol ., 20, 325-343. DOI: https://doi.org/10.1016/0009- primitive rock. The high MgO content is characteristic 2541(77)90057-2.

30 CT&F - Ciencia, Tecnología y Futuro - Vol. 6 Num. 4 Dec. 2016 BASEMENT CHARACTERISTICS IN THE LOWER MAGDALENA VALLEY AND THE SINÚ AND SAN JACINTO FOLD BELTS: EVIDENCE OF A LATE CRETACEOUS MAGMATIC ARC AT THE SOUTH OF THE COLOMBIAN CARIBBEAN

ANNEX 3. Geochronology

Table A3. Geocronology ata amle o te Cicuco-22, Coral- an Sitio Nueo-1 ell, Loer Magalena Valley LMV.

ale  T 238 1 iga 27 b 1 iga 26238 1 iga 2726 1 iga e age 1 iga ab err ae   26 b errr26 b errrage ab errage ab err a CICUCO-22 10 .04 0.1 .01 0.02 0.0 0.01  . 10. .64 14.1  . 10. CICUCO-226 140 . 0.0 .16 0.02 0.0 0.01 4.1 14.2 60.40 14. 4.1 14.2 CICUCO-22 . 0.6  .66 0.02 0.0 0.02 4.64 1.4 06.  .06 4.64 1.4 CICUCO-224 .0 0.0  .2 0.02 0.0 0.01 4. 1.4 24 . 2 .00 4. 1.4 CICUCO-22 2 .20 0.41 1. 0.0 0.06 0.02 .2 2.2 62.1 4 .6 .2 2.2 CICUCO-222 0 .64 0.0 2.1 0.01 0.1 0.01 24 .41 2 .6 2 4.1 10. 1 2 4.1 10. 1 CICUCO-221  2.2 0.04 2.41 0.01 0.1 0.01 22 .6 2. 2 2.14 10. 2 2.14 10. CICUCO-220 260. 2 1.0 14.14 0.02 0.06 0.01 440.4 6. 1 44 .1 20.00 440.4 6. 1 CICUCO-222  .2 0. 6 6.1 0.02 0.0 0.02 4.06 1. 0 1 2. 4 6.0 4.06 1. 0 CICUCO-222  .1 0.64 0.44 0.02 0.0 0.02 0. 2.11 22. 4 2.02 0. 2.11 CICUCO-222 162.0 1.0  .6 0.01 0.0 0.01 4. 1.24 .0 24.1 4. 1.24 CICUCO-2226 .6 0.2 6.64 0.02 0.0 0.01 .  1.4 20 .6 2. .  1.4 CICUCO-222 1016.6 1.1 .0 0.02 0.0 0.01 2. 6 1.1 114.0 0.4 2. 6 1.1 CICUCO-2224  4.11 0. 6. 0.02 0.0 0.02 .6 1.4 21 .  .4 .6 1.4 CICUCO-222 0. 0. 6. 0.02 0.0 0.02 . 1.4 2. 4  .2 . 1.4 CICUCO-2222 4 .  0.6 6.62 0.02 0.0 0.02 . 1.4 21 . . 0 . 1.4 CICUCO-2221 44.22 0.6  . 0.02 0.0 0.02 4. 1. 121. 4 40. 6 4. 1. CICUCO-2220 4 0.2 0.6  . 0.02 0.0 0.02 4. 6 1.42 111.6  .1 4. 6 1.42 CICUCO-221 2 4.4 1.2  . 0.01 0.0 0.01 4. 4 1.22 110.0 1 .64 4. 4 1.22 CICUCO-221 0 .1 0. 6.0 0.01 0.0 0.01 . 0 0.  .11 1.0 . 0 0. CICUCO-221 24 .  0. 2 2. 4 0.01 0.0 0.02 . 0 1.1 121.1 . . 0 1.1 CICUCO-2216 4 4. 0. .11 0.01 0.0 0.01 11 1.  .2 11 .60 1. 11 .60 1. CICUCO-221 .1 0.16 6.6 0.01 0.0 0.01 01.04 .6 61.2 1. 01.04 .6 CICUCO-2214 .  0. 2 2.14 0.01 0.1 0.01 246 .  20. 26 . 11. 0 26 . 11. 0 CICUCO-221 14 .01 0. 2.1 0.0 0.16 0.01 2462.1 6 .0 2 02.20 14. 2 02.20 14. CICUCO-2212 601. 0 0. 6.02 0.01 0.0 0.01 4.2 0. 124.2 2 . 4.2 0. CICUCO-2211 4 . 6 0.60  .61 0.01 0.0 0.01 4.0 0. 6 121.24 . 4.0 0. 6 CICUCO-2210 2.0 0.  .0 0.01 0.0 0.02 4.60 0.  22.60  .20 4.60 0.  CICUCO-22 4 .60 0.  .14 0.01 0.0 0.02 .0 1.01 .2 6.1 .0 1.01 CICUCO-22 461.0 0. .6 0.01 0.11 0.01 1 62.  14.0 12.4 12.12 12.4 12.12 CICUCO-22 10 .0 0. .6 0.01 0.11 0.01 1 21. 11.1 12 . 4 11. 12 . 4 11. CICUCO-226 4 .46 0.  .22 0.01 0.0 0.01 .1 1.0 1 0.2 . .1 1.0 CICUCO-22 402.61 0. 4.4 0.01 0.0 0.02 .6 1.14 121. 6.1 .6 1.14 CICUCO-224 11. 0.6  .4 0.01 0.0 0.02 .00 1.2 122. 1  .1 .00 1.2 CICUCO-22 600. 0.6  . 0.01 0.0 0.01 4. 2 1.00 1 1. 2 .4 4. 2 1.00 CICUCO-222 2 2.0 0.4  .6 0.01 0.0 0.02 4.  1.2 .6 4.16 4.  1.2 CICUCO-221 2 6. 4 0. .66 0.01 0.0 0.01 104 . 0 . 4 1042.44 14.4 1042.44 14.4

CT&F - Ciencia, Tecnología y Futuro - Vol. 6 Num. 4 Dec. 2016 31 ALEJANDRO SILVA-ARIAS et al.

Table A3. Continuation Geocronology ata amle o te Cicuco-22, Coral- an Sitio Nueo-1 ell, Loer Magalena Valley LMV.

ale  T 238 1 iga 27 b 1 iga 26238 1 iga 2726 1 iga e age 1 iga ab err ae   26 b errr26 b errrage ab errage ab err a CORAL-  1 1. 0.4 .4 0.02 0.06 0.0 6.  1.6 2 .1 61.0 6.  1.6 CORAL-  62.22 0.16 2.62 0.02 0.0 0.02 22 .0 4.1 06. 6. 1 22 .0 4.1 CORAL- 6 612.62 0. 1 20. 4 0.01 0.0 0.01 02.0 . 0.12 16. 1 02.0 . CORAL-  . 0.1 2.1 0.02 0.0 0.02 2.1 .2  .40 4 .0 2.1 .2 CORAL- 4  0.4 0. 21.4 0.02 0.06 0.01 2 .4 .1 0 .40 16.46 2 .4 .1 CORAL-  .61 0.2 2.02 0.02 0.06 0.0 24.2 . 4.40 61.0 24.2 . CORAL- 2 6 .14 0.10 26.1 0.02 0.0 0.01 241.  . 6 24 .42 22. 241.  . 6 CORAL- 1 6 4. 1 0.1 26. 4 0.01 0.0 0.01 2 .46 .  . 1 .60 2 .46 . CORAL- 0 26. 0.1 26.16 0.01 0.0 0.01 241. 1 2. 6 2 .10 1 . 241. 1 2. 6 CORAL- 2 200. 6 0.2 1. 6 0.02 0.06 0.02  .1 1. 40.12 4 . 4  .1 1. CORAL- 2 4. 1 1.2 . 0.01 0.0 0.01 101.26 .6 1046.1 10.24 1046.1 10.24 CORAL- 2 6 . 0. 26.6 0.01 0.0 0.01 2.1 2. 0 262.60 16. 2.1 2. 0 CORAL- 26 1 2. 1 0.6 6.2 0.02 0.0 0.01 .12 14. 1166.2 11. .12 14. CORAL- 2 46. 4 0.6 6. 2 0.01 0.0 0.02 . 2 0. 2 1. 6 6. 0 . 2 0. 2 CORAL- 24 6 2.06 0.0 2.04 0.02 0.0 0.02 24.14 . 2 26.4  . 24.14 . 2 CORAL- 2 1 .40 0.42 .41 0.02 0.0 0.0 1.0 1.2 2 . .2 1.0 1.2 CORAL- 22 416.6 0. 26.2 0.01 0.0 0.01 240.  2.6 242.2 21.1 240.  2.6 CORAL- 21 11 0.4 0.1 26. 0.01 0.0 0.01 26.26 2.61 2 .0 1 .44 26.26 2.61 CORAL- 20 6.4 0.2 2 .04 0.02 0.0 0.02 22 . .6  .16 4.6 22 . .6 CORAL- 1 11 . 0.0 2.60 0.02 0.0 0.01 22 .44 .6 266.0 0.42 22 .44 .6 CORAL- 1 160.  0. .2 0.02 0.0 0.02 2. 1.4 24.4 . 2. 1.4 CORAL- 1 6 .11 0.22 14.2 0.02 0.06 0.01 46. .4 .4 1. 46. .4 CORAL- 16 11.2 0.4 20.0 0.02 0.0 0.01 1.0 .24 0. 2 12. 1.0 .24 CORAL- 1 61. 0.14 1. 0.02 0.0 0.01 1 . 0 .11 2 .1 22.44 1 . 0 .11 CORAL- 14 26.26 0.24 .64 0.01 0.0 0.01 10 2. 1 10.  116 .  10. 116 .  10. CORAL- 1 2 1.2 0.64 4. 0.01 0.06 0.02  . 6 1.1 44.02 6.01  . 6 1.1 CORAL- 12 264.41 0.6 . 6 0.02 0.0 0.01 616. 6 10.0 1014.6 1.12 616. 6 10.0 CORAL- 11 62. 0.0 2.1 0.01 0.0 0.01 22.  2.40 2 .6 1 .  22.  2.40 CORAL- 10 1 . 0.24 2 . 2 0.01 0.0 0.01 244. 2. 1.0 16.  244. 2. CORAL-  62. 1 0.0 2.0 0.01 0.0 0.01 2.1 2.40 2 . 1 .02 2.1 2.40 CORAL-  10 . 4 0.06 14. 4 0.01 0.06 0.01 42 .6 6.16 0. 0 1. 42 .6 6.16 CORAL-  2.  0.2 2 .1 0.0 0.06 0.0 216.0 . 4 1.40 6 .42 216.0 . CORAL- 6 26.11 0.20 26. 0.01 0.0 0.01 2 . 2.1 2 6.6 16.02 2 . 2.1 CORAL-  . 0. 0 2.4 0.01 0.0 0.01 20.  2. 2 0. 1.2 20.  2. CORAL- 4 66. 0.0 2 .1 0.01 0.0 0.01 224. 6 .2 206. 26.  224. 6 .2 CORAL-  64 .22 1.4 .62 0.01 0.10 0.01 10 4. 4 12.2 111. .62 111. .62 CORAL- 2 1 0 . 2 0.06 2.14 0.01 0.0 0.01 2.2 2. 2 2 0.0 12. 2 2.2 2. 2 CORAL- 1 1 2. 0.4 6. 0.02 0.0 0.02 . 0 1.16 10.  .61 . 0 1.16

32 CT&F - Ciencia, Tecnología y Futuro - Vol. 6 Num. 4 Dec. 2016 BASEMENT CHARACTERISTICS IN THE LOWER MAGDALENA VALLEY AND THE SINÚ AND SAN JACINTO FOLD BELTS: EVIDENCE OF A LATE CRETACEOUS MAGMATIC ARC AT THE SOUTH OF THE COLOMBIAN CARIBBEAN

Table A3. Continuation Geocronology ata amle o te Cicuco-22, Coral- an Sitio Nueo-1 ell, Loer Magalena Valley LMV.

ale  T 238 1 iga 27 b 1 iga 26238 1 iga 2726 1 iga e age 1 iga ab err ae   26 b errr26 b errrage ab errage ab err a SITIO NUEVO 11 2.2 0. 20. 1 0.02 0.0 0.01 01.0 4.62 261. 22.0 01.0 4.62 SITIO NUEVO 114 2 1.0 0.  21.2 0.02 0.0 0.01 2 6.20 4.6 2 4.1 2.01 2 6.20 4.6 SITIO NUEVO 11  .6 0.  21.1 0.02 0.0 0.01 2 . 4. 2 6.2 20. 2 . 4. SITIO NUEVO 112 164.4 0. 20. 0.02 0.0 0.01 02. 4.2 261. 2. 02. 4.2 SITIO NUEVO 111 10. 0.6 21.10 0.02 0.0 0.02 2 .  .11 2 .20 4.06 2 .  .11 SITIO NUEVO 110 61 . 0.1 20.  0.01 0.0 0.01 00. 1 4. 2 . 1 1 . 4 00. 1 4. SITIO NUEVO 112 1 .44 0. 0 20.0 0.02 0.0 0.01 04.1 4. 4 26 .1 26. 2 04.1 4. 4 SITIO NUEVO 112 1 0. 0. 20. 0.02 0.0 0.01 00.1 4. 14. 6 2 . 00.1 4. SITIO NUEVO 112 22. 0. 2 21.00 0.02 0.0 0.01 2 . 4 4. 2 0. 2 22. 4 2 . 4 4. 2 SITIO NUEVO 1126 26.6 0. 21.2 0.02 0.0 0.01 2 6.42 4.4 0 .1 20.4 2 6.42 4.4 SITIO NUEVO 112 261.6 0. 20.  0.02 0.0 0.01 02.4 4.  2 4. 24.0 02.4 4.  SITIO NUEVO 1124 126.10 0.2 21.2 0.02 0.0 0.01 2 .  4. 1  0.42 2 .4 2 .  4. 1 SITIO NUEVO 112 12.  0. 21.16 0.02 0.0 0.01 2 .2 4. 0.0 0.64 2 .2 4. SITIO NUEVO 1122 2.4 0. 21.10 0.01 0.0 0.02 2 . 4.1 1 .46 4.10 2 . 4.1 SITIO NUEVO 1121 1 .4 0.  20. 0.01 0.0 0.01 00.00 .2 4. 2 .2 00.00 .2 SITIO NUEVO 1120 224.1 0.  21.20 0.01 0.0 0.01 2 .14 . 2 4.60 21. 2 2 .14 . 2 SITIO NUEVO 111  4. 1.10 20. 6 0.01 0.0 0.01 00. .0  .02 1. 00. .0 SITIO NUEVO 111 26.4 0. 2 20. 1 0.01 0.0 0.01 02.61 . 2 260. 1 2 .14 02.61 . 2 SITIO NUEVO 111 102. 0. 21.16 0.01 0.0 0.02 2 .6 4. 11.10 4. 4 2 .6 4. SITIO NUEVO 1116 1 . 0. 1 20. 1 0.01 0.0 0.01 02.  . 10.2 2.12 02.  . SITIO NUEVO 111 1.6 0.  21.1 0.01 0.0 0.01 2 .1 .4 2 1.  2 . 2 .1 .4 SITIO NUEVO 1114 21.62 0. 4 20. 0.01 0.0 0.01 02. . 4 2 6.06 26.6 02. . 4 SITIO NUEVO 111 42 .61 0.64 20. 0.01 0.0 0.01 0. .42 2.02 1 .10 0. .42 SITIO NUEVO 1112 14. 0. 20. 0.01 0.0 0.01 0 .6 4.0 20.  26.40 0 .6 4.0 SITIO NUEVO 1111 1 6.46 0.44 20.4 0.01 0.0 0.01 0. . 2 2 .6 0.66 0. . 2 SITIO NUEVO 1110 161. 0 0.  21.2 0.01 0.0 0.01 2 6.0 . 6 . 4 26.  2 6.0 . SITIO NUEVO 11 1 0.1 0.1 21.1 0.01 0.0 0.01 2 .0 .2 0. 26.26 2 .0 .2 SITIO NUEVO 11  6.4 0. 20. 0.01 0.0 0.01 00.0 . 2 4. 1 . 00.0 . 2 SITIO NUEVO 11 24. 0 0.42 21.1 0.01 0.0 0.01 2 .10 .4 4 .40 2.6 2 .10 .4 SITIO NUEVO 116 1 .20 0.  20. 0.01 0.0 0.01 01. 4 .1 2 1. 2 .66 01. 4 .1 SITIO NUEVO 11 61. 0. 20. 0.01 0.0 0.01 02. 4 . 2 .  1 .  02. 4 . SITIO NUEVO 114 1 . 4 0.6 21.11 0.01 0.0 0.01 2 .41 .6 2 .2 .4 2 .41 .6 SITIO NUEVO 11 12.4 0.4 21.0 0.01 0.0 0.01 2 .6 . 4 2 .0 1.4 2 .6 . 4 SITIO NUEVO 112 1 0.  0. 1 21.2 0.01 0.0 0.01 2 6.6 . 2 4. 4 2.02 2 6.6 .

CT&F - Ciencia, Tecnología y Futuro - Vol. 6 Num. 4 Dec. 2016 33 ALEJANDRO SILVA-ARIAS et al.

ANNEX 4. CANSONA FORMATION AND Loma Grande Quarry OCEANIC COMPLEX (BASEMENT) OVERVIEW The Cansona Formation and the typical rocks from an oceanic complex, outcropping in specic areas of the Loma Grande Quarry (Figures 1, 2 and 7 of the main San Carlos Quarry text; Tables 1 and 2 of the main text), are located within The Cansona Formation and the typical rocks from the jurisdiction of the Montería Municipality (Córdoba an oceanic complex, outcropping in areas of the San Department). In this sector we observe once again a Carlos Quarry (Figures 1, 2 and 7 of the main text; succession of the Cansona Formation rocks (Figure Tables 1 and 2 of the main text), are located within the A4.2); mainly represented by alternating chert, ne- jurisdiction of the Santa Cruz de Lorica Municipality grain sandstone and calcareous mudstone; overlapped (Córdoba Department). This sector includes rocks by an earthy-like, completely crumbly (non-cohesive) from the Cansona Formation (Figure A4.1); mainly material, which is considered to be derived from represented by alternating cherts, ne-grain sandstone supergene alteration processes of peridotitic materials, and calcareous mudstone: which are overlapped by a as mentioned above. These earthy-like rocks overlie the greenish-grey, loose material, with punctual spheroidal sedimentary rocks of the Cansona Formation, which disjunctions (derived from supergene alteration develop light green (apple green) tones at a local level, processes), which have hydrothermal filling with characteristic of epigenetic processes. This green color thicknesses under 1 cm. of the Cansona Formation rocks, especially when these are located under the earthy layers, is considered As discussed in Annex 2, the protolith of this related to downward migration processes of meteoric greenish-gray material is a saprolitized peridotite rock, uids, in which Ni (among other possible elements is the presence of which on the Cansona Formation rocks, re-mobilized). This element is usually released when and the evidence of a strong refolding in this sector peridotitic rocks experience laterization as a result of (Figure A4.2), are elements allowing to establish the supergene alteration processes. existence of deformation features related to thrusting phenomena in the San Carlos Quarry. Given that As in the case of the San Carlos Quarry, the presence saprolitized peridotites have quartz-albite parallel of this peridotitic material on the Cansona Formation veins (sheet veins), arranged in parallel to the fault rocks and the evidence of strong refolding in this sector plain separating the two aforementioned lithologies, it are elements which allow establishing the existence of is possible to suggest that this deformation event was deformation features associated to thrusting phenomena joined by uid-escape phenomena. in the Loma Grande Quarry.

Figure A4.1. Outcro o im ricate eet o arolite an cert o te Canona Fm. Late Cretaceou, in te Lorica area San Carlo uarry. Te arolite reent a greeni gray aearance, little coeie an eroial aect iunction relate to uergene alteration rocee.

34 CT&F - Ciencia, Tecnología y Futuro - Vol. 6 Num. 4 Dec. 2016 BASEMENT CHARACTERISTICS IN THE LOWER MAGDALENA VALLEY AND THE SINÚ AND SAN JACINTO FOLD BELTS: EVIDENCE OF A LATE CRETACEOUS MAGMATIC ARC AT THE SOUTH OF THE COLOMBIAN CARIBBEAN

a  

Figure A4.2. General aect o eimentary roc  in te Canona Formation, outcroing in te Loma Grane uarry area, ere a rei earty elt o material i o ere A, coniere a a lateritie eriotite. Te Canona Formation roc  are locally reole B.

CT&F - Ciencia, Tecnología y Futuro - Vol. 6 Num. 4 Dec. 2016 35