Application of Detrital Zircon U-Pb Geochronology to Surface and Subsurface Correlations of Provenance, Paleodrainage, and Tecto

Total Page:16

File Type:pdf, Size:1020Kb

Application of Detrital Zircon U-Pb Geochronology to Surface and Subsurface Correlations of Provenance, Paleodrainage, and Tecto Research Paper GEOSPHERE Application of detrital zircon U-Pb geochronology to surface and subsurface correlations of provenance, paleodrainage, and GEOSPHERE; v. 11, no. 6 tectonics of the Middle Magdalena Valley Basin of Colombia doi:10.1130/GES01251.1 Brian K. Horton1, Veronica J. Anderson1, Victor Caballero2, Joel E. Saylor3, Junsheng Nie4, Mauricio Parra2,5, and Andrés Mora2 10 figures; 2 supplemental files 1Institute for Geophysics and Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas 78712, USA 2Ecopetrol, Instituto Colombiano del Petróleo, Bucaramanga, Colombia 3Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas 77204, USA CORRESPONDENCE: [email protected] 4MOE Key Laboratory of Western China’s Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 73000, China 5Institute of Energy and Environment, University of São Paulo, 05508-010 São Paulo, SP, Brazil CITATION: Horton, B.K., Anderson, V.J., Caballero, V., Saylor, J.E., Nie, J., Parra, M., and Mora, A., 2015, Application of detrital zircon U-Pb geochronol- ogy to surface and subsurface correlations of prov- ABSTRACT Provenance shifts of mid-Paleocene and latest Eocene–earliest Oligocene enance, paleodrainage, and tectonics of the Middle age are consistent with incipient uplift of the flanking Central Cordillera and Magdalena Valley Basin of Colombia: Geosphere, v. 11, no. 6, p. 1790–1811, doi:10.1130/GES01251.1. Detrital zircon U-Pb geochronology has been used extensively to develop Eastern Cordillera, respectively. However, a well-documented phase of latest provenance histories for surface outcrops of key stratigraphic localities within Paleocene–middle Eocene beveling of basement uplifts in the Middle Magda- Received 17 August 2015 sedimentary basins. However, many basins lack sufficiently continuous and lena Valley Basin appears to be largely aliased in the detrital record. Moreover, Revision received 13 September 2015 widespread exposures of complete successions to evaluate proposed long- despite the proximity of the magmatic arc, there is insufficient syndeposi- Accepted 2 October 2015 term tectonic histories, stratigraphic correlations, and paleodrainage patterns tional evidence for a proposed Paleogene pulse of magmatism and, in this Published online 12 November 2015 within individual basins. Here, we demonstrate the utility of subsurface detri- case, limited utility of U-Pb ages in pinpointing precise depositional (strati- tal zircon U-Pb analysis by integrating ages from three key wells (21 subsur- graphic) ages. face samples) with previously reported data from six exposed intervals (90 U-Pb age spectra for Oligocene through Pliocene basin fill underscore surface samples) within a single basin. Samples from the 5–10-km-thick clastic complex along-strike (north-south) and cross-strike (east-west) variations re- successions span several structural blocks over an ~300 × 50 km swath of flective of compartmentalized transverse deposystems demarcated by point- the Middle Magdalena Valley Basin, a north-trending intermontane basin in source contributions from the Central Cordillera and Eastern Cordillera. The the northern Andes of Colombia. Available U-Pb age distributions for mod- late Miocene appearance of 100–0 Ma grains and a regional switch to broad, ern rivers highlight the distinctive signatures of several competing sediment multimodal age distributions suggest the initial integration of the longitu- sources, including two major contiguous ranges (Central Cordillera and East- dinal proto–Magdalena River, linking the Middle Magdalena Valley Basin ern Cordillera) and two localized block uplifts (Santander Massif and San with southern headwaters in the Upper Magdalena Valley and likely driving Lucas range). U-Pb results from Jurassic through Neogene stratigraphic units increased sedimentation rates farther north in the offshore Magdalena sub- spanning the nine surface and subsurface sites, including several type locali- marine fan of the southern Caribbean margin. ties, enable comparisons of provenance shifts at specific sites and spatial vari- ations among key stratigraphic intervals across multiple sites. Distinctive age populations for the Andean magmatic arc, retroarc fold- INTRODUCTION thrust belt, and South American craton facilitate correlation of stratigraphic units and reconstruction of the long-term provenance and tectonic evolution Although advances in detrital zircon U-Pb geochronology have fueled a re- of the Middle Magdalena Valley Basin. Nearly all surface and subsurface lo- surgence in sediment provenance studies, subsurface and intrabasinal applica- calities show up-section changes in age spectra consistent with (1) Jurassic tions remain limited. Rapid data acquisition through laser-ablation–inductively growth of extensional subbasins fed by local igneous sources, (2) Cretaceous coupled plasma–mass spectrometry (LA-ICP-MS) has propelled U-Pb analyses deposition in an extensive postrift setting, and (3) protracted Cenozoic growth of sand-sized zircon grains to the forefront of provenance studies seeking to of basin-bounding ranges during Andean crustal shortening. Subsurface sam- discriminate among potential source regions (e.g., Dickinson and Gehrels, ples augment surface samples, highlighting their utility in developing regional 2008; Nie et al., 2012; Gehrels, 2014). Further applications for sedimentary For permission to copy, contact Copyright source-to-sink relationships, the timing of paleodrainage integration, and tec- basin analysis include assessments of: (1) the relative volumetric contribu- Permissions, GSA, or [email protected]. tonic reconstructions. tions from known sources in modern watersheds (Saylor et al., 2013); (2) the © 2015 Geological Society of America GEOSPHERE | Volume 11 | Number 6 Horton et al. | Provenance and paleogeographic reconstruction of the Magdalena Valley, northern Andes Downloaded from http://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/11/6/1790/4333662/1790.pdf 1790 by guest on 27 September 2021 Research Paper complex mixing and downstream dilution of source signals within modern Silva et al., 2013; Bayona et al., 2013; Reyes-Harker et al., 2015). Alternative sce- rivers (Amidon et al., 2005; Link et al., 2005; Zhang et al., 2012; He et al., 2014); narios propose a north-flowing proto–Magdalena River developing in middle (3) large-scale paleodrainage patterns, including the onset and evolution of to late Miocene time (Hoorn et al., 1995, 2010). Evolution of the Middle Magda- major paleorivers (Davis et al., 2010; Dickinson et al., 2012; Mackey et al., 2012; lena Valley Basin drainage systems and establishment of a through-going Blum and Pecha, 2014); and (4) absolute ages of stratigraphic units (Fildani Magdalena River also directly affected sediment accumulation and offshore et al., 2003; DeCelles et al., 2007; Dickinson and Gehrels, 2009; Horton et al., hydrocarbon prospectivity of the Magdalena delta in the Caribbean Sea. 2015). Although accurate ages for syndepositional volcanic zircons clearly im- Further uncertainties center on potential basin responses to the important re- prove chronostratigraphic correlations, U-Pb geochronology may provide a gional phases of Mesozoic extension and Cenozoic shortening in the northern- viable correlation tool on the basis of comparable age distributions (e.g., Rain- most Andes, as well as critical transitions involving focused basement uplift bird et al., 2007; Lawton et al., 2010; Beranek et al., 2013; Lewis and Sircombe, and punctuated magmatism (e.g., Colletta et al., 1990; Dengo and Covey, 1993; 2013), an approach that could considerably enhance subsurface investigations. Gómez et al., 2003, 2005a, 2005b; Horton et al., 2010a; Bayona et al., 2012; Parra Despite the wide range of applications, complexities over multiple scales et al., 2012; Nie et al., 2012; Saylor et al., 2012a, 2012b; Caballero et al., 2013a, highlight various difficulties in pinpointing sediment source regions, recon- 2013b; Reyes-Harker et al., 2015). Here, we present U-Pb ages of detrital zircons for structing paleodrainage patterns, and correlating stratigraphic units. Whereas 21 subsurface samples of Mesozoic–Cenozoic basin fill, and we integrate these most basin-scale studies focus on temporal provenance shifts registered within data with results from 83 surface outcrop samples and seven modern river key stratigraphic sections, uncertainties persist over the effectiveness of signal samples to help correlate the provenance and tectonic histories of surface and transmission from source to sink. These issues can include (1) uneven con- sub surface basin fill. tributions from source areas, (2) storage, buffering, or recycling within drain- age systems, and (3) potential sequestration due to intrabasinal variations in hydrodynamics or depositional environments (e.g., Métivier and Gaudemer, GEOLOGIC AND STRATIGRAPHIC FRAMEWORK 1999; DeGraaff-Surpless et al., 2003; Allen, 2008; Lawrence et al., 2011; Saylor et al., 2013; Latrubesse, 2015). In river-dominated basins, many of these po- The Middle Magdalena Valley Basin is a long-lived sedimentary basin that tential problems can be minimized by sampling a range of depositional sub- has recorded uplift and exhumation of the major ranges and block uplifts of the envi ron ments over a sufficiently large region (e.g., Potter, 1978; Ingersoll, 1990; northernmost Andes at 4°N–7°N (Fig. 1). Modern
Recommended publications
  • Redalyc.Geotechnical Behavior of a Tropical Residual Soil Contaminated with Gasoline
    Dyna ISSN: 0012-7353 [email protected] Universidad Nacional de Colombia Colombia Echeverri-Ramírez, Óscar; Valencia-González, Yamile; Toscano-Patiño, Daniel Eduardo; Ordoñez- Muñoz, Francisco A.; Arango-Salas, Cristina; Osorio-Torres, Santiago Geotechnical behavior of a tropical residual soil contaminated with gasoline Dyna, vol. 82, núm. 190, abril, 2015, pp. 31-37 Universidad Nacional de Colombia Medellín, Colombia Available in: http://www.redalyc.org/articulo.oa?id=49637154004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Geotechnical behavior of a tropical residual soil contaminated with gasoline Óscar Echeverri-Ramírez a, Yamile Valencia-González b, Daniel Eduardo Toscano-Patiño c, Francisco A. Ordoñez-Muñoz d, Cristina Arango-Salas e & Santiago Osorio-Torres f a Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia, [email protected] b Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia, [email protected] c Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia, [email protected] d Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia, [email protected] e Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia, [email protected] f Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia, [email protected] Received: February 19th, 2014. Received in revised form: January 26th, 2015. Accepted: February 12th, 2015. Abstract The infrastructure for hydrocarbon transportation has grown significantly to supply the needs of a greater number of settlements; however, due to problems in the supply networks, accidental spills or leaks can contaminate the underlying soils.
    [Show full text]
  • Dated: March 31, 2011
    GRAN COLOMBIA GOLD CORP. FOR THE YEAR ENDED DECEMBER 31, 2010 ANNUAL INFORMATION FORM DATED: MARCH 31, 2011 TABLE OF CONTENTS GLOSSARY OF TERMS ............................................................................................................................ 2 FORWARD-LOOKING INFORMATION ................................................................................................. 7 GENERAL MATTERS ............................................................................................................................... 9 EXCHANGE RATE INFORMATION ..................................................................................................... 10 INFORMATION CONCERNING THE COMPANY ............................................................................... 11 GENERAL DEVELOPMENT OF THE BUSINESS ................................................................................ 13 DESCRIPTION OF THE BUSINESS ....................................................................................................... 16 RISK FACTORS ....................................................................................................................................... 18 PROPERTIES ............................................................................................................................................ 18 DESCRIPTION OF CAPITAL STRUCTURE ......................................................................................... 37 MARKET FOR SECURITIES .................................................................................................................
    [Show full text]
  • Interpretation of Geophysical Anomalies for Mineral Resource This Work Is Distributed Under the Creative Commons Attribution 4.0 License
    Boletín Geológico, 46, 5–22, 2020 https://doi.org/10.32685/0120-1425/ boletingeo.46.2020.514 Interpretation of geophysical anomalies for mineral resource This work is distributed under the Creative Commons Attribution 4.0 License. potential evaluation in Colombia: Received: December 10, 2019 Accepted: March 6, 2020 Examples from the northern Published online: June 30, 2020 Andes and Amazonian regions Interpretación de anomalías geofísicas para la evaluación del potencial de recursos minerales en Colombia: ejemplos del norte de los Andes y Amazonía Ismael Enrique Moyano Nieto1, Renato Cordani2, Lorena Paola Cárdenas Espinosa1, Norma Marcela Lara Martínez1, Oscar Eduardo Rojas Sarmiento1, Manuel Fernando Puentes Torres1, Diana Lorena Ospina Montes1, Andrés Felipe Salamanca Saavedra1, Gloria Prieto Rincón1 1 Servicio Geológico Colombiano, Mineral Resources Direction. 2 Reconsult Geofisica, São Paulo – Brazil. Email: [email protected] Abstract This paper focuses on presentation of the methodology used by geophysicists at the Servicio Geológico Colombiano (SGC) for the processing, anomaly selection and interpretation of airborne magnetometry and gamma spectrometry data. Three (3) selected magnetic anomalies from different geological settings (Andes Cordillera, San Lucas Range and Ama- zon region) are presented as examples. 3D magnetic vector inversion (MVI) modeling of each of the selected magnetic anomalies shows magnetic sources less than 100 m deep or exposed with sizes from 2.5 to 6 km. The magnetic data inter- pretation also allows the identification of linear features that could represent structural control for fluid migration and/ or ore emplacement. Additionally, the integration of the geophysical data with other geoscientific information (geologic, metallogenic and geochemical data) leads to the proposition of an exploration model for each anomaly: intrusion-related/ VMS deposits for the Andes, porphyry/intrusion-related/epithermal deposits for San Lucas and carbonatite/kimberlite for Amazonas.
    [Show full text]
  • Initiating Report August 14, 2009 3
    Initiating Report August 14, 2009 3 Recommendation ANTIOQUIA GOLD INC. Speculative Buy ($0.22 TSX-V: AGD) Risk High Price (August 14, 2009) $0.22 52-Week Range $0.265 - $0.025 Intrinsic Value $0.60 - $0.75 Data Source: www.BigCharts.com Target Price (12 Months) $0.65 UPFRONT Investors who purchase shares in junior mining exploration companies, Shares O/S typically those whose shares are trading under 50 cents, acknowledge that any 26.15 million such investment is highly speculative. The investor fervently hopes that the Market Cap miner will be successful with the drill bit and that the share price subsequently $5.75 million reflects that success. Given the risk, the investment reward has to be substantial. Ideally, the investor is looking for a “ten-bagger”, and these do Average Daily Volume occur. A double from 10 cents to 20 cents a share sounds good in terms of 50-day: 74,100 percentage gain, but an investor/speculator wants more than that, preferably 200-day: 39,300 the stock reaching a dollar. Year-End March 31 Antioquia Gold Inc. (“Antioquia” or the “Company”), in our opinion, has a legitimate chance of achieving that sought-after ten-bagger. The Company’s Salient Statistics initial drill program commences around the end of August 2009, with Book Value Per Share $0.06 preliminary results probably announced in October. Rock samplings, while Price/Book Value 3.7x small-scale, were highly encouraging, showing a weighted average of 2.50 Properties Per Share $0.07 metres @ 32.3 grams of gold per tonne.
    [Show full text]
  • A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates by Keith R. Long Open-File Report 91-0579 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1991 Preface In recent years, almost all countries in Latin America have adopted democratic political systems and liberal economic policies. The resulting favorable investment climate has spurred a new wave of North American investment in Latin American mineral resources and has improved cooperation between geoscience organizations on both continents. The U.S. Geological Survey (USGS) has responded to the new situation through cooperative mineral resource investigations with a number of countries in Latin America. These activities are now being coordinated by the USGS's Center for Inter-American Mineral Resource Investigations (CIMRI), recently established in Tucson, Arizona. In the course of CIMRI's work, we have found a need for a compilation of Spanish geological and mining terminology that goes beyond the few Spanish-English geological dictionaries available. Even geologists who are fluent in Spanish often encounter local terminology oijerga that is unfamiliar. These terms, which have grown out of five centuries of mining tradition in Latin America, and frequently draw on native languages, usually cannot be found in standard dictionaries. There are, of course, many geological terms which can be recognized even by geologists who speak little or no Spanish.
    [Show full text]
  • Reviewing the Antioquia Batholith and Satellite Bodies: a Record of Late Cretaceous to Eocene
    Andean Geology 46 (1): 82-101. January, 2019 Andean Geology doi: 10.5027/andgeoV46n1-3120 www.andeangeology.cl Reviewing the Antioquia batholith and satellite bodies: a record of Late Cretaceous to Eocene syn- to post-collisional arc magmatism in the Central Cordillera of Colombia *José Duque-Trujillo1, Camilo Bustamante1, Luigi Solari2, Álvaro Gómez-Mafla1, Gloria Toro-Villegas1, Susana Hoyos1 1 Departamento de Ciencias de la Tierra, Universidad EAFIT, Carrera 49 No. 7 sur-50, Medellín, Colombia. [email protected], [email protected], [email protected], [email protected], [email protected] 2 Universidad Nacional Autónoma de México, Centro de Geociencias, Campus Juriquilla, Blvd. Juriquilla No. 3001, 76230, Querétaro, México. [email protected] * Corresponding author: [email protected] ABSTRACT. The Antioquia batholith represents the magmatic record of the interaction between the Farallón and Caribbean plates with the NW part of the South American Plate during the Meso-Cenozoic. Several authors have reported zircon U-Pb ages and whole rock geochemistry in order to constrain the crystallization history of this batholith and its formation conditions. The present work aims to gather the existing data with new data obtained from the Ovejas batholith and La Unión stock, both genetically related to the main intrusion. Gathering our new data with information obtained in previous works, we conclude that the Antioquia batholith was constructed by successive pulses from ca. 97 to 58 Ma in an arc-related setting. The initial pulses are related to syn-collisional tectonics, during the early interaction between the Farallón plate and NW South America.
    [Show full text]
  • NI 43-101F1 Report Template
    Technical Report NI 43-101 ANTIOQUIA GOLD LTD. CISNEROS GOLD PROJECT, ANTIOQUIA DEPARTMENT, COLOMBIA NI 43-101 TECHNICAL REPORT ON UPDATED MINERAL RESOURCE ESTIMATE AND PRELIMINARY ECONOMIC ASSESSMENT Prepared for: Antioquia Gold Ltd. Prepared by: Edgard Vilela Acosta, MAusIMM (CP) Effective Date: 24 September 2017 Report: 201716 20180220_Cisneros Mineral Resource Update & PEA_rev-01.docx Project No. 2017-16 Page 1 February, 2018 C ONTENT 1.0 SUMMARY ...................................................................................................................................... 12 1.1 INTRODUCTION ..................................................................................................................................... 12 1.2 PROPERTY DESCRIPTION, OWNERSHIP AND HISTORY .......................................................................... 12 1.3 GEOLOGY & MINERALIZATION .............................................................................................................. 12 1.4 MINERAL RESOURCE ESTIMATE ............................................................................................................ 13 1.5 MINERAL PROCESSING AND METALLURGICAL TESTING ....................................................................... 14 1.5.1 Metallurgical Testing .................................................................................................................... 14 1.5.2 Mineral Processing ......................................................................................................................
    [Show full text]
  • Redalyc.Geotechnical Behavior of a Tropical Residual Soil Contaminated with Soap Solution
    Dyna ISSN: 0012-7353 [email protected] Universidad Nacional de Colombia Colombia Valencia-González, Yamile; Echeverri-Ramírez, Oscar; Benavides, Monica P.; Duque-López, María A.; García-Quintero, Yessica M.; Jiménez-Espinosa, Estefanía; Restrepo-Álvarez, Juan E.; Toscano- Patiño, Daniel Eduardo Geotechnical behavior of a tropical residual soil contaminated with soap solution Dyna, vol. 82, núm. 189, febrero, 2015, pp. 96-102 Universidad Nacional de Colombia Medellín, Colombia Available in: http://www.redalyc.org/articulo.oa?id=49635366013 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Geotechnical behavior of a tropical residual soil contaminated with soap solution Yamile Valencia-González a, Oscar Echeverri-Ramírez b, Monica P. Benavides c, María A. Duque-López d, Yessica M. García-Quintero e, Estefanía Jiménez-Espinosa f, Juan E. Restrepo-Álvarez g & Daniel Eduardo Toscano-Patiño h a Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia, [email protected] b Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia, Medellín, [email protected] c Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia, [email protected] d Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia, [email protected] e Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia, [email protected] f Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia, [email protected] g Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia, [email protected] h Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia, [email protected] Received: February 19th, 2014.
    [Show full text]
  • Geotechnical Behavior of a Tropical Residual Soil Contaminated with Soap Solution
    Geotechnical behavior of a tropical residual soil contaminated with soap solution Yamile Valencia-González a, Oscar Echeverri-Ramírez b, Monica P. Benavides c, María A. Duque-López d, Yessica M. García-Quintero e, Estefanía Jiménez-Espinosa f, Juan E. Restrepo-Álvarez g & Daniel Eduardo Toscano-Patiño h a Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia, [email protected] b Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia, Medellín, [email protected] c Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia, [email protected] d Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia, [email protected] e Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia, [email protected] f Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia, [email protected] g Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia, [email protected] h Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia, [email protected] Received: February 19th, 2014. Received in revised form: November 4th, 2014. Accepted: Nov 24th, 2014. Abstract Tropical soils are soils that exhibit physical, chemical, mineralogical and mechanical characteristics that differ from those of temperate zone soils as a result of factors such as weather, humidity and other conditions of the tropics. These characteristics and the anthropogenic contamination of the environment are the subject of the present study, which
    [Show full text]
  • 46550993001.Pdf
    CT&F Ciencia, Tecnología y Futuro ISSN: 0122-5383 [email protected] ECOPETROL S.A. Colombia Silva-Arias, Alejandro; Páez-Acuña, Liliana-Andrea; Rincón-Martínez, Daniel; Tamara- Guevara, Javier-Alfonso; Gomez-Gutierrez, Pedro-David; López-Ramos, Eduardo; Restrepo-Acevedo, Sandra-Milena; Mantilla-Figueroa, Luis-Carlos; Valencia, Victor BASEMENT CHARACTERISTICS IN THE LOWER MAGDALENA VALLEY AND THE SINÚ AND SAN JACINTO FOLD BELTS: EVIDENCE OF A LATE CRETACEOUS MAGMATIC ARC AT THE SOUTH OF THE COLOMBIAN CARIBBEAN CT&F Ciencia, Tecnología y Futuro, vol. 6, núm. 4, diciembre, 2016, pp. 5-35 ECOPETROL S.A. Bucaramanga, Colombia Available in: http://www.redalyc.org/articulo.oa?id=46550993001 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative CT&FBASEMENT - Ciencia, CHARACTERISTICSTecnología y Futuro - INVol. THE 6 Num. LOWER 4 Dec. MAGDALENA 2016 ag. VALLEY - 6 AND THE SINÚ AND SAN JACINTO FOLD BELTS: EVIDENCE OF A LATE CRETACEOUS MAGMATIC ARC AT THE SOUTH OF THE COLOMBIAN CARIBBEAN ISSN rint 0122- ISSN Online 22-41 Journal of oil, gas and alternative energy sources BASEMENT CHARACTERISTICS IN THE LOWER MAGDALENA VALLEY AND THE SINÚ AND SAN JACINTO FOLD BELTS: EVIDENCE OF A LATE CRETACEOUS MAGMATIC ARC AT THE SOUTH OF THE COLOMBIAN CARIBBEAN CARACTERÍSTICAS DEL BASAMENTO EN EL VALLE INFERIOR DEL MAGDALENA Y CINTURONES
    [Show full text]
  • NI 43-101 Preliminary Economic Assessment Gramalote Project Northwest Colombia
    NI 43-101 Preliminary Economic Assessment Gramalote Project Northwest Colombia Prepared for: B2Gold Corp 595 Burrard St Suite 3100 Vancouver, BC Project Number: GU-000480-0001-01TTO Effective Date: February 11, 2014 Report Date: March 31, 2014 Prepared by: 274 Union Boulevard, Suite 450. Lakewood, CO 80228 Endorsed by: Donald E. Hulse, P.E.SME-RM Gordon Sobering, SME-RM, Q.P. M. Claiborne Newton, III, PhD, SME-RM Deepak Malhotra, PhD, SME-RM Frank Daviess, Q.P. B2Gold Corp i Gramalote Project NI 43-101 Preliminary Economic Assessment Summary This Preliminary Economic Assessment (PEA) of the Gramalote Project in Colombia has been completed by Gustavson Associates, LLC. (Gustavson) at the request of B2Gold Corp. (B2Gold), which has a 49% interest in the Project. The PEA is subject to a number of assumptions, including among others, that an environmental impact assessment will be completed within the required timeline, all permits required will be obtained in a timely manner, the Project will have support of the local government and community, the regulatory environment will remain consistent and no material increase will have occurred to the estimated project costs. It is important to note that Gustavson’s work on this PEA is based on an internal report completed by AngloGold Ashanti Ltd. (AGA), entitled “Gramalote Project, Prefeasibility Study”. Although such study is stated to be compliant with the Australasian Joint Ore Reserves Committee Code (JORC Code) and the South African Code for the Reporting of Mineral Resources and Mineral Reserves (SAMREC), and constitutes a prefeasibility study under such codes, the study does not constitute a prefeasibility study under Canadian Institute of Mining (CIM) Guidelines or Canadian National Instrument 43-101 standards since under such standards a prefeasibility study cannot include Inferred resources nor a mineral resource category termed by AGA as “tangible endowment”.
    [Show full text]
  • September 28Th, 2018 International Field-Trip Report Medellín – Chivor, Boyacá, Colombia
    September 24th – September 28th, 2018 International Field-Trip Report Medellín – Chivor, Boyacá, Colombia PREPARED BY ALEJANDRO PASQUEL, SANTIAGO ALMAGOR, ERICK GUERRERO & ROMEL AMANTA Contents Sumary .......................................................................................................................................... 3 1. Introduction .......................................................................................................................... 4 Objectives ................................................................................................................................. 4 Participants ............................................................................................................................... 4 Itinerary .................................................................................................................................... 4 2. Geological Settings ............................................................................................................... 5 3. Gramalote gold deposits ...................................................................................................... 7 4. Quebradona Project ............................................................................................................. 8 5. Emeralds mines ................................................................................................................... 10 6. Conclusions ........................................................................................................................
    [Show full text]