Title Running Title Authors Key Words
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sexual Selection Research on Spiders: Progress and Biases
Biol. Rev. (2005), 80, pp. 363–385. f Cambridge Philosophical Society 363 doi:10.1017/S1464793104006700 Printed in the United Kingdom Sexual selection research on spiders: progress and biases Bernhard A. Huber* Zoological Research Institute and Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany (Received 7 June 2004; revised 25 November 2004; accepted 29 November 2004) ABSTRACT The renaissance of interest in sexual selection during the last decades has fuelled an extraordinary increase of scientific papers on the subject in spiders. Research has focused both on the process of sexual selection itself, for example on the signals and various modalities involved, and on the patterns, that is the outcome of mate choice and competition depending on certain parameters. Sexual selection has most clearly been demonstrated in cases involving visual and acoustical signals but most spiders are myopic and mute, relying rather on vibrations, chemical and tactile stimuli. This review argues that research has been biased towards modalities that are relatively easily accessible to the human observer. Circumstantial and comparative evidence indicates that sexual selection working via substrate-borne vibrations and tactile as well as chemical stimuli may be common and widespread in spiders. Pattern-oriented research has focused on several phenomena for which spiders offer excellent model objects, like sexual size dimorphism, nuptial feeding, sexual cannibalism, and sperm competition. The accumulating evidence argues for a highly complex set of explanations for seemingly uniform patterns like size dimorphism and sexual cannibalism. Sexual selection appears involved as well as natural selection and mechanisms that are adaptive in other contexts only. Sperm competition has resulted in a plethora of morpho- logical and behavioural adaptations, and simplistic models like those linking reproductive morphology with behaviour and sperm priority patterns in a straightforward way are being replaced by complex models involving an array of parameters. -
Predicted Networks of Protein-Protein Interactions in Stegodyphus Mimosarum by Cross-Species Comparisons Xiu Wang1,2 and Yongfeng Jin2*
Wang and Jin BMC Genomics (2017) 18:716 DOI 10.1186/s12864-017-4085-8 RESEARCH ARTICLE Open Access Predicted networks of protein-protein interactions in Stegodyphus mimosarum by cross-species comparisons Xiu Wang1,2 and Yongfeng Jin2* Abstract Background: Stegodyphus mimosarum is a candidate model organism belonging to the class Arachnida in the phylum Arthropoda. Studies on the biology of S. mimosarum over the past several decades have consisted of behavioral research and comparison of gene sequences based on the assembled genome sequence. Given the lack of systematic protein analyses and the rich source of information in the genome, we predicted the relationships of proteins in S. mimosarum by bioinformatics comparison with genome-wide proteins from select model organisms using gene mapping. Results: The protein–protein interactions (PPIs) of 11 organisms were integrated from four databases (BioGrid, InAct, MINT, and DIP). Here, we present comprehensive prediction and analysis of 3810 proteins in S. mimosarum with regard to interactions between proteins using PPI data of organisms. Interestingly, a portion of the protein interactions conserved among Saccharomyces cerevisiae, Homo sapiens, Arabidopsis thaliana,andDrosophila melanogaster were found to be associated with RNA splicing. In addition, overlap of predicted PPIs in reference organisms, Gene Ontology, and topology models in S. mimosarum are also reported. Conclusions: Addition of Stegodyphus, a spider representative of interactomic research, provides the possibility of obtaining deeper insights into the evolution of PPI networks among different animal species. This work largely supports the utility of the “stratus clouds” model for predicted PPIs, providing a roadmap for integrative systems biology in S. -
Capture of a Functionally Active Methyl-Cpg Binding Domain by an Arthropod Retrotransposon Family
Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Research Capture of a functionally active methyl-CpG binding domain by an arthropod retrotransposon family Alex de Mendoza,1,2 Jahnvi Pflueger,1,2 and Ryan Lister1,2 1Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia; 2Harry Perkins Institute of Medical Research, Perth, Western Australia, 6009, Australia The repressive capacity of cytosine DNA methylation is mediated by recruitment of silencing complexes by methyl-CpG binding domain (MBD) proteins. Despite MBD proteins being associated with silencing, we discovered that a family of arthropod Copia retrotransposons have incorporated a host-derived MBD. We functionally show how retrotransposon- encoded MBDs preferentially bind to CpG-dense methylated regions, which correspond to transposable element regions of the host genome, in the myriapod Strigamia maritima. Consistently, young MBD-encoding Copia retrotransposons (CopiaMBD) accumulate in regions with higher CpG densities than other LTR-retrotransposons also present in the genome. This would suggest that retrotransposons use MBDs to integrate into heterochromatic regions in Strigamia, avoiding poten- tially harmful insertions into host genes. In contrast, CopiaMBD insertions in the spider Stegodyphus dumicola genome dispro- portionately accumulate in methylated gene bodies compared with other spider LTR-retrotransposons. Given that transposons are not actively targeted by DNA methylation in the spider genome, this distribution bias would also support a role for MBDs in the integration process. Together, these data show that retrotransposons can co-opt host-derived epige- nome readers, potentially harnessing the host epigenome landscape to advantageously tune the retrotransposition process. -
Tarantulas and Social Spiders
Tarantulas and Social Spiders: A Tale of Sex and Silk by Jonathan Bull BSc (Hons) MSc ICL Thesis Presented to the Institute of Biology of The University of Nottingham in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The University of Nottingham May 2012 DEDICATION To my parents… …because they both said to dedicate it to the other… I dedicate it to both ii ACKNOWLEDGEMENTS First and foremost I would like to thank my supervisor Dr Sara Goodacre for her guidance and support. I am also hugely endebted to Dr Keith Spriggs who became my mentor in the field of RNA and without whom my understanding of the field would have been but a fraction of what it is now. Particular thanks go to Professor John Brookfield, an expert in the field of biological statistics and data retrieval. Likewise with Dr Susan Liddell for her proteomics assistance, a truly remarkable individual on par with Professor Brookfield in being able to simplify even the most complex techniques and analyses. Finally, I would really like to thank Janet Beccaloni for her time and resources at the Natural History Museum, London, permitting me access to the collections therein; ten years on and still a delight. Finally, amongst the greats, Alexander ‘Sasha’ Kondrashov… a true inspiration. I would also like to express my gratitude to those who, although may not have directly contributed, should not be forgotten due to their continued assistance and considerate nature: Dr Chris Wade (five straight hours of help was not uncommon!), Sue Buxton (direct to my bench creepy crawlies), Sheila Keeble (ventures and cleans where others dare not), Alice Young (read/checked my thesis and overcame her arachnophobia!) and all those in the Centre for Biomolecular Sciences. -
Study Shows Some Spiders Have Individualized Personalities 31 July 2013, by Bob Yirka
Study shows some spiders have individualized personalities 31 July 2013, by Bob Yirka scientists suspect that the more social an organism type is the more likely there are to be differing personalities within a group. To learn which spiders might have which personality traits, the researchers went out into the field and bagged several spider nests and brought them back to the lab. After dissecting the nests, 40 specimens were chosen from each to serve as objects of study—each had colored spots applied to their backs to denote the level of aggression they exhibited when stimulated and to help in identifying them. Next, all of the spiders from the original nests were placed in artificial nests which were then placed in trees near the research facility. There, the Stegodyphus lineatus. Credit: Wikipedia researchers simulated insects being captured in webs and studied the actions of the spiders that occurred as a result. (Phys.org) —Researchers studying the In analyzing the data, the researchers found that Stegodyphus sarasinorum spider in India have those spiders that had exhibited the most found that individual specimens have different aggression in the first part of the study, were the personality traits from one another. In their paper very same ones that acted most boldly when published in Proceedings of the Royal Society B, insects became stuck in their webs—suggesting that the team report that some spiders in the field study individualized personality traits in the spiders tends exhibited more "boldness" than did others. to determine which sort of job they have—those that are bolder tend to be the ones that deal with Scientists have known for many years that animals captured prey, while those that are meeker wind up have distinct personalities—cats and dogs are nurturing offspring or engaging in other less prime examples. -
Phylogenomic Analysis and Revised Classification of Atypoid Mygalomorph Spiders (Araneae, Mygalomorphae), with Notes on Arachnid Ultraconserved Element Loci
Phylogenomic analysis and revised classification of atypoid mygalomorph spiders (Araneae, Mygalomorphae), with notes on arachnid ultraconserved element loci Marshal Hedin1, Shahan Derkarabetian1,2,3, Adan Alfaro1, Martín J. Ramírez4 and Jason E. Bond5 1 Department of Biology, San Diego State University, San Diego, CA, United States of America 2 Department of Biology, University of California, Riverside, Riverside, CA, United States of America 3 Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States of America 4 Division of Arachnology, Museo Argentino de Ciencias Naturales ``Bernardino Rivadavia'', Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina 5 Department of Entomology and Nematology, University of California, Davis, CA, United States of America ABSTRACT The atypoid mygalomorphs include spiders from three described families that build a diverse array of entrance web constructs, including funnel-and-sheet webs, purse webs, trapdoors, turrets and silken collars. Molecular phylogenetic analyses have generally supported the monophyly of Atypoidea, but prior studies have not sampled all relevant taxa. Here we generated a dataset of ultraconserved element loci for all described atypoid genera, including taxa (Mecicobothrium and Hexurella) key to understanding familial monophyly, divergence times, and patterns of entrance web evolution. We show that the conserved regions of the arachnid UCE probe set target exons, such that it should be possible to combine UCE and transcriptome datasets in arachnids. We also show that different UCE probes sometimes target the same protein, and under the matching parameters used here show that UCE alignments sometimes include non- Submitted 1 February 2019 orthologs. Using multiple curated phylogenomic matrices we recover a monophyletic Accepted 28 March 2019 Published 3 May 2019 Atypoidea, and reveal that the family Mecicobothriidae comprises four separate and divergent lineages. -
SA Spider Checklist
REVIEW ZOOS' PRINT JOURNAL 22(2): 2551-2597 CHECKLIST OF SPIDERS (ARACHNIDA: ARANEAE) OF SOUTH ASIA INCLUDING THE 2006 UPDATE OF INDIAN SPIDER CHECKLIST Manju Siliwal 1 and Sanjay Molur 2,3 1,2 Wildlife Information & Liaison Development (WILD) Society, 3 Zoo Outreach Organisation (ZOO) 29-1, Bharathi Colony, Peelamedu, Coimbatore, Tamil Nadu 641004, India Email: 1 [email protected]; 3 [email protected] ABSTRACT Thesaurus, (Vol. 1) in 1734 (Smith, 2001). Most of the spiders After one year since publication of the Indian Checklist, this is described during the British period from South Asia were by an attempt to provide a comprehensive checklist of spiders of foreigners based on the specimens deposited in different South Asia with eight countries - Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka. The European Museums. Indian checklist is also updated for 2006. The South Asian While the Indian checklist (Siliwal et al., 2005) is more spider list is also compiled following The World Spider Catalog accurate, the South Asian spider checklist is not critically by Platnick and other peer-reviewed publications since the last scrutinized due to lack of complete literature, but it gives an update. In total, 2299 species of spiders in 67 families have overview of species found in various South Asian countries, been reported from South Asia. There are 39 species included in this regions checklist that are not listed in the World Catalog gives the endemism of species and forms a basis for careful of Spiders. Taxonomic verification is recommended for 51 species. and participatory work by arachnologists in the region. -
Programme and Abstracts European Congress of Arachnology - Brno 2 of Arachnology Congress European Th 2 9
Sponsors: 5 1 0 2 Programme and Abstracts European Congress of Arachnology - Brno of Arachnology Congress European th 9 2 Programme and Abstracts 29th European Congress of Arachnology Organized by Masaryk University and the Czech Arachnological Society 24 –28 August, 2015 Brno, Czech Republic Brno, 2015 Edited by Stano Pekár, Šárka Mašová English editor: L. Brian Patrick Design: Atelier S - design studio Preface Welcome to the 29th European Congress of Arachnology! This congress is jointly organised by Masaryk University and the Czech Arachnological Society. Altogether 173 participants from all over the world (from 42 countries) registered. This book contains the programme and the abstracts of four plenary talks, 66 oral presentations, and 81 poster presentations, of which 64 are given by students. The abstracts of talks are arranged in alphabetical order by presenting author (underlined). Each abstract includes information about the type of presentation (oral, poster) and whether it is a student presentation. The list of posters is arranged by topics. We wish all participants a joyful stay in Brno. On behalf of the Organising Committee Stano Pekár Organising Committee Stano Pekár, Masaryk University, Brno Jana Niedobová, Mendel University, Brno Vladimír Hula, Mendel University, Brno Yuri Marusik, Russian Academy of Science, Russia Helpers P. Dolejš, M. Forman, L. Havlová, P. Just, O. Košulič, T. Krejčí, E. Líznarová, O. Machač, Š. Mašová, R. Michalko, L. Sentenská, R. Šich, Z. Škopek Secretariat TA-Service Honorary committee Jan Buchar, -
Effect of Prey Size on Growth of Newly Emerged Crab Spiderlings Misumena Vatia
2010. The Journal of Arachnology 38:309–312 Effect of prey size on growth of newly emerged crab spiderlings Misumena vatia Douglass H. Morse: Department of Ecology and Evolutionary Biology, Box G-W, Brown University, Providence, RI 02912 USA. E-mail: [email protected] Abstract. Capturing unusually profitable prey early in life potentially enhances one’s future fecundity and survival. Newly emerged crab spiderlings Misumena vatia (Araneae: Thomisidae) occasionally capture prey that greatly exceed them in size. I attempted to evaluate what if any long-term advantage these kills provided by presenting naı¨ve, just-emerged spiderlings with syrphid flies Toxomerus marginatus that exceeded the initial mass of the spiderlings six-fold, a prey that the spiderlings occasionally captured in the field. A second group of spiderlings received a single syrphid initially and subsequently a single fruit fly Drosophila melanogaster every other day, and a control group received a fruit fly every other day. The few spiderlings that regularly captured the syrphids gained significantly more mass than the other groups. Individuals taking an initial syrphid and then fruit flies did not gain more mass than controls fed on solely on fruit flies. Neither did a group of spiderlings followed in the field nor a small group of individuals fed multiple fruit flies every other day in the laboratory differ in growth rates from the syrphid + fruit fly or single fruit fly groups. Thus, capture of a single bonanza prey does not provide the spiderlings with a significant advantage over those that did not obtain this reward, and in the field they probably do not manage to duplicate the capture success of the surviving members of the syrphid-only group. -
A Specialised Hunting Strategy Used to Overcome Dangerous Spider Prey
www.nature.com/scientificreports OPEN Nest usurpation: a specialised hunting strategy used to overcome dangerous spider prey Received: 18 January 2019 Ondřej Michálek 1, Yael Lubin 2 & Stano Pekár 1 Accepted: 14 March 2019 Hunting other predators is dangerous, as the tables can turn and the hunter may become the hunted. Published: xx xx xxxx Specialized araneophagic (spider eating) predators have evolved intriguing hunting strategies that allow them to invade spiders’ webs by adopting a stealthy approach or using aggressive mimicry. Here, we present a newly discovered, specialized hunting strategy of the araneophagic spider Poecilochroa senilis (Araneae: Gnaphosidae), which forces its way into the silk retreat of the potential spider prey and immobilizes it by swathing gluey silk onto its forelegs and mouthparts. Poecilochroa senilis has been reported from the nests of a several, often large, spider species in the Negev desert (Israel), suggesting specialization on spiders as prey. Nevertheless, in laboratory experiments, we found that P. senilis has a wider trophic niche, and fed readily on several small insect species. The specialized nest-invading attack was used more frequently with large spiders, and even small juvenile P. senilis were able to attack and subdue larger spiders. Our observations show that specifc hunting tactics, like nest usurpation, allow specialized predators to overcome defences of dangerous prey. Evolutionary arms races between prey and predators lead to the evolution of various defence mechanisms of the prey and counter-adaptations of predators to subdue such a prey1. Predator-prey arms races are ofen asym- metrical, as a prey organism is under stronger selection pressure2. -
Research Article
s z Available online at http://www.journalcra.com INTERNATIONAL JOURNAL OF CURRENT RESEARCH International Journal of Current Research Vol. 12, Issue, 03, pp.10829-10833, March, 2020 DOI: https://doi.org/10.24941/ijcr.38310.03.2020 ISSN: 0975-833X RESEARCH ARTICLE PREY COMPOSITION OF COMMUNAL SPIDER STEGODYPHUS SARASINORUM (KARSCH) NEAR HUMAN HABITATION IN SIGUR PLATEAU Pathmavathy, R. and *Ebanasar, J. Department of Zoology and Wildlife Biology, Government Arts College, Udhagamandalam, The Nilgiris – 643 002, Tamilnadu, India ARTICLE INFO ABSTRACT Article History: The present study emphasizes on the prey composition of the communal spider Stegodyphus Received 24th December, 2019 sarasinorum Karsch in four different stations of Sigur Plateau. Hence the biological pest control Received in revised form potency of S. sarasinorum was remarkable in the study area. Spiders are the best predators to regulate 10th January, 2020 pest population in a sustainable manner. The investigation reveals that the spider species captured six Accepted 28th February, 2020 different order of the prey from the roadsides and fencings of different study sites. Mostly the th Published online 30 March, 2020 Hemiptera and Hymenoptera prey species were subsequently fed by the spider S. sarasinorum, while the Diptera species was found as least group. Key Words: Communal Spider, Predator, Prey Composition. Copyright © 2020, Pathmavathy and Ebanasar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Citation: Pathmavathy, R. and Ebanasar, J. 2020. “Prey composition of communal spider stegodyphus sarasinorum (karsch) near human habitation in sigur plateau”, International Journal of Current Research, 12, (03), 10829-10833. -
Book of Abstracts
August 20th-25th, 2017 University of Nottingham – UK with thanks to: Organising Committee Sara Goodacre, University of Nottingham, UK Dmitri Logunov, Manchester Museum, UK Geoff Oxford, University of York, UK Tony Russell-Smith, British Arachnological Society, UK Yuri Marusik, Russian Academy of Science, Russia Helpers Leah Ashley, Tom Coekin, Ella Deutsch, Rowan Earlam, Alastair Gibbons, David Harvey, Antje Hundertmark, LiaQue Latif, Michelle Strickland, Emma Vincent, Sarah Goertz. Congress logo designed by Michelle Strickland. We thank all sponsors and collaborators for their support British Arachnological Society, European Society of Arachnology, Fisher Scientific, The Genetics Society, Macmillan Publishing, PeerJ, Visit Nottinghamshire Events Team Content General Information 1 Programme Schedule 4 Poster Presentations 13 Abstracts 17 List of Participants 140 Notes 154 Foreword We are delighted to welcome you to the University of Nottingham for the 30th European Congress of Arachnology. We hope that whilst you are here, you will enjoy exploring some of the parks and gardens in the University’s landscaped settings, which feature long-established woodland as well as contemporary areas such as the ‘Millennium Garden’. There will be a guided tour in the evening of Tuesday 22nd August to show you different parts of the campus that you might enjoy exploring during the time that you are here. Registration Registration will be from 8.15am in room A13 in the Pope Building (see map below). We will have information here about the congress itself as well as the city of Nottingham in general. Someone should be at this registration point throughout the week to answer your Questions. Please do come and find us if you have any Queries.