Scenedesmus Obliquus

Total Page:16

File Type:pdf, Size:1020Kb

Scenedesmus Obliquus The dynamics of oil accumulation in Scenedesmus obliquus Guido Breuer Thesis committee Promotor Prof. Dr R.H. Wijffels Professor of Bioprocess Engineering Wageningen University Co-promotors Dr D.E. Martens Assistant professor, Bioprocess Engineering Wageningen University Dr P.P. Lamers Assistant professor, Bioprocess Engineering Wageningen University Other members Prof. Dr V. Fogliano, Wageningen University Dr J.C. Weissman, Exxonmobil, Annandale, USA Prof. Dr B. Teusink, VU University Amsterdam Dr L.M. Trindade, Wageningen University This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). The dynamics of oil accumulation in Scenedesmus obliquus Guido Breuer Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 6 March 2015 at 1:30 p.m. in the Aula. G. Breuer The dynamics of oil accumulation in Scenedesmus obliquus, 268 pages. PhD thesis, Wageningen University, Wageningen, NL (2015) With references, with summaries in Dutch and English ISBN 978-94-6257-234-8 Contents Chapter 1 Introduction 9 Chapter 2 Analysis of Fatty Acid Content and Composition in 19 Microalgae Chapter 3 The impact of nitrogen starvation on the dynamics of 37 triacylglycerol accumulation in nine microalgae strains Chapter 4 Effect of light intensity, pH, and temperature on 67 triacylglycerol (TAG) accumulation induced by nitrogen starvation in Scenedesmus obliquus Chapter 5 Superior triacylglycerol (TAG) accumulation in starchless 89 mutants of Scenedesmus obliquus: Evaluation of TAG yield and productivity in controlled photobioreactors Chapter 6 Photosynthetic efficiency and carbon partitioning in 109 nitrogen-starved Scenedesmus obliquus Chapter 7 Opportunities to improve the areal oil productivity of 143 microalgae Chapter 8 General discussion 193 References 221 Summary 239 Samenvatting 247 Dankwoord 257 About the author 263 List of publications 265 Overview of completed training activities 266 Chapter 1 Introduction Chapter 1 Introduction 9 Chapter 1 1.1 Microalgae as a sustainable substitute for plant products Global demands for food and fuels are rapidly increasing as a result of an increasing world population and wealth of developing countries (Godfray et al., 2010). Furthermore, renewable and sustainable alternatives for fossil-oil-derived fuels and chemicals are required because of depleting fossil resources, and concerns for climate change. Currently, these alternatives are mainly derived from agricultural crops. Their products can be used directly for food, fuel or chemical production (e.g. production of biodiesel from vegetable oil) or are converted by heterotrophic microbial fermentation to fuels and chemicals (e.g. fermentation of sugars, starch or lignocellulose to for example ethanol-fuel). The production of food and renewable-fuel commodities currently thus relies heavily on the cultivation of agricultural crops. The areal productivity of commonly used crops is reaching a ceiling and the availability of arable land, as well as of fresh water and nutrients, is limited (Godfray et al., 2010). Novel sustainable and renewable sources for both food-commodities and fuels are therefore highly desired (Draaisma et al., 2013). Microalgae-derived products are often considered as a promising substitute for these crop-derived commodities (Draaisma et al., 2013; Wijffels & Barbosa, 2010). Microalgae are essentially unicellular plants (Fig. 1.1A) and can produce the same products as terrestrial crops. Microalgae can produce large quantities of protein, vegetable oil, and carbohydrates (Draaisma et al., 2013). Cultivation of microalgae has several advantages over the use of traditional agricultural crops. Microalgae can achieve much higher photosynthetic efficiencies. As a result, much higher areal productivities can be accomplished (Chisti, 2007; Moody et al., 2014; Wijffels & Barbosa, 2010). Furthermore, microalgae are cultivated in photobioreactors (Fig. 1.1B) and do therefore not require arable land. Potentially, microalgae can even be cultivated off-shore. Some microalgae species can grow efficiently on seawater, which can largely reduce freshwater requirements (Wijffels & Barbosa, 2010). Finally, fertilizer requirements could be reduced because no nutrients are lost to the environment in a photobioreactor (Chisti, 2013). Despite these advantages of microalgae, the technology for production of microalgae needs to be further developed before large scale production is feasible. Today, the cost for production and the energy consumption involved in construction and operation of photobioreactors are too high (Acién et al., 2012; Brentner et al., 2011; Davis et al., 2011; Norsker et al., 2011). Current estimates claim that a several fold reduction in 10 Introduction cost-price needs to be realized before the production of bulk products using microalgae can become feasible (Klok et al., 2014). Such improvements could for example be made by increasing the microalgal productivity. Fig. 1.1. Microscopic photograph of the microalga Scenedesmus obliquus (A). The scale bar indicates 50µm. Photograph of a lab-scale photobioreactor that was used for the work performed for this thesis (B). 1.2 TAG production by microalgae Although microalgae could be a source for a large variety of commodities, the work presented in this thesis focusses on the production of triacylglycerol (TAG). TAGs are a lipid consisting of a glycerol backbone containing three fatty acid groups (Box 1). TAGs are the main component of vegetable oil and the composition of microalgal derived TAGs is similar to that of currently used vegetable oils derived from oil-crops (Draaisma et al., 2013). These TAGs are therefore suitable as a resource for both food and biofuel applications (Chisti, 2007; Draaisma et al., 2013; Wijffels & Barbosa, 2010). In potential, TAG production using microalgae can be more sustainable and productive than TAG production using agricultural oil-crops. However, with current technology TAG production is not yet cost-effective and still requires more energy input than is produced in the form of TAG. An increase in the TAG productivity can help to decrease the cost- price and specific energy consumption of the production process. To achieve these high 11 Chapter 1 TAG productivities, a quantitative understanding of the processes involved in microalgal TAG production is essential. Box 1. Lipids in microalgae. Lipid is an ambiguous term and lipids often refers to hydrophobic organic molecules or to the fraction of the biomass that is soluble in a specific organic solvent (e.g. hexane or chloroform). Because a large variety of lipid classes are produced by microalgae, and the relative abundance of these lipids can vary to a large extent, it is important to distinguish between these lipids. From a chemical point of view, these lipids could be classified as fatty-acyl lipids and non-fatty-acyl lipids. Table 1.1. Lipids in microalgae. The values represent typical values found for most microalgae and can be used as a rule of thumb. For specific species, exceptions exist that exceed these values (e.g. large quantities of hydrocarbons in Botryococcus braunii or β- carotene in Dunaliella salina). Component Main function Abundance Reference (% DW) (Breuer et triacylglycerol storage or as al., 2012; 0-50 (TAG) energy sink Hu et al., 2008) cell and lipids - phospholipids organelle mono-, and (Breuer et membranes 5-10 glycerolipids diacylglycerols al., 2012) thylakoid galactolipids membranes fatty acyl fatty carotenoid- secondary & fatty-acyl- primary (Mulders et esters pigments al., 2014a; 0-5 (photoprotective Mulders et carotenoids & al., 2014b) photosynthesis) (Mulders et primary al., 2014a; chlorophylls pigments 1-3 acyl acyl lipids Mulders et - (photosynthesis) al., 2014b) fatty various, - e.g. waxes, including Other sterols, 5-20 Estimated1 non structural and hydrocarbons signalling 1Estimated from total lipids (15-25%)(Griffiths & Harrison, 2009; Pruvost et al., 2009; Renaud et al., 1999) minus the other lipid classes. Based on nitrogen replete conditions. Microalgae produce many different types of lipids (Table 1.1). These lipids serve various cellular functions. Triacylglycerol (TAG) is present as droplets in the cell and serves to store carbon and energy. Cell, organelle, and thylakoid membranes mainly consist of diacylglycerols and these have a structural role. Pigments such as chlorophylls and carotenoids have a role in photosynthesis for light harvesting or photo-protection. Other lipids present in microalgae include waxes, sterols, and hydrocarbons. Among other roles, these lipids have a function in cell signalling, or contribute to the structure of, for 12 Introduction example, membranes (Table 1.1). Fatty-acyl lipids are lipids that contain fatty acid groups. An important example of these fatty-acyl lipids is TAG. TAG consists of a glycerol backbone with three fatty acid groups (Fig. 1.2). Of all microalgal lipids, TAGs receive most attention because these TAGs are similar to vegetable oil and can be used as an edible oil. In addition, especially TAGs, but also other fatty-acyl lipids, are of interest because these can be trans-esterified using methanol to yield fatty acid methyl esters (FAMEs). These FAMEs can be used as a biodiesel. Fig. 1.2. Chemical
Recommended publications
  • Colony Formation in Three Species of the Family Scenedesmaceae
    Colony formation in three species of the family Scenedesmaceae (Desmodesmus subspicatus, Scenedesmus acutus, Tetradesmus dimorphus) exposed to sodium dodecyl sulfate and its interference with grazing of Daphnia galeata Yusuke Oda ( [email protected] ) Shinshu University https://orcid.org/0000-0002-6555-1335 Masaki Sakamoto Toyama Prefectural University Yuichi Miyabara Shinshu University Research Article Keywords: Sodium dodecyl sulfate, Info-disruption, Colony formation, Scenedesmaceae, Daphnia Posted Date: March 30th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-346616/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 Colony formation in three species of the family Scenedesmaceae (Desmodesmus subspicatus, 2 Scenedesmus acutus, Tetradesmus dimorphus) exposed to sodium dodecyl sulfate and its interference 3 with grazing of Daphnia galeata 4 5 Yusuke Oda*,1, Masaki Sakamoto2, Yuichi Miyabara3,4 6 7 1Department of Science and Technology, Shinshu University, Suwa, Nagano, Japan 8 2Department of Environmental and Civil Engineering, Toyama Prefectural University, Imizu, Toyama, 9 Japan 10 3Suwa Hydrobiological Station, Faculty of Science, Shinshu University, Suwa, Nagano, Japan 11 4Institute of Mountain Science, Shinshu University, Suwa, Nagano, Japan 12 13 *Corresponding author: Y. O da 14 15 Y. O d a 16 Phone: +81-90-9447-9029 17 Email: [email protected] 18 ORCID: 0000-0002-6555-1335 19 20 21 22 23 Acknowledgments 24 This study was supported by a Grant-in-Aid for Japan Society for the Promotion of Sciences (JSPS) 25 Fellows (Grant No. JP20J11681). We thank Natalie Kim, PhD, from Edanz Group (https://en-author- 26 services.edanz.com/ac) for editing a draft of this manuscript.
    [Show full text]
  • Permian–Triassic Non-Marine Algae of Gondwana—Distributions
    Earth-Science Reviews 212 (2021) 103382 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Review Article Permian–Triassic non-marine algae of Gondwana—Distributions, natural T affinities and ecological implications ⁎ Chris Maysa,b, , Vivi Vajdaa, Stephen McLoughlina a Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden b Monash University, School of Earth, Atmosphere and Environment, 9 Rainforest Walk, Clayton, VIC 3800, Australia ARTICLE INFO ABSTRACT Keywords: The abundance, diversity and extinction of non-marine algae are controlled by changes in the physical and Permian–Triassic chemical environment and community structure of continental ecosystems. We review a range of non-marine algae algae commonly found within the Permian and Triassic strata of Gondwana and highlight and discuss the non- mass extinctions marine algal abundance anomalies recorded in the immediate aftermath of the end-Permian extinction interval Gondwana (EPE; 252 Ma). We further review and contrast the marine and continental algal records of the global biotic freshwater ecology crises within the Permian–Triassic interval. Specifically, we provide a case study of 17 species (in 13 genera) palaeobiogeography from the succession spanning the EPE in the Sydney Basin, eastern Australia. The affinities and ecological im- plications of these fossil-genera are summarised, and their global Permian–Triassic palaeogeographic and stra- tigraphic distributions are collated. Most of these fossil taxa have close extant algal relatives that are most common in freshwater, brackish or terrestrial conditions, and all have recognizable affinities to groups known to produce chemically stable biopolymers that favour their preservation over long geological intervals.
    [Show full text]
  • BMC Evolutionary Biology Biomed Central
    BMC Evolutionary Biology BioMed Central Research article Open Access The complete chloroplast genome sequence of the chlorophycean green alga Scenedesmus obliquus reveals a compact gene organization and a biased distribution of genes on the two DNA strands Jean-Charles de Cambiaire, Christian Otis, Claude Lemieux and Monique Turmel* Address: Département de biochimie et de microbiologie, Université Laval, Québec, Canada Email: Jean-Charles de Cambiaire - [email protected]; Christian Otis - [email protected]; Claude Lemieux - [email protected]; Monique Turmel* - [email protected] * Corresponding author Published: 25 April 2006 Received: 14 February 2006 Accepted: 25 April 2006 BMC Evolutionary Biology 2006, 6:37 doi:10.1186/1471-2148-6-37 This article is available from: http://www.biomedcentral.com/1471-2148/6/37 © 2006 de Cambiaire et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The phylum Chlorophyta contains the majority of the green algae and is divided into four classes. While the basal position of the Prasinophyceae is well established, the divergence order of the Ulvophyceae, Trebouxiophyceae and Chlorophyceae (UTC) remains uncertain. The five complete chloroplast DNA (cpDNA) sequences currently available for representatives of these classes display considerable variability in overall structure, gene content, gene density, intron content and gene order. Among these genomes, that of the chlorophycean green alga Chlamydomonas reinhardtii has retained the least ancestral features.
    [Show full text]
  • A Taxonomic Revision of Desmodesmus Serie Desmodesmus (Sphaeropleales, Scenedesmaceae)
    Fottea, Olomouc, 17(2): 191–208, 2017 191 DOI: 10.5507/fot.2017.001 A taxonomic revision of Desmodesmus serie Desmodesmus (Sphaeropleales, Scenedesmaceae) Eberhard HEGEWALD1 & Anke BRABAND2 1 Grüner Weg 20, D–52382 Niederzier, Germany 2 LCG, Ostendstr. 25, D–12451 Berlin, Germany Abstract: The revision of the serie Desmodesmus, based on light microscopy, TEM, SEM and ITS2r DNA, allowed us to distinguish among the taxa Desmodesmus communis var. communis, var. polisicus, D. curvatocornis, D. rectangularis comb. nov., D. pseudocommunis n. sp. var. texanus n. var. and f. verrucosus n. f., D. protuberans, D. protuberans var. communoides var. nov., D. pseudoprotuberans n. sp., D. schmidtii n. sp. Keys were given for light microscopy, electron microscopy and ITS2r DNA. Key words: Desmodesmus, morphology, cell wall ultrastructure, cell size, ITS–2, new Desmodesmus taxa, phylogeny, taxonomy, variability INTRODUCTION E.HEGEWALD. Acutodesmus became recently a syno- nyme of Tetrades- mus (WYNNE & HALLAN 2016). Members of the former genus Scenedesmus s.l. were The subsection Desmodesmus as described by common in eutrophic waters all over the world. Hence HEGEWALD (1978) was best characterized by the cell taxa of that “genus” were described early in the 19th wall ultra–structure which consists of an outer cell wall century (e. g. TURPIN 1820; 1828; MEYEN 1828; EHREN- layer with net–like structure, lifted by tubes (PICKETT– BERG 1834; CORDA 1835). Several of the early (before HEAPS & STAEHELIN 1975; KOMÁREK & LUDVÍK1972; 1840) described taxa were insufficiently described and HEGEWALD 1978, 1997) and rosettes covered or sur- hence were often misinterpreted by later authors, es- rounded by tubes.
    [Show full text]
  • The Draft Genome of the Small, Spineless Green Alga
    Protist, Vol. 170, 125697, December 2019 http://www.elsevier.de/protis Published online date 25 October 2019 ORIGINAL PAPER Protist Genome Reports The Draft Genome of the Small, Spineless Green Alga Desmodesmus costato-granulatus (Sphaeropleales, Chlorophyta) a,b,2 a,c,2 d,e f g Sibo Wang , Linzhou Li , Yan Xu , Barbara Melkonian , Maike Lorenz , g b a,e f,1 Thomas Friedl , Morten Petersen , Sunil Kumar Sahu , Michael Melkonian , and a,b,1 Huan Liu a BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China b Department of Biology, University of Copenhagen, Copenhagen, Denmark c Department of Biotechnology and Biomedicine, Technical University of Denmark, Copenhagen, Denmark d BGI Education Center, University of Chinese Academy of Sciences, Beijing, China e State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China f University of Duisburg-Essen, Campus Essen, Faculty of Biology, Universitätsstr. 2, 45141 Essen, Germany g Department ‘Experimentelle Phykologie und Sammlung von Algenkulturen’, University of Göttingen, Nikolausberger Weg 18, 37073 Göttingen, Germany Submitted October 9, 2019; Accepted October 21, 2019 Desmodesmus costato-granulatus (Skuja) Hegewald 2000 (Sphaeropleales, Chlorophyta) is a small, spineless green alga that is abundant in the freshwater phytoplankton of oligo- to eutrophic waters worldwide. It has a high lipid content and is considered for sustainable production of diverse compounds, including biofuels. Here, we report the draft whole-genome shotgun sequencing of D. costato-granulatus strain SAG 18.81. The final assembly comprises 48,879,637 bp with over 4,141 scaffolds. This whole-genome project is publicly available in the CNSA (https://db.cngb.org/cnsa/) of CNGBdb under the accession number CNP0000701.
    [Show full text]
  • Distribution and Ecological Habitat of Scenedesmus and Related Genera in Some Freshwater Resources of Northern and North-Eastern Thailand
    BIODIVERSITAS ISSN: 1412-033X Volume 18, Number 3, July 2017 E-ISSN: 2085-4722 Pages: 1092-1099 DOI: 10.13057/biodiv/d180329 Distribution and ecological habitat of Scenedesmus and related genera in some freshwater resources of Northern and North-Eastern Thailand KITTIYA PHINYO1,♥, JEERAPORN PEKKOH1,2, YUWADEE PEERAPORNPISAL1,♥♥ 1Department of Biology, Faculty of Science, Chiang Mai University. Chiang Mai 50200, Thailand. Tel. +66-53-94-3346, Fax. +66-53-89-2259, ♥email: [email protected], ♥♥ [email protected] 2Science and Technology Research Institute, Faculty of Science, Chiang Mai University. Chiang Mai 50200, Thailand Manuscript received: 12 April 2017. Revision accepted: 21 June 2017. Abstract. Phinyo K, Pekkoh J, Peerapornpisal Y. 2017. Distribution and ecological habitat of Scenedesmus and related genera in some freshwater resources of Northern and North-Eastern Thailand. Biodiversitas 18: 1092-1099. The family Scenedesmaceae is made up of freshwater green microalgae that are commonly found in bodies of freshwater, particularly in water of moderate to polluted water quality. However, as of yet, there have not been any studies on the diversity of this family in Thailand and in similar regions of tropical areas. Therefore, this research study aims to investigate the richness, distribution and ecological conditions of the species of the Scenedesmus and related genera through the assessment of water quality. The assessment of water quality was based on the physical and chemical parameters at 50 sampling sites. A total of 35 taxa were identified that were composed of six genera, i.e. Acutodesmus, Comasiella, Desmodesmus, Pectinodesmus, Scenedesmus and Verrucodesmus. Eleven taxa were newly recorded in Thailand.
    [Show full text]
  • Freshwater Algae in Britain and Ireland - Bibliography
    Freshwater algae in Britain and Ireland - Bibliography Floras, monographs, articles with records and environmental information, together with papers dealing with taxonomic/nomenclatural changes since 2003 (previous update of ‘Coded List’) as well as those helpful for identification purposes. Theses are listed only where available online and include unpublished information. Useful websites are listed at the end of the bibliography. Further links to relevant information (catalogues, websites, photocatalogues) can be found on the site managed by the British Phycological Society (http://www.brphycsoc.org/links.lasso). Abbas A, Godward MBE (1964) Cytology in relation to taxonomy in Chaetophorales. Journal of the Linnean Society, Botany 58: 499–597. Abbott J, Emsley F, Hick T, Stubbins J, Turner WB, West W (1886) Contributions to a fauna and flora of West Yorkshire: algae (exclusive of Diatomaceae). Transactions of the Leeds Naturalists' Club and Scientific Association 1: 69–78, pl.1. Acton E (1909) Coccomyxa subellipsoidea, a new member of the Palmellaceae. Annals of Botany 23: 537–573. Acton E (1916a) On the structure and origin of Cladophora-balls. New Phytologist 15: 1–10. Acton E (1916b) On a new penetrating alga. New Phytologist 15: 97–102. Acton E (1916c) Studies on the nuclear division in desmids. 1. Hyalotheca dissiliens (Smith) Bréb. Annals of Botany 30: 379–382. Adams J (1908) A synopsis of Irish algae, freshwater and marine. Proceedings of the Royal Irish Academy 27B: 11–60. Ahmadjian V (1967) A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology and identification. Phycologia 6: 127–166 Allanson BR (1973) The fine structure of the periphyton of Chara sp.
    [Show full text]
  • Polyphasic Taxonomy of Green Algae Strains Isolated from Mediterranean Freshwaters Urania Lortou and Spyros Gkelis*
    Lortou and Gkelis J of Biol Res-Thessaloniki (2019) 26:11 https://doi.org/10.1186/s40709-019-0105-y Journal of Biological Research-Thessaloniki RESEARCH Open Access Polyphasic taxonomy of green algae strains isolated from Mediterranean freshwaters Urania Lortou and Spyros Gkelis* Abstract Background: Terrestrial, freshwater and marine green algae constitute the large and morphologically diverse phylum of Chlorophyta, which gave rise to the core chlorophytes. Chlorophyta are abundant and diverse in freshwater envi- ronments where sometimes they form nuisance blooms under eutrophication conditions. The phylogenetic relation- ships among core chlorophyte clades (Chlorodendrophyceae, Ulvophyceae, Trebouxiophyceae and Chlorophyceae), are of particular interest as it is a species-rich phylum with ecological importance worldwide, but are still poorly understood. In the Mediterranean ecoregion, data on molecular characterization of eukaryotic microalgae strains are limited and current knowledge is based on ecological studies of natural populations. In the present study we report the isolation and characterization of 11 green microalgae strains from Greece contributing more information for the taxonomy of Chlorophyta. The study combined morphological and molecular data. Results: Phylogenetic analysis based on 18S rRNA, internal transcribed spacer (ITS) region and the large subunit of the ribulose-bisphosphate carboxylase (rbcL) gene revealed eight taxa. Eleven green algae strains were classifed in four orders (Sphaeropleales, Chlorellales, Chlamydomonadales and Chaetophorales) and were represented by four genera; one strain was not assigned to any genus. Most strains (six) were classifed to the genus Desmodesmus, two strains to genus Chlorella, one to genus Spongiosarcinopsis and one flamentous strain to genus Uronema. One strain is placed in a separate independent branch within the Chlamydomonadales and deserves further research.
    [Show full text]
  • C3c5e116de51dfa5b9d704879f6
    GBE Gene Arrangement Convergence, Diverse Intron Content, and Genetic Code Modifications in Mitochondrial Genomes of Sphaeropleales (Chlorophyta) Karolina Fucˇı´kova´ 1,*, Paul O. Lewis1, Diego Gonza´lez-Halphen2, and Louise A. Lewis1 1Department of Ecology and Evolutionary Biology, University of Connecticut 2Instituto de Fisiologı´a Celular, Departamento de Gene´tica Molecular Universidad Nacional Auto´ nomadeMe´xico, Ciudad de Me´xico, Mexico *Corresponding author: E-mail: [email protected]. Accepted: August 3, 2014 Data deposition: Nine new complete mitochondrial genome sequences with annotated features have been deposited at GenBank under the accessions KJ806265–KJ806273. Genes from partially sequenced genomes have been deposited at GenBank under the accessions KJ845680– KJ845692, KJ845706–KJ845718, and KJ845693–KJ845705. Gene sequence alignments are available in TreeBase under study number 16246. Abstract The majority of our knowledge about mitochondrial genomes of Viridiplantae comes from land plants, but much less is known about their green algal relatives. In the green algal order Sphaeropleales (Chlorophyta), only one representative mitochondrial genome is currently available—that of Acutodesmus obliquus. Our study adds nine completely sequenced and three partially sequenced mi- tochondrial genomes spanning the phylogenetic diversity of Sphaeropleales. We show not only a size range of 25–53 kb and variation in intron content (0–11) and gene order but also conservation of 13 core respiratory genes and fragmented ribosomal RNA genes. We also report an unusual case of gene arrangement convergence in Neochloris aquatica, where the two rns fragments were secondarily placed in close proximity. Finally, we report the unprecedented usage of UCG as stop codon in Pseudomuriella schumacherensis.In addition, phylogenetic analyses of the mitochondrial protein-coding genes yield a fully resolved, well-supported phylogeny, showing promise for addressing systematic challenges in green algae.
    [Show full text]
  • Medium Ph and Nitrate Concentration Effects on Accumulation of Triacylglycerol in Two Members of the Chlorophyta
    J Appl Phycol (2011) 23:1005–1016 DOI 10.1007/s10811-010-9633-4 Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the chlorophyta Robert Gardner & Patrizia Peters & Brent Peyton & Keith E. Cooksey Received: 17 August 2010 /Revised and accepted: 16 November 2010 /Published online: 3 December 2010 # Springer Science+Business Media B.V. 2010 Abstract Algal-derived biodiesel is of particular interest Introduction because of several factors including: the potential for a near- carbon-neutral life cycle, the prospective ability for algae to Advancement in second generation renewable biofuels is of capture carbon dioxide generated from coal, and algae’shigh great importance environmentally, as well as strategically per acre yield potential. Our group and others have shown (Bilgen et al. 2004; Brown 2006; Dukes 2003; Schenk et al. that in nitrogen limitation, and for a single species of 2008). Biodiesel and biojet fuel defined as fatty acid methyl Chlorella, a rise in culture medium pH yields triacylglycerol esters (FAME) derived from plant, animal, or algal (TAG) accumulation. To solidify and expand on these triacylglycerol (TAG), are attractive options as an alterna- triggers, the influence and interaction of pH and nitrogen tive for portions of our current petroleum dependency. concentration on lipid production was further investigated on Hill’s recent life cycle analysis suggests that biodiesel can Chlorophyceae Scenedesmus sp. and Coelastrella sp. Growth yield 90% more energy than input requirements verses 25% was monitored optically and TAG accumulation was for ethanol production (Hill et al. 2006). Additionally, this monitored by Nile red fluorescence and confirmed by gas life cycle analysis noted less nitrogen, phosphorus, and chromatography.
    [Show full text]
  • Cretaceous Algal Palynomorphs from Northeast Sinai, Egypt: Systematics and Paleoenvironmental Implications Zainab M
    6 Egypt.J.Bot. Vol. 58, No.1, pp. 63 - 72 (2018) Cretaceous Algal Palynomorphs from Northeast Sinai, Egypt: Systematics and Paleoenvironmental Implications Zainab M. El Noamani# and Amal I. Saleh Botany Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt. HE microalgal palynomorphs considered one of the main categories of non-pollen Tpalynomorphs recognized in palynological slides which characterized by their potential paleoecological and stratigraphical values especially in the pre-Quaternary deposits. For this importance, four subsurface cutting samples recovered from two Cretaceous (Aptian/Albian and Turonian) geological units in Bougaz-1 well, northeast Sinai have been palynologically analyzed in order to study their algal content. Seven species of algae related to four genera from two divisions have been described and illustrated: Pediastrum boryanum, P. duplex, P. kawraiskyi, P. simplex, Scenedesmus acuminatus, and Chomotriletes minor (Chlorophyta); and Pterospermella sp. (Prasinophyta). Of these, two species (Pediastrum kawraiskyi and Scenedesmus acuminatus) are recorded for the first time from the Cretaceous of Egypt. Notes on the stratigraphic range and the geographical distribution of the most important recorded genera are given. The cell wall nature and its role in resistance to degradation are also discussed. The ecology of extant taxa has been used to determine the paleoenvironment and paleoecology prevailed in the studied area during the Cretaceous period. Keywords: Chlorophycean algae, Cretaceous, Egypt, Non-pollen palynomorphs, Paleoecology, Palynology. Introduction coenobia), filamentous zygnemataceans (a group of green algae produce resting spores with a In paleopalynology, in addition to spores and sporopollenin-like cell wall) and prasinophyte pollen of vascular plants, there are different phycomata (the fossilized cyst that represent non-pollen palynomorphs (NPPs) which the non-motile stage of prasinophyceae).
    [Show full text]
  • Downloaded from Genbank on That Full Plastid Genomes Are Not Sufficient to Reject Al- February 28, 2012
    Ruhfel et al. BMC Evolutionary Biology 2014, 14:23 http://www.biomedcentral.com/1471-2148/14/23 RESEARCH ARTICLE Open Access From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes Brad R Ruhfel1*, Matthew A Gitzendanner2,3,4, Pamela S Soltis3,4, Douglas E Soltis2,3,4 and J Gordon Burleigh2,4 Abstract Background: Next-generation sequencing has provided a wealth of plastid genome sequence data from an increasingly diverse set of green plants (Viridiplantae). Although these data have helped resolve the phylogeny of numerous clades (e.g., green algae, angiosperms, and gymnosperms), their utility for inferring relationships across all green plants is uncertain. Viridiplantae originated 700-1500 million years ago and may comprise as many as 500,000 species. This clade represents a major source of photosynthetic carbon and contains an immense diversity of life forms, including some of the smallest and largest eukaryotes. Here we explore the limits and challenges of inferring a comprehensive green plant phylogeny from available complete or nearly complete plastid genome sequence data. Results: We assembled protein-coding sequence data for 78 genes from 360 diverse green plant taxa with complete or nearly complete plastid genome sequences available from GenBank. Phylogenetic analyses of the plastid data recovered well-supported backbone relationships and strong support for relationships that were not observed in previous analyses of major subclades within Viridiplantae. However, there also is evidence of systematic error in some analyses. In several instances we obtained strongly supported but conflicting topologies from analyses of nucleotides versus amino acid characters, and the considerable variation in GC content among lineages and within single genomes affected the phylogenetic placement of several taxa.
    [Show full text]