NCBI Name Molecular Formula Monoisotopic Mass Of

Total Page:16

File Type:pdf, Size:1020Kb

NCBI Name Molecular Formula Monoisotopic Mass Of monoisotopic mass of NCBI name molecular formula CAS number NCBI CID precursor ion 1-(2-thiazolylazo)-2-naphthol C13 H9N3OS 256.0539 1147-56-4 6308684 1,1-diphenyl-1-methoxy-3-benzylaminopropane C23 H25 NO 332.2008 14089-87-3 187770 11-hydroxy-delta(9)-tetrahydrocannabinol C21 H30 O3 331.2267 36557-05-8 37482 phenicarbazide C7H9N3O 152.0818 103-03-7 61002 2,5-diphenyloxazole C15 H11 NO 222.0913 92-71-7 7105 cathinone C9H11 NO 150.0913 71031-15-7 107786 3,5-dichloroaniline C6H5Cl 2N 161.9871 95-76-1 7257 4-amino-2-nitrotoluene C7H8N2O2 153.0658 119-32-4 8390 4-methoxyazobenzene C13 H12 N2O 213.1022 2396-60-3 16966 5-chloro-8-hydroxyquinoline C9H6ClNO 180.0210 130-16-5 2817 acetylcodeine C20 H23 NO 4 342.1699 6703-27-1 631066 6-o-monoacetylmorphine C19 H21 NO 4 328.1543 2784-73-8 5462507 7-aminoflunitrazepam C16 H14 FN 3O 284.1194 34084-50-9 92294 8-chlorotheophylline C7H7ClN 4O2 215.0330 85-18-7 10661 acebutolol C18 H28 N2O4 337.2121 37517-30-9 1978 acenocoumarol C19 H15 NO 6 354.0972 152-72-7 9052 acetazolamide C4H6N4O3S2 222.9954 59-66-5 1986 acetohexamide C15 H20 N2O4S 325.1216 968-81-0 1989 acetylsulfamethoxypyridazine C13 H14 N4O4S 323.0808 3568-43-2 19122 N(4)-acetylsulfisoxazole C13 H15 N3O4S 310.0856 4206-74-0 160743 acyclovir C8H11 N5O3 226.0934 59277-89-3 2022 adenosine C10 H13 N5O4 268.1040 58-61-7 60961 vidarabine C10 H13 N5O4 268.1040 5536-17-4 21704 epinephrine C9H13 NO 3 184.0968 51-43-4 5816 aethiazidum C9H12 ClN 3O4S2 326.0030 1824-58-4 15763 ajmaline C20 H26 N2O2 327.2067 4360-12-7 20367 allopurinol C5H4N4O 137.0457 315-30-0 2094 aloin C21 H22 O9 419.1336 1415-73-2 313325 alprazolam C17 H13 ClN 4 309.0901 28981-97-7 2118 amantadine C10 H17 N 152.1433 768-94-5 2130 ambroxol C13 H18 Br 2N2O 376.9858 18683-91-5 2132 + ambutonium C20 H27 N2O 311.2117 14007-49-9 8277 amidephrine C10 H16 N2O3S 245.0954 37571-84-9 15010 amiloride C6H8ClN 7O 230.0551 2609-46-3 16231 aminocarb C11 H16 N2O2 209.1284 2032-59-9 16247 aminopyrine C13 H17 N3O 232.1444 58-15-1 6009 sultopride C17 H27 N3O4S 370.1795 71675-85-9 2159 amitraz C19 H23 N3 294.1964 33089-61-1 36324 amitrole C2H4N4 85.0508 61-82-5 1639 amlodipine C20 H25 ClN 2O5 409.1524 88150-42-9 2162 amoxicillin C16 H19 N3O5S 366.1118 26787-78-0 33613 amphetamine C9H13 N 136.1120 300-62-9 3007 amytriptyline C20 H23 N 278.1903 50-48-6 2160 antazoline C17 H19 N3 266.1651 91-75-8 2200 aprindine C22 H30 N2 323.2481 37640-71-4 2218 arginine C6H14 N4O2 175.1189 7200-25-1 232 aripiprazole C23 H27 Cl 2N3O2 448.1553 129722-12-9 60795 carticaine C13 H20 N2O3S 285.1267 23964-58-1 32170 astemizole C28 H31 FN 4O 459.2554 68844-77-9 2247 atenolol C14 H22 N2O3 267.1703 29122-68-7 2249 atomoxetine C17 H21 NO 256.1695 82248-59-7 54841 atrazine C8H14 ClN 5 216.1010 1912-24-9 2256 deethylatrazine C6H10 ClN 5 188.0697 6190-65-4 22563 6-deisopropylatrazine C5H8ClN 5 174.0540 1007-28-9 13878 atropine C17 H23 NO 3 290.1750 51-55-8 174174 azathioprine C9H7N7O2S 278.0454 446-86-6 2265 azidoamphenicol C11 H13 N5O5 296.0989 13838-08-9 62858 azintamide C10 H14 ClN 3OS 260.0618 1830-32-6 71105 mesoranil C7H11 N7S 226.0869 4658-28-0 3032472 azithromycin C38 H72 N2O12 749.5158 83905-01-5 447043 baclofen C10 H12 ClNO 2 214.0629 1134-47-0 2284 bamethan C12 H19 NO 2 210.1488 3703-79-5 2292 sulfameter C11 H12 N4O3S 281.0702 651-06-9 5326 beclomethasonedipropionate C28 H37 ClO 7 521.2300 5534-09-8 21700 benactyzine C20 H25 NO 3 328.1907 302-40-9 9330 benserazide C10 H15 N3O5 258.1084 322-35-0 2327 bezafribrate C19 H20 ClNO 4 362.1153 41859-67-0 39042 benzocaine C9H11 NO 2 166.0862 94-09-7 2337 benzoctamine C18 H19 N 250.1590 17243-39-9 28425 benzoylecgonine C16 H19 NO 4 290.1387 519-09-5 2340 benztropine C21 H25 NO 308.2008 86-13-5 238053 benzopenicillin C16 H18 N2O4S 335.1060 61-33-6 2349 betahistine C8H12 N2 137.1073 5638-76-6 2366 + bethanechol C7H17 N2O2 161.1284 674-38-4 2370 benzidine C12 H12 N2 185.1073 92-87-5 7111 biotin C10 H16 N2O3S 245.0954 58-85-5 171548 biperiden C21 H29 NO 312.2321 514-65-8 2381 bisacodyl C22 H19 NO 4 362.1386 603-50-9 2391 bibentiamine C38 H42 N8O6S2 771.2741 2667-89-2 3034022 bisoprolol C18 H31 NO 4 326.2325 66722-44-9 2405 bornaprine C21 H31 NO 2 330.2427 20448-86-6 30160 bromacil C9H13 BrN 2O2 261.0233 314-40-9 9411 bromazepam C14 H10 BrN 3O 316.0079 1812-30-2 2441 brompheniramine C16 H19 BrN 2 319.0804 86-22-6 6834 brotizolam C15 H10 BrClN4S 392.9570 57801-81-7 2451 budesonide C25 H34 O6 431.2428 51333-22-3 5281004 bufexamac C12 H17 NO 3 224.1281 2438-72-4 2466 buflomedil C17 H25 NO 4 308.1856 55837-25-7 2467 bufotenin C12 H16 N2O 205.1335 487-93-4 10257 bumetanide C17 H20 N2O5S 365.1165 28395-03-1 2471 bunitrolol C14 H20 N2O2 249.1597 34915-68-9 2473 nylidrin C19 H25 NO 2 300.1958 447-41-6 4567 bupranolol C14 H22 ClNO 2 272.1411 14556-46-8 2475 buprenorphine C29 H41 NO 4 468.3108 52485-79-7 5311033 buspirone C21 H31 N5O2 386.2550 36505-84-7 2477 butacaine C18 H30 N2O2 307.2380 149-16-6 2480 brospamin C18 H29 NO 3 308.2220 18109-80-3 28892 butetamate C16 H25 NO 2 264.1958 14007-64-8 27368 butizide C11 H16 N3O4S2Cl 354.0343 2043-38-1 16274 butoxycarboxime C7H14 N2O4S 223.0747 34681-23-7 9571009 buturon C12 H13 ClN 2O 237.0789 3766-60-7 19587 butamben C11 H15 NO 2 194.1175 94-25-7 2482 + butylscopolammonium C21 H30 NO 4 360.2169 7182-53-8 452294 cabergoline C26 H37 N5O2 452.3020 81409-90-7 54746 norephendrinetheophylline C18 H23 N5O3 358.1873 58166-83-9 71740 candesartan C24 H20 N6O3 441.1669 139481-59-7 2541 candesartan cilexetil C33 H34 N6O6 611.2612 145040-37-5 2540 cannabidiol C21 H30 O2 315.2318 13956-29-1 644019 Cannabinol C21 H26 O2 311.2005 521-35-7 2543 carazolol C18 H22 N2O2 299.1754 57775-29-8 71739 carbamazepine C15 H12 N2O 237.1022 298-46-4 2554 carbidopa C10 H14 N2O4 227.1026 28860-95-9 34359 carbimazole C7H10 N2O2S 187.0535 22232-54-8 31072 carbinoxamine C16 H19 ClN 2O 291.1258 486-16-8 2564 chromonar C20 H27 NO 5 362.1961 804-10-4 12604 caroverine C22 H27 N3O2 366.2176 23465-76-1 65709 carvedilol C24 H26 N2O4 407.1965 72956-09-3 2585 cefaclor C15 H14 ClN 3O4S 368.0466 53994-73-3 40958 cefadroxil C16 H17 N3O5S 364.0961 50370-12-2 2610 celecoxib C17 H14 F3N3O2S 382.0831 169590-42-5 2662 celiprolol C20 H33 N3O4 380.2543 56980-93-9 2663 cephalexin C16 H17 N3O4S 348.1012 15686-71-2 27447 cephaloridine C19 H17 N3O4S2 416.0733 50-59-9 5773 + cethylpyridinium C21 H38 N 304.2998 7773-52-6 2683 cetirizine C21 H25 ClN 2O3 389.1626 83881-51-0 2678 + cetrimonium C19 H42 N 284.3311 6899-10-1 5974 quinidine C20 H24 N2O2 325.1910 56-54-2 5953 quinomethionate C10 H6N2OS 2 234.9994 2439-01-2 17109 chloramphenicol 4-morpholineacetate C17 H21 Cl 2N3O7 450.0829 98145-68-7 3062470 chlorbromuron C9H10 BrClN 2O2 292.9686 13360-45-7 25912 chlordiazepoxide C16 H14 ClN 3O 300.0898 58-25-3 2712 chlorhexidine C22 H30 Cl 2N10 505.2104 55-56-1 9552079 chlorhexamide C13 H17 ClN 2O3S 317.0721 963-03-1 70403 chlormezanone C11 H12 ClNO 3S 274.0299 80-77-3 2717 chlormidazole C15 H13 ClN 2 257.0840 3689-76-7 71821 chloroquine C18 H26 ClN 3 320.1888 54-05-7 2719 chloroxazone C7H4NO 2Cl 170.0003 95-25-0 2733 chlorpheniramine C16 H19 ClN 2 275.1309 132-22-9 2725 chlorphenoxamine C18 H22 ClNO 304.1462 77-38-3 6475 chloroprocaine C13 H19 ClN 2O2 271.1207 133-16-4 8612 chlorpromazine C17 H19 ClN 2S 319.1030 50-53-3 2726 chlorpropham C10 H12 ClNO 2 214.0629 101-21-3 2728 chlorprothixene C18 H18 ClNS 316.0921 113-59-7 2729 chlortalidone C14 H11 ClN 2O4S 339.0200 77-36-1 2732 chlortetracycline C22 H23 ClN 2O8 479.1215 57-62-5 6426718 chlorthenoxazine C10 H10 ClNO 2 212.0472 132-89-8 8602 chlortoluron C10 H13 ClN 2O 213.0789 15545-48-9 27375 catechin C15 H14 O6 291.0863 154-23-4 9064 cilazapril C22 H31 N3O5 418.2336 88768-40-5 56330 cimetidine C10 H16 N6S 253.1229 51481-61-9 2756 dibucaine C20 H29 N3O2 344.2332 85-79-0 3025 cinnarizine C26 H28 N2 369.2325 298-57-7 2761 cinolazepam C18 H13 ClFN 3O2 358.0753 75696-02-5 3033621 citalopram C20 H21 FN 2O 325.1710 59729-33-8 2771 clemizole C19 H20 ClN 3 326.1418 442-52-4 2782 + clidinium C22 H26 NO 3 352.1907 7020-55-5 2784 clindamycin C18 H33 ClN 2O5S 425.1871 18323-44-9 29029 clioquinol C9H5NOClI 305.9177 130-26-7 2788 clobazam C16 H13 ClN 2O2 301.0738 22316-47-8 2789 chlormethiazole C6H8ClNS 162.0138 533-45-9 10783 clomiphene C26 H28 NOCl 406.1932 911-45-5 2800 clomipramine C19 H23 ClN 2 315.1622 303-49-1 2801 clonazepam C15 H10 ClN 3O3 316.0483 1622-61-3 2802 clonidine C9H9Cl 2N3 230.0246 4205-90-7 2803 clotrimazole C22 H17 ClN 2 345.1153 23593-75-1 2812 cloxazillin C19 H18 ClN 3O5S 436.0728 61-72-3 6098 clozapine C18 H19 ClN 4 327.1371 5786-21-0 2818 cocaethylene C18 H23 NO 4 318.1700 529-38-4 65034 cocaine C17 H21 NO 4 304.1543 50-36-2 5760 codeine C18 H21 NO 3 300.1594 76-57-3 5284371 caffeine C8H10 N4O2 195.0876 58-08-2 2519 colchicine C22 H25 NO 6 400.1754 64-86-8 6167 thioacetazone C10 H12 N4OS 237.0804 104-06-3 9568512 + cornecain C15 H25 N2O3 281.1859 3686-68-8 20141 coumatetralyl C19 H16 O3 293.1172 5836-29-3 22095 crimidine C7H10 ClN 3 172.0636 535-89-7 10813 cyanazine C9H13 ClN 6 241.0962 21725-46-2 30773 cyclizine C18 H22 N2 267.1855 82-92-8 6726 cycloadiphenine C20 H31 NO 2 318.2427 548-66-3 3166 cyclopenthiazide C13 H18 ClN 3O4S2 380.0500 742-20-1 2904 cyclopentolate C17 H25 NO 3 292.1907 512-15-2 2905 cymiazole C12 H14 N2S 219.0950 61676-87-7 43714 cyproheptadine C21 H21 N 288.1746 129-03-3 2913 cytarabine C9H13 N3O5 244.0927 147-94-4 6253 daminozide C6H12 N2O3 161.0920 1596-84-5 15331 deanol C4H11 NO 90.0913 108-01-0 7902 debrisoquin C10 H13 N3 176.1182 1131-64-2 2966 desipramine C18 H22 N2 267.1855 50-47-5 2995 desloratadine C19 H19 ClN
Recommended publications
  • (12) United States Patent (10) Patent No.: US 9,498,481 B2 Rao Et Al
    USOO9498481 B2 (12) United States Patent (10) Patent No.: US 9,498,481 B2 Rao et al. (45) Date of Patent: *Nov. 22, 2016 (54) CYCLOPROPYL MODULATORS OF P2Y12 WO WO95/26325 10, 1995 RECEPTOR WO WO99/O5142 2, 1999 WO WOOO/34283 6, 2000 WO WO O1/92262 12/2001 (71) Applicant: Apharaceuticals. Inc., La WO WO O1/922.63 12/2001 olla, CA (US) WO WO 2011/O17108 2, 2011 (72) Inventors: Tadimeti Rao, San Diego, CA (US); Chengzhi Zhang, San Diego, CA (US) OTHER PUBLICATIONS Drugs of the Future 32(10), 845-853 (2007).* (73) Assignee: Auspex Pharmaceuticals, Inc., LaJolla, Tantry et al. in Expert Opin. Invest. Drugs (2007) 16(2):225-229.* CA (US) Wallentin et al. in the New England Journal of Medicine, 361 (11), 1045-1057 (2009).* (*) Notice: Subject to any disclaimer, the term of this Husted et al. in The European Heart Journal 27, 1038-1047 (2006).* patent is extended or adjusted under 35 Auspex in www.businesswire.com/news/home/20081023005201/ U.S.C. 154(b) by Od en/Auspex-Pharmaceuticals-Announces-Positive-Results-Clinical M YW- (b) by ayS. Study (published: Oct. 23, 2008).* This patent is Subject to a terminal dis- Concert In www.concertpharma. com/news/ claimer ConcertPresentsPreclinicalResultsNAMS.htm (published: Sep. 25. 2008).* Concert2 in Expert Rev. Anti Infect. Ther. 6(6), 782 (2008).* (21) Appl. No.: 14/977,056 Springthorpe et al. in Bioorganic & Medicinal Chemistry Letters 17. 6013-6018 (2007).* (22) Filed: Dec. 21, 2015 Leis et al. in Current Organic Chemistry 2, 131-144 (1998).* Angiolillo et al., Pharmacology of emerging novel platelet inhibi (65) Prior Publication Data tors, American Heart Journal, 2008, 156(2) Supp.
    [Show full text]
  • Zebrafish Behavioral Profiling Links Drugs to Biological Targets and Rest/Wake Regulation
    www.sciencemag.org/cgi/content/full/327/5963/348/DC1 Supporting Online Material for Zebrafish Behavioral Profiling Links Drugs to Biological Targets and Rest/Wake Regulation Jason Rihel,* David A. Prober, Anthony Arvanites, Kelvin Lam, Steven Zimmerman, Sumin Jang, Stephen J. Haggarty, David Kokel, Lee L. Rubin, Randall T. Peterson, Alexander F. Schier* *To whom correspondence should be addressed. E-mail: [email protected] (A.F.S.); [email protected] (J.R.) Published 15 January 2010, Science 327, 348 (2010) DOI: 10.1126/science.1183090 This PDF file includes: Materials and Methods SOM Text Figs. S1 to S18 Table S1 References Supporting Online Material Table of Contents Materials and Methods, pages 2-4 Supplemental Text 1-7, pages 5-10 Text 1. Psychotropic Drug Discovery, page 5 Text 2. Dose, pages 5-6 Text 3. Therapeutic Classes of Drugs Induce Correlated Behaviors, page 6 Text 4. Polypharmacology, pages 6-7 Text 5. Pharmacological Conservation, pages 7-9 Text 6. Non-overlapping Regulation of Rest/Wake States, page 9 Text 7. High Throughput Behavioral Screening in Practice, page 10 Supplemental Figure Legends, pages 11-14 Figure S1. Expanded hierarchical clustering analysis, pages 15-18 Figure S2. Hierarchical and k-means clustering yield similar cluster architectures, page 19 Figure S3. Expanded k-means clustergram, pages 20-23 Figure S4. Behavioral fingerprints are stable across a range of doses, page 24 Figure S5. Compounds that share biological targets have highly correlated behavioral fingerprints, page 25 Figure S6. Examples of compounds that share biological targets and/or structural similarity that give similar behavioral profiles, page 26 Figure S7.
    [Show full text]
  • Food and Drug Administration, HHS § 310.201
    Food and Drug Administration, HHS § 310.201 (d) Prescription legend not allowed on (v) The preparation is labeled with exempted drugs. The use of the prescrip- adequate directions for use in minor tion caution statement quoted in sec- conditions as a simple analgesic. tion 503(b) (4) of the act, in the labeling (vi) The dosages of N-acetyl-p-amino- of a drug exempted under the provi- phenol recommended or suggested in sions of this section, constitutes mis- the labeling do not exceed: For adults, branding. Any other statement or sug- 0.65 gram (10 grains) per dose or 2.6 gestion in the labeling of a drug ex- grams (40 grains) per 24-hour period: for empted under this section, that such children 6 to 12 years of age, one-half of drug is limited to prescription use, the maximum adult dose or dosage; for may constitute misbranding. children 3 to 6 years of age, one-fifth of (e) Prescription-exemption procedure of the maximum adult dose or dosage. OTC drug review. A drug limited to pre- (vii) The labeling bears, in juxtaposi- scription use under section 503(b)(1)(B) tion with the dosage recommendations, of the act may also be exempted from a clear warning statement against ad- prescription-dispensing requirements ministration of the drug to children by the procedure set forth in § 330.13 of under 3 years of age and against use of this chapter. the drug for more than 10 days, unless such uses are directed by a physician. [39 FR 11680, Mar.
    [Show full text]
  • Author Index Page Numbers in Italics Refer to Bibliography
    Author Index Page Numbers in italics refer to bibliography Aaron,T.H., Criep,L.H. 180. Adams,M.R., see Litchfield,J. Albert,A., Serjeant,E.P. 176, 207 T., Jr. 386, 409, 432, 441, 207 Aaron, T. H., see Criep, L. H. 465,496 Albert,J.R., see Lish,P.M. 398,427 Adamson,D.W., Barrett,P.A., 449, 465, 466, 495 Aarsen,P.N., Zeegers,A. 15, Billinghurst, J. W., Green, A. Albert, U., see Giertz, H. 444, 30 F .. Jones,T.S.G. 190,192, 489 Abbozzo, G., Genazzani, E., 207 Alberty,J. 387,425, 442, Donatelli, L. 562,570 Adamson, D. W., Barrett, P. A., 452--455,480 Abdel-Galil, A. A. M., Marshall, Billinghurst,J. W., Jones, T. Alberty, J., Huurrekorpi, L. P. B. 114, 122 S.G. 190,207 399, 425, 455, 480 Aborg, e.-H .. Novotny,J., Adamson, D. W., Billinghurst, Alberty,J., Schiede,M. 399, Uvniis,B. 86.90 J.W. 189,194,207 425,455,480 Aborg,e. H., Uvniis,B. 87, 90 Adashek, D., Grossman, M. I. Alberty, J., Takkunen, R. 467, Aborg, C.-H., see Uvniis,B. 58. 46,47,55 480 74. 75, 82, 84-87. 92 Adlerova, E., see Protiva, M. Albinus,M., Sewing.K.F. 2, Abram, L. E., see Cohen, M. B. 201, 212 3, 6, 8, 11, 21, 30, 264, 287, 421,427 Ado,A.D., Abrossimow,W.N. 463,480 Abrams,G., see Lear,E. 566, 453.480 Albrecht, I., see Cort, J. H. 579, 571 Ado, A. D., Ishimova, L. M., 597 Abramson, D.
    [Show full text]
  • Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research
    Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Garabedian, Laura Faden. 2013. Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11156786 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research A dissertation presented by Laura Faden Garabedian to The Committee on Higher Degrees in Health Policy in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Health Policy Harvard University Cambridge, Massachusetts March 2013 © 2013 – Laura Faden Garabedian All rights reserved. Professor Stephen Soumerai Laura Faden Garabedian Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research Abstract This dissertation consists of two empirical papers and one methods paper. The first two papers use quasi-experimental methods to evaluate the impact of universal health insurance reform in Massachusetts (MA) and Thailand and the third paper evaluates the validity of a quasi- experimental method used in comparative effectiveness research (CER). My first paper uses interrupted time series with data from IMS Health to evaluate the impact of Thailand’s universal health insurance and physician payment reform on utilization of medicines for three non-communicable diseases: cancer, cardiovascular disease and diabetes.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/0081713 A1 Sharma Et Al
    US 20100081713A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0081713 A1 Sharma et al. (43) Pub. Date: Apr. 1, 2010 (54) COMPOSITIONS AND METHODS FOR (22) Filed: Mar. 18, 2009 TREATINGVIRAL INFECTIONS Related U.S. Application Data (75) Inventors: Geeta Sharma, Singapore (SG); (60) Provisional application No. 61/069,917, filed on Mar. Ralf Altmeyer, Singapore (SG); 19, 2008. Vishal Pendharker, Singapore (SG); Yu Chen, Singapore (SG); Publication Classification Michael Foley, Chestnut Hill, MA (51) Int. Cl. (US) A63L/35 (2006.01) A6II 3L/25 (2006.01) Correspondence Address: A63L/35 (2006.01) Gearhart Law LLC A6II 3/13 (2006.01) 4 Femdale Avenue A6IP3L/2 (2006.01) Chatham, NJ 07928 (US) (52) U.S. Cl. .......... 514/459; 514/529; 514/647: 514/662 (73) Assignee: CombinatoRx, (Singapore) Pte. (57) ABSTRACT Ltd. The present invention provides compositions, methods, and kits for treating or preventing a viral infection (e.g., an infec (21) Appl. No.: 12/406,716 tion caused by an influenza virus). Patent Application Publication Apr. 1, 2010 Sheet 1 of 2 US 2010/0081713 A1 ------ 80 r -0. Vehicle 0.5% HPMC g - - Sertraline-30mg/kg/day - £ 60 “A Sertraline-100mg/kg/day/kg/day i -v. Oseltamivir-30mg/kg/day ...i -0. Oseltamivir-100mg/kg/day -0. (Sertraline 30mg/kg+ . 40 Prednisolone 0.1 mg/Kg) Figure 1 Patent Application Publication Apr. 1, 2010 Sheet 2 of 2 US 2010/0081713 A1 100 468OOO 2 O Wehicle Sentraline 10 mg/kg Sentraline 30mg/kg Setraline 100mg/kg Figure 2 US 2010/008 1713 A1 Apr.
    [Show full text]
  • | Hao Ha Ta Maria Tai Mai Multe Detalian Mature
    |HAO HA TA MARIAUS009730892B2 TAI MAI MULTE DETALIAN MATURE (12 ) United States Patent ( 10 ) Patent No. : US 9 , 730 ,892 B2 Schutt et al. ( 45 ) Date of Patent : Aug . 15 , 2017 (54 ) METHOD FOR FORMULATING LARGE ( 56 ) References Cited DIAMETER SYNTHETIC MEMBRANE VESICLES U . S . PATENT DOCUMENTS 2 ,044 , 296 A 6 /1936 Hardgrove ( 71 ) Applicant : Pacira Pharmaceuticals , Inc ., San 2 ,824 ,807 A 2 / 1958 Laster et al . Diego , CA (US ) ( Continued ) (72 ) Inventors : Ernest George Schutt , San Diego , CA (US ) ; Ronald Warren McGuire , FOREIGN PATENT DOCUMENTS Murrieta , CA (US ) ; Peter Andrew AU 2002301268 B2 2 /2003 Walters, San Diego , CA (US ) ; AU 2006200044 Al 2 / 2006 Kathleen D . A . Los, San Diego , CA CA 933796 9 / 1973 ?? 960811 1 / 1975 (US ) CA 2 564 120 A1 8 / 1998 CA 2464668 5 / 2003 (73 ) Assignee : Pacira Pharmaceuticals , Inc ., San CH 519936 7 / 1971 Diego , CA (US ) CH 587023 7 / 1974 CN 101396345 5 / 2009 DE 1199191 8 / 1965 ( * ) Notice : Subject to any disclaimer, the term of this DE 51254 10 / 1966 patent is extended or adjusted under 35 DE 56223 5 / 1967 U . S . C . 154 ( b ) by 0 days . ( Continued ) ( 21 ) Appl . No . : 15 / 249 , 195 OTHER PUBLICATIONS Aug . 26 , 2016 (22 ) Filed : Atiemo -Obeng et al. “ Rotor - Stator Mixing Devices ” , Handbook of (65 ) Prior Publication Data Industrial Mixing Science and Practice , 2004 , 479 - 505 , Eds. Paul , US 2016 /0361260 A1 Dec . 15 , 2016 et al. , Hoboken , NJ: John Wiley and Sons , Inc. Related U . S . Application Data (Continued ) (63 ) Continuation of application No. 13 / 786 ,378 , filed on Primary Examiner — Monzer R Chorbaji Mar .
    [Show full text]
  • The Organic Chemistry of Drug Synthesis
    THE ORGANIC CHEMISTRY OF DRUG SYNTHESIS VOLUME 3 DANIEL LEDNICER Analytical Bio-Chemistry Laboratories, Inc. Columbia, Missouri LESTER A. MITSCHER The University of Kansas School of Pharmacy Department of Medicinal Chemistry Lawrence, Kansas A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY AND SONS New York • Chlchester • Brisbane * Toronto • Singapore Copyright © 1984 by John Wiley & Sons, Inc. All rights reserved. Published simultaneously in Canada. Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc. Library of Congress Cataloging In Publication Data: (Revised for volume 3) Lednicer, Daniel, 1929- The organic chemistry of drug synthesis. "A Wiley-lnterscience publication." Includes bibliographical references and index. 1. Chemistry, Pharmaceutical. 2. Drugs. 3. Chemistry, Organic—Synthesis. I. Mitscher, Lester A., joint author. II. Title. [DNLM 1. Chemistry, Organic. 2. Chemistry, Pharmaceutical. 3. Drugs—Chemical synthesis. QV 744 L473o 1977] RS403.L38 615M9 76-28387 ISBN 0-471-09250-9 (v. 3) Printed in the United States of America 10 907654321 With great pleasure we dedicate this book, too, to our wives, Beryle and Betty. The great tragedy of Science is the slaying of a beautiful hypothesis by an ugly fact. Thomas H. Huxley, "Biogenesis and Abiogenisis" Preface Ihe first volume in this series represented the launching of a trial balloon on the part of the authors. In the first place, wo were not entirely convinced that contemporary medicinal (hemistry could in fact be organized coherently on the basis of organic chemistry.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,393,221 B2 W (45) Date of Patent: Jul.19, 2016
    USOO9393221B2 (12) United States Patent (10) Patent No.: US 9,393,221 B2 W (45) Date of Patent: Jul.19, 2016 (54) METHODS AND COMPOUNDS FOR FOREIGN PATENT DOCUMENTS REDUCING INTRACELLULAR LIPID STORAGE WO WO2007096,251 8, 2007 OTHER PUBLICATIONS (75) Inventor: Sean Wu, Brookline, MA (US) Onyesom and Agho, Asian J. Sci. Res., Oct. 2010, vol. 4, No. 1, p. (73) Assignee: THE GENERAL, HOSPITAL 78-83. CORPORATION, Boston, MA (US) Davis et al., Br J Clin Pharmacol., 1996, vol. 4, p. 415-421.* Schweiger et al., Am J Physiol Endocrinol Metab, 2009, vol. 279, E289-E296. (*) Notice: Subject to any disclaimer, the term of this Maryam Ahmadian et al., Desnutrin/ATGL is regulated by AMPK patent is extended or adjusted under 35 and is required for a brown adipose phenotype, Cell Metabolism, vol. U.S.C. 154(b) by 748 days. 13, pp. 739-748, 2011. Mohammadreza Bozorgmanesh et al., Diabetes prediction, lipid (21) Appl. No.: 13/552,975 accumulation product, and adiposity measures; 6-year follow-up: Tehran lipid and glucose study, Lipids in Health and Disease, vol. 9, (22) Filed: Jul.19, 2012 pp. 1-9, 2010. Judith Fischer et al., The gene encoding adipose triglyceride lipase (65) Prior Publication Data (PNPLA2) is mutated in neutral lipid storage disease with myopathy, Nature Genetics, vol.39, pp. 28-30, 2007. US 2013/OO23488A1 Jan. 24, 2013 Astrid Gruber et al., The N-terminal region of comparative gene identification-58 (CGI-58) is important for lipid droplet binding and activation of adipose triglyceride lipase, vol. 285, pp. 12289-12298, Related U.S.
    [Show full text]
  • Modes of Action of Herbal Medicines and Plant Secondary Metabolites
    Medicines 2015, 2, 251-286; doi:10.3390/medicines2030251 OPEN ACCESS medicines ISSN 2305-6320 www.mdpi.com/journal/medicines Review Modes of Action of Herbal Medicines and Plant Secondary Metabolites Michael Wink Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, INF 364, Heidelberg D-69120, Germany; E-Mail: [email protected]; Tel.: +49-6221-544-881; Fax: +49-6221-544-884 Academic Editor: Shufeng Zhou Received: 13 August 2015 / Accepted: 31 August 2015 / Published: 8 September 2015 Abstract: Plants produce a wide diversity of secondary metabolites (SM) which serve them as defense compounds against herbivores, and other plants and microbes, but also as signal compounds. In general, SM exhibit a wide array of biological and pharmacological properties. Because of this, some plants or products isolated from them have been and are still used to treat infections, health disorders or diseases. This review provides evidence that many SM have a broad spectrum of bioactivities. They often interact with the main targets in cells, such as proteins, biomembranes or nucleic acids. Whereas some SM appear to have been optimized on a few molecular targets, such as alkaloids on receptors of neurotransmitters, others (such as phenolics and terpenoids) are less specific and attack a multitude of proteins by building hydrogen, hydrophobic and ionic bonds, thus modulating their 3D structures and in consequence their bioactivities. The main modes of action are described for the major groups of common plant secondary metabolites. The multitarget activities of many SM can explain the medical application of complex extracts from medicinal plants for more health disorders which involve several targets.
    [Show full text]
  • Structural Investigation of Heteroyohimbine Alkaloid Synthesis Reveals Active Site Elements That Control Stereoselectivity
    ARTICLE Received 30 Dec 2015 | Accepted 31 May 2016 | Published 15 Jul 2016 DOI: 10.1038/ncomms12116 OPEN Structural investigation of heteroyohimbine alkaloid synthesis reveals active site elements that control stereoselectivity Anna Stavrinides1,*, Evangelos C. Tatsis1,*, Lorenzo Caputi1, Emilien Foureau2, Clare E.M Stevenson1, David M. Lawson1, Vincent Courdavault2 & Sarah E. O’Connor1 Plants produce an enormous array of biologically active metabolites, often with stereo- chemical variations on the same molecular scaffold. These changes in stereochemistry dramatically impact biological activity. Notably, the stereoisomers of the heteroyohimbine alkaloids show diverse pharmacological activities. We reported a medium chain dehydrogenase/reductase (MDR) from Catharanthus roseus that catalyses formation of a heteroyohimbine isomer. Here we report the discovery of additional heteroyohimbine synthases (HYSs), one of which produces a mixture of diastereomers. The crystal structures for three HYSs have been solved, providing insight into the mechanism of reactivity and stereoselectivity, with mutation of one loop transforming product specificity. Localization and gene silencing experiments provide a basis for understanding the function of these enzymes in vivo. This work sets the stage to explore how MDRs evolved to generate structural and biological diversity in specialized plant metabolism and opens the possibility for metabolic engineering of new compounds based on this scaffold. 1 The John Innes Centre, Department of Biological Chemistry, Norwich NR4 7UH, UK. 2 Universite´ Franc¸ois-Rabelais de Tours, EA2106 ‘Biomole´cules et Biotechnologies Ve´ge´tales’, Tours 37200, France. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to V.C. (email: [email protected]) or to S.E.O’C.
    [Show full text]
  • In-Silico Approaches
    molecules Review Recent Developments in New Therapeutic Agents against Alzheimer and Parkinson Diseases: In-Silico Approaches Pedro Cruz-Vicente 1,2 , Luís A. Passarinha 1,2,3,* , Samuel Silvestre 1,3,4,* and Eugenia Gallardo 1,3,* 1 CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; [email protected] 2 UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, Faculty of Sciences and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal 3 Laboratory of Pharmaco-Toxicology—UBIMedical, University of Beira Interior, 6200-001 Covilhã, Portugal 4 CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal * Correspondence: [email protected] (L.A.P.); [email protected] (S.S.); [email protected] (E.G.); Tel.: +351-275-329-002/3 (L.A.P. & S.S. & E.G.) Abstract: Neurodegenerative diseases (ND), including Alzheimer’s (AD) and Parkinson’s Disease (PD), are becoming increasingly more common and are recognized as a social problem in modern societies. These disorders are characterized by a progressive neurodegeneration and are considered one of the main causes of disability and mortality worldwide. Currently, there is no existing cure for AD nor PD and the clinically used drugs aim only at symptomatic relief, and are not capable Citation: Cruz-Vicente, P.; of stopping neurodegeneration. Over the last years, several drug candidates reached clinical trials Passarinha, L.A.; Silvestre, S.; phases, but they were suspended, mainly because of the unsatisfactory pharmacological benefits. Gallardo, E. Recent Developments in Recently, the number of compounds developed using in silico approaches has been increasing at New Therapeutic Agents against a promising rate, mainly evaluating the affinity for several macromolecular targets and applying Alzheimer and Parkinson Diseases: filters to exclude compounds with potentially unfavorable pharmacokinetics.
    [Show full text]