The Dangerous Rise of Antibiotic Resistance in Contemporary Spain

Total Page:16

File Type:pdf, Size:1020Kb

The Dangerous Rise of Antibiotic Resistance in Contemporary Spain Connecticut College Digital Commons @ Connecticut College Toor Cummings Center for International Studies CISLA Senior Integrative Projects and the Liberal Arts (CISLA) 2020 The Dangerous Rise of Antibiotic Resistance in Contemporary Spain Isis Torrez Connecticut College Follow this and additional works at: https://digitalcommons.conncoll.edu/sip Recommended Citation Torrez, Isis, "The Dangerous Rise of Antibiotic Resistance in Contemporary Spain" (2020). CISLA Senior Integrative Projects. 18. https://digitalcommons.conncoll.edu/sip/18 This Honors Paper is brought to you for free and open access by the Toor Cummings Center for International Studies and the Liberal Arts (CISLA) at Digital Commons @ Connecticut College. It has been accepted for inclusion in CISLA Senior Integrative Projects by an authorized administrator of Digital Commons @ Connecticut College. For more information, please contact [email protected]. The views expressed in this paper are solely those of the author. The Misuse and Overuse of Antibiotics: The Cause of Antibiotic Resistant Bacteria Isis Torres-Nuñez Senior Integrated Project Advisor: Professor Bernhard Fall 2019 Connecticut College Torres-Nuñez 1 Abstract Antibiotic resistance is a global health threat that has jeopardized the worth of antibiotics, which have previously transformed medicine in the past decades by saving millions of lives. With thousands of people now dying yearly as a result of bacteria being resistant to antibiotics, we are in great need of new antibiotics. However, it is our careless overuse and misuse of the ones we already have that has resulted in this global health crisis. Thus, multidisciplinary approaches need to be made across the globe, in health care settings, and in agriculture to diminish our abuse of antibiotics so that when we do discover new ones, we are not presented with this problem ​ once more. Bacteria in the Human Body Of all microorganisms and living creatures on earth, bacteria are the most abundant, inhabiting soils, oceans, and even human bodies. In ecosystems, these organisms play key roles in cycling essential nutrients such as carbon, hydrogen, oxygen, and nitrogen. In human bodies, they help metabolize food, provide essential nutrients, periodically fight off invading pathogens, and much more. For example, some bacteria in the intestinal wall play a vital role in fighting infection by producing bacteriocins, which are small proteins that prevent harmful microorganisms from growing (Gorbach 1996). Other bacteria in the human gastrointestinal tract are responsible for synthesizing vitamin K2, an essential component of an enzyme necessary for ​ ​ blood clotting (Berkner 2000). Even more interesting, some studies have proven that changing the bacteria in the gastrointestinal tract has even been associated with cancer (Motevaseli et al. 2017). Thus, as you can see, not all bacteria are harmful and human bodies rely heavily on many Torres-Nuñez 2 of them for survival. Unfortunately, however, some bacteria are toxic, these are known as ​ pathogenic bacteria. Pathogenic bacteria can give rise to an array of infections all over the body, ranging from skin and hair to blood and internal organs. These organisms typically cause infection through the release of harmful toxins and can spread it to others through direct contact, contaminated food and water, bodily fluids, and/or airborne transmission (Drexler 2010). What makes them all the more dangerous is their ability to rapidly reproduce and acquire new genetic material, such as genes that code for antibiotic resistance, from surrounding bacteria (Holmes 1996). Through these methods, bacteria are able to incorporate foreign DNA into their genome, creating recombinant DNA and allowing them to express those foreign genes permanently (Holmes 1996). As a result, bacteria are able to rapidly adapt to their environments and survive even in the presence of toxins such as antibiotics. Antibiotics Antibiotics are a type of drugs that fight bacterial infections through many different ​ mechanisms (Table 1). Since bacteria (which are unicellular) and human cells share similarities in their structure, antibiotics are designed to be specific enough that human cells don’t get harmed in the process of eradicating infections. For example, penicillins work by inhibiting the cross linking of bacterial cell walls, a structure that human cells lack, in order to cause disintegration (Strominger et al. 1971). In contrast, tetracyclines work by preventing the binding of an important RNA molecule (known as aminoacyl tRNA) to ribosomes, which are the organelles that synthesize proteins (Chopra and Roberts 2001). Even though protein synthesis is Torres-Nuñez 3 also carried out by human cells, humans use different ribosomes than bacteria. While bacteria use ribosomes composed of 50s large subunits and 30s small subunits, humans use ribosomes composed of 60S large subunits and 40s small subunits (Berg et al. 2002). Thus, allowing tetracyclines to target bacterial protein synthesis specifically and not human protein synthesis. ​ ​ Even though different classes of antibiotics target bacteria through distinct and specific approaches (Table 1), they all generally act as bacteriostatic agents to restrict cell growth/reproduction or as bactericidal agents to straightforwardly cause cell death (Ocampo et al. 2014). The range of side effects that patients experience as a result of these drugs perhaps is due to the drug mechanism of action. For example, accidentally targeting a human ribosome instead of a bacterial ribosome by tetracyclines might lead to unwanted symptoms. Other factors include the concentration of antibiotics used and the percent of healthy, pathogen-fighting bacteria that are accidentally killed in the process of fighting an infection. Consequently, the more that bacteria are exposed to antibiotics (and survive), the less sensitive they become to them, requiring higher concentrations of antibiotics to be prescribed (Zaman et al. 2017). This in turn results in unwanted effects, one of the biggest ones being antibiotic resistance. Table 1. Common Antibiotics and Their Modes of Action Class of Examples Mechanism of Action Antibiotic β-Lactams Penicillins (penicillin G, Enter the bacterial cell through porins and ​ methicillin, amoxicillin), permanently acylate penicillin binding proteins (PBPs) which catalyze the Cephalosporins formation of peptidoglycan in cell wall. (cephalothin, cephalexin) Additionally, can bind to the active site of transpeptidase to inhibit the cross-linking Carbapenems (Imipenem, of peptidoglycan, resulting in cell lysis. meropenem) Torres-Nuñez 4 Tetracyclines Tetracycline, doxycycline, Inhibit protein synthesis by preventing the clomocycline attachment of aminoacyl-tRNA to ribosomal acceptor (A) site. Quinolones Ciprofloxacin, Harm DNA by increasing the concentration temafloxacin of enzyme-DNA cleavage complexes, such as topoisomerase IV and gyrase. MLS Family Macrolides (erythromycin, Inhibit protein synthesis by binding to the ​ azithromycin) large ribosomal subunit, near the peptidyl transferase center. Some inhibit the Lincosamides (lincomycin, peptidyl transferase reaction, others block ​ clindamycin) the exit of peptidyl tRNAs which results in premature dissociation. Streptogramin ​ (virginiamycin, pristinamycin) Sulfonamides Sulphanilamide, Act as competitive antagonists to sulfathalidine para-aminobenzoic acid, a precursor to ​ folic acid) and necessary for nucleic acid synthesis. Glycopeptides Vancomycin, telavancin Form stable complexes, through hydrogen bonding, with clefts in bacterial cell walls which inhibit the formation of the glycan chain backbone. Aminoglycosides Streptomycin, kanamycin Interfere with protein synthesis by either binding to the small 30s subunit or by incorporating incorrect amino acids into the growing chain. Causes of Antibiotic Resistance on a Cellular Level Due to natural selection and evolution, all living organisms develop mechanisms in order to survive as the conditions of their environment change and become challenging. Just as humans have developed antibiotics to fight bacterial infections, bacteria have developed mechanisms to fight off those same toxins trying to kill them. The two major ways in which bacteria can develop antibiotic resistance are intrinsically or with acquirance (Hawkey 1998). With intrinsic Torres-Nuñez 5 resistance, the event is random and naturally occurring in an effort to adapt to environmental stressors and pressures. These mutations are often spontaneous and their origins tend to be obscure since they result from years of evolution (Hawkey 1998). With acquired resistance, the bacteria develop resistance after being sensitized to antibiotics or after obtaining new DNA. New DNA can be obtained through a process called horizontal gene transfer (HGT) in which genetic ​ material is swapped between neighboring bacteria through transformation, transduction, or conjugation (Clark and Pazdernik 2013). With transformation, bacteria take up extracellular DNA from their surroundings. With transduction, bacteria are infected with bacteriophages (viruses) that carry donor DNA. With conjugation, donor bacteria transfer their DNA to recipient bacteria through mating. With either of these three methods, HGT allows bacteria to transfer DNA across all different types of bacteria, even with ones that are not of the same species. This is one of the factors that makes the spread of antibiotic resistance occur rapidly and easily. The newly obtained DNA
Recommended publications
  • Evaluating Risks from Antibacterial Medication Therapy
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Summer 2010 Evaluating Risks from Antibacterial Medication Therapy Sharon B. Meropol University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Therapeutics Commons Recommended Citation Meropol, Sharon B., "Evaluating Risks from Antibacterial Medication Therapy" (2010). Publicly Accessible Penn Dissertations. 424. https://repository.upenn.edu/edissertations/424 A version of Chapter 3 has been published: Meropol SB, Chen Z, Metlay JP. Reduced antibiotic use for acute respiratory infections in adults and children. Br J Gen Prac. Oct. 2009; 59(567)3321-328.DOI:10.3399/ bjgp09X472610. E321-328 PMID: 19843412 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/424 For more information, please contact [email protected]. Evaluating Risks from Antibacterial Medication Therapy Abstract ABSTRACT EVALUATING RISKS FROM ANTIBACTERIAL MEDICATION THERAPY USING AN OBSERVATIONAL PRIMARY CARE DATABASE Sharon B. Meropol Joshua P. Metlay Virtually everyone in the U.S. is exposed to antibacterial drugs at some point in their lives. It is important to understand the benefits and risks elatedr to these medications with nearly universal public exposure. Most information on antibacterial drug-associated adverse events comes from spontaneous reports. Without an unexposed control group, it is impossible to know the real risks for treated vs. untreated patients. We used an electronic medical record database to select a cohort of office visits for non-bacterial acuteespir r atory tract infections (excluding patients with pneumonia, sinusitis, or acute exacerbations of chronic bronchitis), and compared outcomes of antibacterial drug-exposed vs.
    [Show full text]
  • Pharmaceuticals As Environmental Contaminants
    PharmaceuticalsPharmaceuticals asas EnvironmentalEnvironmental Contaminants:Contaminants: anan OverviewOverview ofof thethe ScienceScience Christian G. Daughton, Ph.D. Chief, Environmental Chemistry Branch Environmental Sciences Division National Exposure Research Laboratory Office of Research and Development Environmental Protection Agency Las Vegas, Nevada 89119 [email protected] Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada Why and how do drugs contaminate the environment? What might it all mean? How do we prevent it? Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada This talk presents only a cursory overview of some of the many science issues surrounding the topic of pharmaceuticals as environmental contaminants Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada A Clarification We sometimes loosely (but incorrectly) refer to drugs, medicines, medications, or pharmaceuticals as being the substances that contaminant the environment. The actual environmental contaminants, however, are the active pharmaceutical ingredients – APIs. These terms are all often used interchangeably Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada Office of Research and Development Available: http://www.epa.gov/nerlesd1/chemistry/pharma/image/drawing.pdfNational
    [Show full text]
  • Antibiotics and Antibiotic Resistance
    This is a free sample of content from Antibiotics and Antibiotic Resistance. Click here for more information on how to buy the book. Index A Antifolates. See also specific drugs AAC(60)-Ib-cr, 185 novel compounds, 378–379 ACHN-975 overview, 373–374 clinical studies, 163–164 resistance mechanisms medicinal chemistry, 166 sulfamethoxazole, 378 structure, 162 trimethoprim, 374–378 AcrAB-TolC, 180 Apramycin, structure, 230 AcrD, 236 Arbekacin, 237–238 AdeRS, 257 Avibactam, structure, 38 AFN-1252 Azithromycin mechanism of action, 148, 153 resistance, 291, 295 resistance, 153 structure, 272 structure, 149 Aztreonam, structure, 36 AIM-1, 74 Amicoumacin A, 222 Amikacin B indications, 240 BaeSR, 257 structure, 230 BAL30072, 36 synthesis, 4 BB-78495, 162 Aminoglycosides. See also specific drugs BC-3205, 341, 344 historical perspective, 229–230 BC-7013, 341, 344 indications, 239–241 b-Lactamase. See also specific enzymes mechanism of action, 232 classification novel drugs, 237 class A, 67–71 pharmacodynamics, 238–239 class B, 69–74 pharmacokinetics, 238–239 class C, 69, 74 resistance mechanisms class D, 70, 74–77 aminoglycoside-modifying enzymes evolution of antibiotic resistance, 4 acetyltransferases, 233–235 historical perspective, 67 nucleotidyltransferases, 235 inhibitors phosphotransferases, 235 overview, 37–39 efflux-mediated resistance, 236 structures, 38 molecular epidemiology, 236–237 nomenclature, 67 overview, 17, 233 b-Lactams. See also specific classes and antibiotics ribosomal RNA modifications, 235–236 Enterococcus faecium–resistancemechanisms,
    [Show full text]
  • BMJ Open Is Committed to Open Peer Review. As Part of This Commitment We Make the Peer Review History of Every Article We Publish Publicly Available
    BMJ Open: first published as 10.1136/bmjopen-2018-027935 on 5 May 2019. Downloaded from BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available. When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to. The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript. BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com). If you have any questions on BMJ Open’s open peer review process please email [email protected] http://bmjopen.bmj.com/ on September 26, 2021 by guest. Protected copyright. BMJ Open BMJ Open: first published as 10.1136/bmjopen-2018-027935 on 5 May 2019. Downloaded from Treatment of stable chronic obstructive pulmonary disease: a protocol for a systematic review and evidence map Journal: BMJ Open ManuscriptFor ID peerbmjopen-2018-027935 review only Article Type: Protocol Date Submitted by the 15-Nov-2018 Author: Complete List of Authors: Dobler, Claudia; Mayo Clinic, Evidence-Based Practice Center, Robert D.
    [Show full text]
  • Anti-Infective Drug Poster
    Anti-Infective Drugs Created by the Njardarson Group (The University of Arizona): Edon Vitaku, Elizabeth A. Ilardi, Daniel J. Mack, Monica A. Fallon, Erik B. Gerlach, Miyant’e Y. Newton, Angela N. Yazzie, Jón T. Njarðarson Streptozol Spectam Novocain Sulfadiazine M&B Streptomycin Chloromycetin Terramycin Tetracyn Seromycin Tubizid Illosone Furadantin Ethina Vancocin Polymyxin E Viderabin Declomycin Sulfamethizole Blephamide S.O.P. ( Sulfanilamide ) ( Spectinomycin ) ( Procaine ) ( Sulfadiazine ) ( Sulfapyridine ) ( Streptomycin ) ( Chloramphenicol ) ( Oxytetracycline ) ( Tetracycline ) ( Cycloserine ) ( Isoniazid ) ( Erythromycin ) ( Nitrofurantoin ) ( Ethionamide ) ( Vancomycin ) ( Colistin ) ( Vidarabine ) ( Demeclocycline ) ( Sulfamethizole ) ( Prednisolone Acetate & Sulfacetamide ) ANTIBACTERIAL ANTIBACTERIAL ANTIBACTERIAL ANTIBACTERIAL ANTIBACTERIAL ANTIBACTERIAL ANTIBACTERIAL ANTIBACTERIAL ANTIBACTERIAL ANTIMYCOBACTERIAL ANTIMYCOBACTERIAL ANTIBACTERIAL ANTIBACTERIAL ANTIMYCOBACTERIAL ANTIBACTERIAL ANTIBACTERIAL ANTIVIRAL ANTIBACTERIAL ANTIBACTERIAL ANTIBACTERIAL Approved 1937 Approved 1937 Approved 1939 Approved 1941 Approved 1942 Approved 1946 Approved 1949 Approved 1950 Approved 1950s Approved 1950s Approved 1952 Approved 1953 Approved 1953 Approved 1956 Approved 1958 Approved 1959 Approved 1960 Approved 1960 Approved 1960s Approved 1961 Coly-Mycin S Caprocin Poly-Pred Aureocarmyl Stoxil Flagyl NegGram Neomycin Flumadine Omnipen Neosporin G.U. Clomocycline Versapen-K Fungizone Vibramycin Myambutol Pathocil Cleocin Gentak Floxapen
    [Show full text]
  • Summary Report on Antimicrobials Dispensed in Public Hospitals
    Summary Report on Antimicrobials Dispensed in Public Hospitals Year 2014 - 2016 Infection Control Branch Centre for Health Protection Department of Health October 2019 (Version as at 08 October 2019) Summary Report on Antimicrobial Dispensed CONTENTS in Public Hospitals (2014 - 2016) Contents Executive Summary i 1 Introduction 1 2 Background 1 2.1 Healthcare system of Hong Kong ......................... 2 3 Data Sources and Methodology 2 3.1 Data sources .................................... 2 3.2 Methodology ................................... 3 3.3 Antimicrobial names ............................... 4 4 Results 5 4.1 Overall annual dispensed quantities and percentage changes in all HA services . 5 4.1.1 Five most dispensed antimicrobial groups in all HA services . 5 4.1.2 Ten most dispensed antimicrobials in all HA services . 6 4.2 Overall annual dispensed quantities and percentage changes in HA non-inpatient service ....................................... 8 4.2.1 Five most dispensed antimicrobial groups in HA non-inpatient service . 10 4.2.2 Ten most dispensed antimicrobials in HA non-inpatient service . 10 4.2.3 Antimicrobial dispensed in HA non-inpatient service, stratified by service type ................................ 11 4.3 Overall annual dispensed quantities and percentage changes in HA inpatient service ....................................... 12 4.3.1 Five most dispensed antimicrobial groups in HA inpatient service . 13 4.3.2 Ten most dispensed antimicrobials in HA inpatient service . 14 4.3.3 Ten most dispensed antimicrobials in HA inpatient service, stratified by specialty ................................. 15 4.4 Overall annual dispensed quantities and percentage change of locally-important broad-spectrum antimicrobials in all HA services . 16 4.4.1 Locally-important broad-spectrum antimicrobial dispensed in HA inpatient service, stratified by specialty .
    [Show full text]
  • Resolution of Antibiotic Mixtures in Serum Samples by High-Voltage Electrophoresis
    J Clin Pathol: first published as 10.1136/jcp.28.6.435 on 1 June 1975. Downloaded from J. clin. Path., 1975, 28, 435-442 Resolution of antibiotic mixtures in serum samples by high-voltage electrophoresis D. S. REEVES AND H. A. HOLT From the Department of Medical Microbiology, Division ofPathology, Southmead Hospital, Bristol BSJO SNB SYNOPSIS The use of high-voltage electrophoresis and bioautography for the separation mixtures of antibiotics received in clinical serum samples is described. The electrophoretic characteristics of 39 antibiotics are given as is the accuracy of the method for quantitating three antibiotics. In screening 189 consecutive serum samples submitted for routine antibiotic assay, undisclosed anti- biotics were revealed by the technique in 35. The treatment of infection by administering more Methods than one antibiotic simultaneously to patients in hospital is common practice. Increasingly labora- MATERIALS tories are being asked to assay sera from such The sources of the antibiotics used are shown in patients, and although it is frequently possible to table I. They were prepared for electrophoresis as measure at least one element in a mixture by the use solutions in distilled water or pooled human serum. of a selectively resistant organism or by inactivating Samples from patients examined for their anti- a component, such procedures are not always biotic content were those which had been received available. A further problem is that, in our ex- for assay, mostly of gentamicin, in controlling http://jcp.bmj.com/ perience, sera for assay sometimes contain anti- therapy. They were stored at -20°C for examination biotics ofwhich the laboratoryis not made aware and in batches.
    [Show full text]
  • Using Saccharomyces Cerevisiae for the Biosynthesis of Tetracycline Antibiotics
    Using Saccharomyces cerevisiae for the Biosynthesis of Tetracycline Antibiotics Ehud Herbst Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Ehud Herbst All rights reserved ABSTRACT Using Saccharomyces cerevisiae for the biosynthesis of tetracycline antibiotics Ehud Herbst Developing treatments for antibiotic resistant bacterial infections is among the most urgent public health challenges worldwide. Tetracyclines are one of the most important classes of antibiotics, but like other antibiotics classes, have fallen prey to antibiotic resistance. Key small changes in the tetracycline structure can lead to major and distinct pharmaceutically essential improvements. Thus, the development of new synthetic capabilities has repeatedly been the enabling tool for powerful new tetracyclines that combatted tetracycline-resistance. Traditionally, tetracycline antibiotics were accessed through bacterial natural products or semisynthetic analogs derived from these products or their intermediates. More recently, total synthesis provided an additional route as well. Importantly however, key promising antibiotic candidates remained inaccessible through existing synthetic approaches. Heterologous biosynthesis is tackling the production of medicinally important and structurally intriguing natural products and their unnatural analogs in tractable hosts such as Saccharomyces cerevisiae. Recently, the heterologous biosynthesis of several tetracyclines was achieved in Streptomyces lividans through the expression of their respective biosynthetic pathways. In addition, the heterologous biosynthesis of fungal anhydrotetracyclines was shown in S. cerevisiae. This dissertation describes the use of Saccharomyces cerevisiae towards the biosynthesis of target tetracyclines that have promising prospects as antibiotics based on the established structure- activity relationship of tetracyclines but have been previously synthetically inaccessible.
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • Antibiotics Act
    MINISTRY OF LEGALLAWS AFFAIRS OF TRINIDAD AND TOBAGO www.legalaffairs.gov.tt ANTIBIOTICS ACT CHAPTER 30:02 Act 18 of 1948 Amended by 190/1950 46/1964 178/1951 55/1964 219/1951 9/1965 123/1952 34/1965 59/1954 47/1965 71/1954 113/1968 147/1954 4 of 1988 76/1955 55/2003 128/1955 12/2005 173/1955 174/1956 213/2005 17/1957 154/2008 48/1957 188/2008 106/1958 88/2009 13/1960 147/2009 20 of 1960 26/2011 31/1961 40/2011 Current Authorised Pages Pages Authorised (inclusive) by L.R.O. 1–2 .. 3–8 .. 9–12 .. 13–16 .. 17–30 .. 31–38 .. UNOFFICIAL VERSION L.R.O. UPDATED TO DECEMBER 31ST 2013 MINISTRY OF LEGAL AFFAIRS LAWS OF TRINIDAD AND TOBAGOwww.legalaffairs.gov.tt 2 Chap. 30:02 Antibiotics Index of Subsidiary Legislation Page Importation of Antibiotics Preparations Order … … … … 12 Approved Pharmaceutical Firms Order … … … … 32 Antibiotics (Conditions for Use) Order (LN 29/1989) … … … 38 Note on the above Orders The amendments to the above Orders are long and frequent, and in view of their very limited use by the general public they will not be updated annually (following the policy adopted with respect to the Approval of New Drugs Notification under the Food and Drugs Act— See page 2 of Ch. 30:01). For amendments to these Orders—See the Current Edition of the Consolidated Index of Acts and Subsidiary Legislation. Note on Adaptation Under paragraph 6 of the Second Schedule to the Law Revision Act (Ch. 3:03) the Commission amended certain references to public officers in this Chapter.
    [Show full text]
  • Common Study Protocol for Observational Database Studies WP5 – Analytic Database Studies
    Arrhythmogenic potential of drugs FP7-HEALTH-241679 http://www.aritmo-project.org/ Common Study Protocol for Observational Database Studies WP5 – Analytic Database Studies V 1.3 Draft Lead beneficiary: EMC Date: 03/01/2010 Nature: Report Dissemination level: D5.2 Report on Common Study Protocol for Observational Database Studies WP5: Conduct of Additional Observational Security: Studies. Author(s): Gianluca Trifiro’ (EMC), Giampiero Version: v1.1– 2/85 Mazzaglia (F-SIMG) Draft TABLE OF CONTENTS DOCUMENT INFOOMATION AND HISTORY ...........................................................................4 DEFINITIONS .................................................... ERRORE. IL SEGNALIBRO NON È DEFINITO. ABBREVIATIONS ......................................................................................................................6 1. BACKGROUND .................................................................................................................7 2. STUDY OBJECTIVES................................ ERRORE. IL SEGNALIBRO NON È DEFINITO. 3. METHODS ..........................................................................................................................8 3.1.STUDY DESIGN ....................................................................................................................8 3.2.DATA SOURCES ..................................................................................................................9 3.2.1. IPCI Database .....................................................................................................9
    [Show full text]
  • Point Prevalence Survey of Healthcare-Associated Infections and Antimicrobial Use in European Acute Care Hospitals
    TECHNICAL DOCUMENT Point prevalence survey of healthcare-associated infections and antimicrobial use in European acute care hospitals Protocol version 5.3 www.ecdc.europa.eu ECDC TECHNICAL DOCUMENT Point prevalence survey of healthcare- associated infections and antimicrobial use in European acute care hospitals Protocol version 5.3, ECDC PPS 2016–2017 Suggested citation: European Centre for Disease Prevention and Control. Point prevalence survey of healthcare- associated infections and antimicrobial use in European acute care hospitals – protocol version 5.3. Stockholm: ECDC; 2016. Stockholm, October 2016 ISBN 978-92-9193-993-0 doi 10.2900/374985 TQ-04-16-903-EN-N © European Centre for Disease Prevention and Control, 2016 Reproduction is authorised, provided the source is acknowledged. ii TECHNICAL DOCUMENT PPS of HAIs and antimicrobial use in European acute care hospitals – protocol version 5.3 Contents Abbreviations ............................................................................................................................................... vi Background and changes to the protocol .......................................................................................................... 1 Objectives ..................................................................................................................................................... 3 Inclusion/exclusion criteria .............................................................................................................................. 4 Hospitals .................................................................................................................................................
    [Show full text]