The Domain Name System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characterizing Certain Dns Ddos Attacks
CHARACTERIZING CERTAIN DNS DDOSATTACKS APREPRINT Renée Burton Cyber Intelligence Infoblox [email protected] July 23, 2019 ABSTRACT This paper details data science research in the area of Cyber Threat Intelligence applied to a specific type of Distributed Denial of Service (DDoS) attack. We study a DDoS technique prevalent in the Domain Name System (DNS) for which little malware have been recovered. Using data from a globally distributed set of a passive collectors (pDNS), we create a statistical classifier to identify these attacks and then use unsupervised learning to investigate the attack events and the malware that generates them. The first known major study of this technique, we discovered that current attacks have little resemblance to published descriptions and identify several previously unpublished features of the attacks. Through a combination of text and time series features, we are able to characterize the dominant malware and demonstrate that the number of global-scale attack systems is relatively small. 1 Introduction In the field of Cyber Security, there is a rich history of characterizing malicious actors, their mechanisms and victims, through the analysis of recovered malware1 and related event data. Reverse engineers and threat analysts take advantage of the fact that malware developers often unwittingly leave fingerprints in their code through the choice of libraries, variables, infection mechanisms, and other observables. In some cases, the Cyber Security Industry is able to correlate seemingly disparate pieces of information together and attribute malware to specific malicious actors. Identifying a specific technique or actor involved in an attack, allows the Industry to better understand the magnitude of the threat and protect against it. -
Proactive Cyberfraud Detection Through Infrastructure Analysis
PROACTIVE CYBERFRAUD DETECTION THROUGH INFRASTRUCTURE ANALYSIS Andrew J. Kalafut Submitted to the faculty of the Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in Computer Science Indiana University July 2010 Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements of the degree of Doctor of Philosophy. Doctoral Minaxi Gupta, Ph.D. Committee (Principal Advisor) Steven Myers, Ph.D. Randall Bramley, Ph.D. July 19, 2010 Raquel Hill, Ph.D. ii Copyright c 2010 Andrew J. Kalafut ALL RIGHTS RESERVED iii To my family iv Acknowledgements I would first like to thank my advisor, Minaxi Gupta. Minaxi’s feedback on my research and writing have invariably resulted in improvements. Minaxi has always been supportive, encouraged me to do the best I possibly could, and has provided me many valuable opportunities to gain experience in areas of academic life beyond simply doing research. I would also like to thank the rest of my committee members, Raquel Hill, Steve Myers, and Randall Bramley, for their comments and advice on my research and writing, especially during my dissertation proposal. Much of the work in this dissertation could not have been done without the help of Rob Henderson and the rest of the systems staff. Rob has provided valuable data, and assisted in several other ways which have ensured my experiments have run as smoothly as possible. Several members of the departmental staff have been very helpful in many ways. Specifically, I would like to thank Debbie Canada, Sherry Kay, Ann Oxby, and Lucy Battersby. -
Taxonomy and Adversarial Strategies of Random Subdomain Attacks
Taxonomy and Adversarial Strategies of Random Subdomain Attacks Harm Griffioen and Christian Doerr Delft University of Technology, Cybersecurity Group Van Mourik Broekmanweg 6, Delft, The Netherlands fh.j.griffioen, [email protected] Abstract—Ever since the introduction of the domain name new type of attack gained some visibility when source code system (DNS), attacks on the DNS ecosystem have been a steady triggering it was discovered in a forensic analysis of the Mirai companion. Over time, targets and techniques have shifted, Internet-of-Things malware in 2016 [?], since then a number and in the recent past a new type of attack on the DNS has of actors have picked up this particular technique. emerged. In this paper we report on the DNS random subdomain attack, querying floods of non-existent subdomains, intended to Until now, very little is known how these attacks are cause a denial-of-service on DNS servers. Based on five major executed and exactly using which means. This paper intends to attacks in 2018 obtained through backscatter measurements in address this gap. Based on backscatter measurements through a a large network telescope, we show the techniques pursued by large network telescope, we observed the emergence of random adversaries, and develop a taxonomy of strategies of this attack. subdomain attacks over a period of three years and will in this paper make the following two contributions: Keywords—cyber threat intelligence, random subdomain attack, DNS, DDoS • We show the spectrum of different types of random subdomain attacks in use in the wild today based on I. INTRODUCTION five exemplary case studies, and use this to develop a taxonomy of random subdomain attacks. -
Country Code Top-Level Domain (Cctld) Project for State of Kuwait
Country Code Top-Level Domain (ccTLD) Project for State of Kuwait Communication and Information Technology Regulatory Authority (CITRA) assigns, organizes, manages and codes the top domain names for the State of Kuwait (.kw) for access to the Internet in accordance with best practices and standards in this field, ensuring the efficiency, fairness and transparency for the beneficiaries. This includes the regulation and implementation of all regulations, policies and procedures in relation to the operation of the country code's top-level domain. What is a domain name? A domain name is the address and identity of any website. It is a means of accessing websites directly without having to search them in the search engines. The domain name is a system of converting IP addresses and numbers used to locate computers on the Internet. Domain names provide a system of easy-to-use Internet addresses that can be translated through the DNS - Domain Name System (a system that stores information related to Internet domain names in a decentralized database on the Internet) on the network. What is a ccTLD? Country code top-level domains or the highest country encoding range: used by an independent country or territory. It consists of two letters, such as .eg for Egypt or. sa for Saudi Arabia or .kw for the State of Kuwait. The registration of a domain name (.kw) became easy and smooth process after the establishment and launch of the electronic registration system for the management and operation of domains through the Communication and Information Technology Regulatory Authority and the accredited registrars authorized by the Communication and Information Technology Regulatory Authority and responsible for providing integrated registration services for those wishing to register (.Kw). -
DNS) Administration Guide
Edgecast Route (DNS) Administration Guide Disclaimer Care was taken in the creation of this guide. However, Edgecast cannot accept any responsibility for errors or omissions. There are no warranties, expressed or implied, including the warranty of merchantability or fitness for a particular purpose, accompanying this product. Trademark Information EDGECAST is a registered trademark of Verizon Digital Media Services Inc. About This Guide Route (DNS) Administration Guide Version 2.40 8/28/2021 ©2021 Verizon Media. All rights reserved. Table of Contents Route ............................................................................................................................................................. 1 Introduction .............................................................................................................................................. 1 Scope ......................................................................................................................................................... 1 Module Comparison ................................................................................................................................. 2 Managed (Primary) or Secondary DNS Module .................................................................................... 2 DNS Health Checks Module .................................................................................................................. 3 Billing Activation ...................................................................................................................................... -
The ISP Column What's in a Name?
The ISP Column A monthly column on things Internet Geoff Huston December 2015 What’s in a Name? What's in a name? that which we call a rose By any other name would smell as sweet; Romeo and Juliet, Act II, Scene II What’s the difference between .local and .here? Or between .onion and .apple? All four of these labels are capable of being represented in the Internet’s Domain Name System as a generic Top Level Domains (gTLDs), but only two of these are in fact delegated names. The other two, .local and .onion not only don’t exist in the delegated name space, but by virtue of a registration in the IANA’s Special Use Domain Name registry (http://www.iana.org/assignments/special-use-domain-names/special-use-domain-names.xhtml), these names cannot exist in the conventional delegated domain name space. It seems that Internet does not have a single coherent name space, but has a number of silent and unsignalled fracture lines, and instead of being administered by a single administrative body there are a number of folk who appear to want to have a hand on the tiller! Let’s look at the domain name space and try and gain some insight as to haw we’ve managed to get ourselves into this somewhat uncomfortable position. A Brief History of the DNS A good place to start is probably RFC 920, authored by Jon Postel and Joyce Reynolds, and published October 1984. The name space was divided by a small set of so-called Top Level Domains, with a temporary name of .arpa the category-based names of .com, .edu, .gov, .mil and .org, as well as the collection of two-letter country codes as administered by the Internet Standards Organization and published as ISO-3166. -
How to Add Domains and DNS Records
Barracuda NextGen Firewall X How to Add Domains and DNS Records https://campus.barracuda.com/doc/41109753/ Configure the Barracuda NextGen X-Series Firewall to be the authoritative DNS server for your domains or subdomains to take advantage of Split DNS or dead link detection. Step 1. Make the X-Series Firewall the authoritative DNS server at your domain registrar To become the authoritative DNS server for a domain contact the registrar for your domain to use the static or dynamic WAN IP addresses of your X-Series Firewall. Hosting a subdomain If you want to delegate a subdomain to the X-Series Firewall, add ns1 and ns2 records to the zone file of the domain where it is stored at the registrar. If the domain is yourdomain.com, and you want to host subdomain.yourdomain.com add the following DNS records: subdomain IN NS ns1 subdomain IN NS ns2 ns1 IN A <WAN IP 1 OF YOUR BARRACUDA FIREWALL> ns2 IN A <WAN IP 2 OF YOUR BARRACUDA FIREWALL> Step 2. Enable authoritative DNS on the X-Series Firewall In the DNS Servers table, you can view a list of the static IP addresses for which the DNS Server service is enabled (NETWORK > IP Configuration). Dynamic IP addresses are not listed. An access rule is created in step 3 to redirect incoming DNS requests on dynamic interfaces to the DNS service on the firewall. The access rule LOCALDNSCACHE must be active after enabling authoritative DNS for local clients to access the DNS server. 1. Go to the NETWORK > Authoritative DNS page. -
Top Five DNS Security Attack Risks and How to Avoid Them How to Effectively Scale, Secure, Manage, and Protect Your DNS Table of Contents
WHITEPAPER Top Five DNS Security Attack Risks and How to Avoid Them How to Effectively Scale, Secure, Manage, and Protect Your DNS Table of Contents Executive Overview 2 DNS Attacks Are on the Rise 2 External Name Server Basics 2 DNS Security Flaws and Management Challenges 3 Aren’t General-Purpose Computers Good Enough for DNS? 4 Securing Your DNS Infrastructure and Applications 6 The Infoblox Approach to DNS Security 6 Benefits of Purpose-Built Appliances 7 Conclusion 8 1 WHITEPAPER Top Five DNS Security Attack Risks and How to Avoid Them Executive Overview “If your data center is not available, all the compli- Cyber attacks on Domain Name System (DNS) servers represent one of the most ance or data integrity in the significant threats to Internet security today. Because DNS is used by nearly all world is not going to help networked applications – including email, Web browsing, ecommerce, Internet your customers, business, telephony, and more – these types of attacks threaten the very basis of modern or your brand. DDOS is the number one threat to the communications and commerce. Whether conducted for financial motives, political availability of data center gain, or the notoriety of the hacker, the damage from a DNS attack can be devastating resources...” for the target organizations. Rob Ayoub, Frost and Sullivan, Global Program Director, This paper will highlight how traditional DNS infrastructure deployments can actually Network Security increase the risks of DNS attacks. The paper also covers best practices and options for a hardened DNS layer that can minimize the risk of experiencing a DNS attack by identifying the symptoms and implementing a response faster. -
Unclassified OCDE/GD(97)207
Unclassified OCDE/GD(97)207 INTERNET DOMAIN NAMES: ALLOCATION POLICIES ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT Paris 60465 Document complet disponible sur OLIS dans son format d'origine Complete document available on OLIS in its original format Copyright OECD, 1997 Applications for permission to reproduce or translate all or part of this material should be made to: Head of Publications Services, OECD, 2 rue André-Pascal, 75775 Paris Cedex 16, France 2 TABLE OF CONTENTS FOREWORD.................................................................................................................................................. 5 MAIN POINTS............................................................................................................................................... 6 INTERNET GROWTH AND THE DOMAIN NAME SYSTEM................................................................. 8 DOMAIN NAME SYSTEM OPERATIONS IN OECD COUNTRIES...................................................... 16 The Administration of Top Level Domains and Market Structure .......................................................... 17 The Administration of Generic Top Level Domains and Market Structure ............................................. 18 POLICY COMPARISON BETWEEN DOMAIN REGISTRARS.............................................................. 29 Location Requirements ............................................................................................................................. 29 Application Limits ................................................................................................................................... -
Verisign-Cnic-Lawsuit
Case 1:15-cv-01028-LO-IDD Document 1-1 Filed 08/13/15 Page 1 of 123 PageID# 5 VIRGINIA: IN THE CIRCUIT COURT OF FAIRFAX COUNTY VERISIGN, INC., Plaintiff, V. Civil Action No. CL 2015-3519 CENTRALNIC LIMITED, XYZ.COM LLC Serve; Paracorp Incorporated, Reg. Agt. 318 N. Carson Street, Suite 208 Carson City, NV 89701 -and- DANIEL NEGARI, 205 South Camden Drive Beverly Hills, CA 90212 Defendants. FIRST AMENDED COMPLAINT COMES NOW the plaintiff, VeriSign, Inc. ("Verisign"), bycounsel, and for its first amended complaintstates the following: Parties 1. Verisign is a corporation organized and existing under the laws of the State of Delaware, having its principal place of business in the Commonwealth of Virginia. EXHIBIT /I Case 1:15-cv-01028-LO-IDD Document 1-1 Filed 08/13/15 Page 2 of 123 PageID# 6 2. Defendant CentralNic Limited ("CentralNic") is a corporation organized and existing under the laws of the United Kingdom, having its principal place of business in London, England. 3. Defendant XYZ.COM LLC ("XYZ") is a limited liability company organized and existing under the laws of the State of Nevada, having its principal place ofbusiness in the State ofNevada. 4. Defendant Daniel Negari is a natural person who, upon information and belief, is a resident of the State of California. Upon information and belief, Negari owns and/or controls XYZ. Jurisdiction and Venue 5. This Court has subject matterjurisdiction over this action pursuant to Virginia Code § 17.1-513. 6. CentralNic, XYZ and Negari are subject to personal jurisdiction in this Court pursuant to Virginia Code § 8.01-328.1(3 & 4) in that, as set forth herein, CentralNic, XYZ and Negari have caused tortious injury by acts in this Commonwealth; and have caused tortious injury in this Commonwealth by acts and omissions outside this Commonwealth and regularly do or solicit business, orengage in other persistent course ofconduct in this Commonwealth. -
Federal Register/Vol. 63, No. 111/Wednesday, June 10, 1998
Federal Register / Vol. 63, No. 111 / Wednesday, June 10, 1998 / Notices 31741 differences of juvenile fish as they pass rulemaking, or ``Green Paper,'' was U.S. Role in DNS Development downstream through Lake Pateros and published in the Federal Register on Wells Dam. For modification 1, PUD GC February 20, 1998, providing More than 25 years ago, the U.S. Government began funding research requests an increase in the take of opportunity for public comment. NTIA necessary to develop packet-switching juvenile, endangered, UCR steelhead received more than 650 comments, as of technology and communications associated with a study designed to March 23, 1998, when the comment networks, starting with the ``ARPANET'' inventory fish species in Wells reservoir period closed.3 network established by the Department on the Columbia River. ESA-listed fish The Green Paper proposed certain are proposed to be observed by SCUBA of Defense's Advanced Research actions designed to privatize the Projects Agency (DARPA) in the 1960s. divers or collected in beach seines, management of Internet names and anesthetized, examined, allowed to ARPANET was later linked to other addresses in a manner that allows for recover, and released. Modification 1 is networks established by other the development of robust competition requested to be valid for the duration of government agencies, universities and and facilitates global participation in the permit. Permit 1116 expires on research facilities. During the 1970s, Internet management. The Green Paper December 31, 2002. DARPA also funded the development of proposed for discussion a variety of a ``network of networks;'' this became Dated: June 4, 1998. -
Orderly Expansion of the International Top-Level Domains: Concurrent Trademark Users Need a Way out of the Internet Trademark Quagmire, 15 J
The John Marshall Journal of Information Technology & Privacy Law Volume 15 Issue 3 Journal of Computer & Information Law Article 6 - Spring 1997 Spring 1997 Orderly Expansion of the International Top-Level Domains: Concurrent Trademark Users Need a Way Out of the Internet Trademark Quagmire, 15 J. Marshall J. Computer & Info. L. 521 (1997) David B. Nash Follow this and additional works at: https://repository.law.uic.edu/jitpl Part of the Computer Law Commons, Intellectual Property Law Commons, International Law Commons, Internet Law Commons, Privacy Law Commons, and the Science and Technology Law Commons Recommended Citation David B. Nash, Orderly Expansion of the International Top-Level Domains: Concurrent Trademark Users Need a Way Out of the Internet Trademark Quagmire, 15 J. Marshall J. Computer & Info. L. 521 (1997) https://repository.law.uic.edu/jitpl/vol15/iss3/6 This Comments is brought to you for free and open access by UIC Law Open Access Repository. It has been accepted for inclusion in The John Marshall Journal of Information Technology & Privacy Law by an authorized administrator of UIC Law Open Access Repository. For more information, please contact [email protected]. ORDERLY EXPANSION OF THE INTERNATIONAL TOP-LEVEL DOMAINS: CONCURRENT TRADEMARK USERS NEED A WAY OUT OF THE INTERNET TRADEMARK QUAGMIRE I. INTRODUCTION "If you want to attach your network to the Internet,' but you don't like NSI's 2 policies, for whatever reason, you quickly learn that NSI is the only game in town."3 Any organization that wants a domain name in an international top-level domain ("iTLD") has to register with the In- terNIC4 domain name registry which is administered by Network Serv- 1.