Open Full Page

Total Page:16

File Type:pdf, Size:1020Kb

Open Full Page [CANCER RESEARCH 60, 5522–5528, October 1, 2000] Prostate Stem Cell Antigen Is a Promising Candidate for Immunotherapy of Advanced Prostate Cancer1 Jens Dannull, Pierre-Andre´Diener, Ladislav Prikler, Gregor Fu¨rstenberger, Thomas Cerny, Ulrico Schmid, Daniel K. Ackermann, and Marcus Groettrup2 Departments of Laboratory Research [J. D., M. G.], Urology [L. P., D. K. A.], Oncology [G. F., T. C.], and Pathology [P. A. D., U. S.], Cantonal Hospital St. Gall, 9007 St. Gallen, Switzerland ABSTRACT normal prostate (2–6). However, the identification of target tumor antigens that are capable of overcoming immune tolerance against Immunotherapy of prostate cancer (CaP) may be a promising novel proteins expressed in normal prostate remains a major obstacle for treatment option for the management of advanced CaP. However, the lack developing rational strategies in CaP immunotherapy. Over the past of suitable tumor antigens remains a major obstacle for the rational design of vaccines. To characterize potential CaP antigens, we determined years, several prostate-specific gene products have been reported. the mRNA expression of the prostate-specific genes C1, C2, C5, PAGE-1, These include PSA (7), PSMA (8), PAP (9), prostate carcinoma tumor and prostate stem cell antigen (PSCA) in hormone-refractory CaP, benign antigen 1 (10), PAGE-4 (11), PSP 94 (12), six-transmembrane epi- prostatic hyperplasia, CaP cell lines, and CaP specimens. Among these thelial antigen of the prostate (13), differential display 3 (14), and gene products, only expression of PSCA appears to be retained in the prostate androgen-regulated transcript 1 (15). The rationale of using majority of advanced CaP samples, as shown by reverse transcription- prostate-specific genes as target antigens for immunotherapy is based PCR analyses. Peptide fragments of PSCA presented in the context of on a decade of intensive research in the melanoma field, leading to the major histocompatibility molecules could serve as recognition targets for insight that prominent antigens of melanoma-specific CTLs were CD8 T cells, provided these lymphocytes were not clonally deleted or expressed in melanocytes in a tissue-specific manner (16). Appar- peripherally tolerized. Our goal was to determine whether the human T-cell repertoire could recognize PSCA-derived peptide epitopes in the ently, the presumed tolerance of peripheral T cells against these self context of a common class I allele, HLA-A0201. Of nine peptides that, antigens can be overcome if aberrant expression in tumors occurs. according to HLA-A0201 binding motifs, were candidate ligands of A0201 Moreover, this antitumor response could be successfully enhanced by class I molecules, three peptides were able to stabilize HLA-A0201 mole- several vaccination procedures using melanocyte antigens (17–19). cules on the cell surface. One of the latter peptides, encompassing amino The consequence of this type of antitumor response was on the one acid residues 14–22, was capable of generating a PSCA-specific T-cell hand regression of melanoma lesions but on the other hand vitiligo as response in a human lymphocyte culture from a patient with metastatic a result of CTL-mediated melanocyte destruction. CaP. PSCA-specific CTLs recognized peptide-pulsed targets as well as Because many of the so-called “cancer testis” antigens, which are three prostate carcinoma lines in cytotoxicity assays, indicating that this peptide could be endogenously processed. In conclusion, our findings expressed in testis and in several different malignancies, are not establish PSCA as a potential target for antigen-specific, T cell-based prevalent in the majority of CaP specimens, organ-specific gene immunotherapy of prostate carcinoma. products were considered as target antigens in CaP. This approach seems reasonable because in organ-confined CaP, the prostate is surgically removed and because the life of vaccinated patients would INTRODUCTION not be endangered if healthy prostate tissue was damaged by CTLs. CaP3 is the most common cancer diagnosis and the second leading Unfortunately, the majority of defined prostate-specific gene products cause of cancer-related deaths in men. Despite recent advances in display properties that limit their utilization as antigens in specific detection of CaP and treatment of localized disease, significant chal- immunotherapy of CaP. PSA, PSMA, PAP, PSP 94, and prostate lenges unique to CaP remain to be overcome. In particular, there is no carcinoma tumor antigen 1 are secretory proteins that are found in effective treatment for patients who develop recurrent disease after considerable concentrations in the serum and hence are likely to surgery or radiation therapy or those who have metastatic disease at induce peripheral tolerance. The expression of PSA and PAP in tissue the time of diagnosis. Although hormone ablation therapy may palli- is reduced in neoplastic cells of poorly differentiated tumors com- ate patients with advanced disease temporarily, the progression to pared with normal prostatic tissue and well-differentiated adenocar- incurable hormone-refractory CaP is almost inevitable (1). Therefore, cinomas (20). In addition, PSA has a high degree of homology with the development of novel therapeutic modalities for the treatment of members of the kallikrein family, and PSMA has been found to be hormone-refractory CaP is of paramount importance. Several new expressed in various human tissues (21), thus bearing the risk of CaP treatment approaches aim to eradicate CaP cells by inducing generating autoimmune disease upon protein-based vaccination. PSP systemic immunity to antigens expressed by CaP cells as well as 94 (22) and PAGE-4 (11) seem to be down-regulated in tumor tissue, and expression of six-transmembrane epithelial antigen of the prostate Received 4/28/00; accepted 8/4/00. appears to be expressed at low levels in several other tissues (13). The costs of publication of this article were defrayed in part by the payment of page Prostate androgen-regulated transcript 1 expression is regulated by charges. This article must therefore be hereby marked advertisement in accordance with androgens (15), which is a drawback for strategies aiming to eliminate 18 U.S.C. Section 1734 solely to indicate this fact. 1 This work was supported by Cancer League St. Gallen-Appenzell, Swiss Cancer hormone-refractory tumors. Lastly, the mRNA of differential display League, Foundation Propter Homines, Cancer Research Institute, CaPCURE Foundation, 3 does not contain extensive open reading frames and has, therefore, R. and A. Dietschweiler Foundation, W. and V. Spu¨hl-Foundation, and AstraZeneca AG. 2 To whom requests for reprints should be addressed, at Kantonsspital St. Gallen, been suggested to function as a noncoding RNA (14). Laborforschungsabteilung, Haus 09, CH-9007 St. Gallen, Switzerland. Phone: 44-71-494- However, there are new and partially characterized prostate- 1069; Fax: 44-71-494-6321; E-mail: [email protected]. specific genes that warrant further investigation regarding their po- 3 The abbreviations used are: CaP, carcinoma of prostate; PSA, prostate-specific antigen; PSMA, prostate-specific membrane antigen; PAP, prostatic acid phosphatase; tential as CaP antigens. Little is known about the CaP expression PAGE, prostate antigen encoded gene; PSP, prostate secretory protein; BPH, benign status of C1, C2, and C5, which are prostate-specific mRNAs iden- prostatic hyperplasia; IL, interleukin; PBMC, peripheral blood mononuclear cell; PSCA, prostate stem cell antigen; RT-PCR, reverse transcription-PCR; TAP, transporter associ- tified from expressed sequence tag libraries (23). On the other hand, ated with antigen processing. PAGE-1 (24) and PSCA (25–27) have been identified as gene prod- 5522 Downloaded from cancerres.aacrjournals.org on October 2, 2021. © 2000 American Association for Cancer Research. PSCA FOR IMMUNOTHERAPY OF PROSTATE CARCINOMA ucts specifically overexpressed in hormone-independent CaP cell T2 Binding Assays. Each peptide was tested for concentration-dependent lines or tumor tissue, respectively. PAGE-1 was identified by differ- binding to T2 cells in HLA-A0201 stabilization assays. T2 (TAP-deficient) ential display PCR as an mRNA that is up-regulated in androgen- cells were incubated at room temperature overnight with the indicated PSCA insensitive metastatic sublines of the CaP cell line LNCaP. The peptides over a range of peptide concentrations from 0.5 to 10 ␮M in the presence of 1 ␮g/ml ␤ -microglobulin (Sigma). Stability of HLA-A0201 was PAGE-1 protein shares 45% homology with antigens of the “cancer- 2 assayed by flow cytometry (FACScan; Becton Dickinson) after staining the testis” family, and its expression was found to be restricted to LNCaP cells with antibody BB7.2 (5 ␮g/ml) and goat antimouse-FITC (AMRAD, sublines, testes, and placenta (24). PSCA was isolated by representa- Melbourne, Australia). The peptide GILGFVFTL of influenza matrix protein, tional difference analysis in the LAPC-4 xenograft model and was residues 58–66, was used as a positive control. Alternatively, in “off-assays,” found to be up-regulated in tumor xenografts when compared with T2 cells were incubated overnight at room temperature in the presence of 10 Ϫ normal prostate (25). The PSCA gene codes for a 123-amino acid ␮M peptide, followed by an incubation at 37°C in the presence of 10 4 M glycoprotein that is not homologous to other genes except for a 30% emetine (Sigma). The loss of HLA-A0201 molecules from the cell surface was
Recommended publications
  • PSMA4 Antibody (Monoclonal) (M01) Mouse Monoclonal Antibody Raised Against a Full Length Recombinant PSMA4
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 PSMA4 Antibody (monoclonal) (M01) Mouse monoclonal antibody raised against a full length recombinant PSMA4. Catalog # AT3454a Specification PSMA4 Antibody (monoclonal) (M01) - Product Information Application IF, WB, E Primary Accession P25789 Other Accession BC005361 Reactivity Human Host mouse Clonality Monoclonal Isotype IgG2b kappa Calculated MW 29484 PSMA4 Antibody (monoclonal) (M01) - Additional Information Immunofluorescence of monoclonal antibody to PSMA4 on HeLa cell. [antibody concentration 10 ug/ml] Gene ID 5685 Other Names Proteasome subunit alpha type-4, Macropain subunit C9, Multicatalytic endopeptidase complex subunit C9, Proteasome component C9, Proteasome subunit L, PSMA4, HC9, PSC9 Target/Specificity PSMA4 (AAH05361, 1 a.a. ~ 261 a.a) full-length recombinant protein with GST tag. MW of the GST tag alone is 26 KDa. Dilution WB~~1:500~1000 Antibody Reactive Against Recombinant Protein.Western Blot detection against Format Immunogen (54.45 KDa) . Clear, colorless solution in phosphate buffered saline, pH 7.2 . Storage Store at -20°C or lower. Aliquot to avoid repeated freezing and thawing. Precautions PSMA4 Antibody (monoclonal) (M01) is for research use only and not for use in diagnostic or therapeutic procedures. Page 1/3 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 PSMA4 Antibody (monoclonal) (M01) - Protocols Provided below are standard protocols that you may find useful for product applications. • Western Blot • Blocking Peptides • Dot Blot • Immunohistochemistry • Immunofluorescence • Immunoprecipitation • Flow Cytomety • Cell Culture PSMA4 monoclonal antibody (M01), clone 2A10-E4 Western Blot analysis of PSMA4 expression in Hela ( (Cat # AT3454a ) Detection limit for recombinant GST tagged PSMA4 is approximately 3ng/ml as a capture antibody.
    [Show full text]
  • View of HER2: Human Epidermal Growth Factor Receptor 2; TNBC: Triple-Negative Breast Resistance to Systemic Therapy in Patients with Breast Cancer
    Wen et al. Cancer Cell Int (2018) 18:128 https://doi.org/10.1186/s12935-018-0625-9 Cancer Cell International PRIMARY RESEARCH Open Access Sulbactam‑enhanced cytotoxicity of doxorubicin in breast cancer cells Shao‑hsuan Wen1†, Shey‑chiang Su2†, Bo‑huang Liou3, Cheng‑hao Lin1 and Kuan‑rong Lee1* Abstract Background: Multidrug resistance (MDR) is a major obstacle in breast cancer treatment. The predominant mecha‑ nism underlying MDR is an increase in the activity of adenosine triphosphate (ATP)-dependent drug efux trans‑ porters. Sulbactam, a β-lactamase inhibitor, is generally combined with β-lactam antibiotics for treating bacterial infections. However, sulbactam alone can be used to treat Acinetobacter baumannii infections because it inhibits the expression of ATP-binding cassette (ABC) transporter proteins. This is the frst study to report the efects of sulbactam on mammalian cells. Methods: We used the breast cancer cell lines as a model system to determine whether sulbactam afects cancer cells. The cell viabilities in the present of doxorubicin with or without sulbactam were measured by MTT assay. Protein identities and the changes in protein expression levels in the cells after sulbactam and doxorubicin treatment were determined using LC–MS/MS. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR) was used to analyze the change in mRNA expression levels of ABC transporters after treatment of doxorubicin with or without sulbactam. The efux of doxorubicin was measures by the doxorubicin efux assay. Results: MTT assay revealed that sulbactam enhanced the cytotoxicity of doxorubicin in breast cancer cells. The results of proteomics showed that ABC transporter proteins and proteins associated with the process of transcription and initiation of translation were reduced.
    [Show full text]
  • Role of Phytochemicals in Colon Cancer Prevention: a Nutrigenomics Approach
    Role of phytochemicals in colon cancer prevention: a nutrigenomics approach Marjan J van Erk Promotor: Prof. Dr. P.J. van Bladeren Hoogleraar in de Toxicokinetiek en Biotransformatie Wageningen Universiteit Co-promotoren: Dr. Ir. J.M.M.J.G. Aarts Universitair Docent, Sectie Toxicologie Wageningen Universiteit Dr. Ir. B. van Ommen Senior Research Fellow Nutritional Systems Biology TNO Voeding, Zeist Promotiecommissie: Prof. Dr. P. Dolara University of Florence, Italy Prof. Dr. J.A.M. Leunissen Wageningen Universiteit Prof. Dr. J.C. Mathers University of Newcastle, United Kingdom Prof. Dr. M. Müller Wageningen Universiteit Dit onderzoek is uitgevoerd binnen de onderzoekschool VLAG Role of phytochemicals in colon cancer prevention: a nutrigenomics approach Marjan Jolanda van Erk Proefschrift ter verkrijging van graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof.Dr.Ir. L. Speelman, in het openbaar te verdedigen op vrijdag 1 oktober 2004 des namiddags te vier uur in de Aula Title Role of phytochemicals in colon cancer prevention: a nutrigenomics approach Author Marjan Jolanda van Erk Thesis Wageningen University, Wageningen, the Netherlands (2004) with abstract, with references, with summary in Dutch ISBN 90-8504-085-X ABSTRACT Role of phytochemicals in colon cancer prevention: a nutrigenomics approach Specific food compounds, especially from fruits and vegetables, may protect against development of colon cancer. In this thesis effects and mechanisms of various phytochemicals in relation to colon cancer prevention were studied through application of large-scale gene expression profiling. Expression measurement of thousands of genes can yield a more complete and in-depth insight into the mode of action of the compounds.
    [Show full text]
  • Supplementary Table S1. Correlation Between the Mutant P53-Interacting Partners and PTTG3P, PTTG1 and PTTG2, Based on Data from Starbase V3.0 Database
    Supplementary Table S1. Correlation between the mutant p53-interacting partners and PTTG3P, PTTG1 and PTTG2, based on data from StarBase v3.0 database. PTTG3P PTTG1 PTTG2 Gene ID Coefficient-R p-value Coefficient-R p-value Coefficient-R p-value NF-YA ENSG00000001167 −0.077 8.59e-2 −0.210 2.09e-6 −0.122 6.23e-3 NF-YB ENSG00000120837 0.176 7.12e-5 0.227 2.82e-7 0.094 3.59e-2 NF-YC ENSG00000066136 0.124 5.45e-3 0.124 5.40e-3 0.051 2.51e-1 Sp1 ENSG00000185591 −0.014 7.50e-1 −0.201 5.82e-6 −0.072 1.07e-1 Ets-1 ENSG00000134954 −0.096 3.14e-2 −0.257 4.83e-9 0.034 4.46e-1 VDR ENSG00000111424 −0.091 4.10e-2 −0.216 1.03e-6 0.014 7.48e-1 SREBP-2 ENSG00000198911 −0.064 1.53e-1 −0.147 9.27e-4 −0.073 1.01e-1 TopBP1 ENSG00000163781 0.067 1.36e-1 0.051 2.57e-1 −0.020 6.57e-1 Pin1 ENSG00000127445 0.250 1.40e-8 0.571 9.56e-45 0.187 2.52e-5 MRE11 ENSG00000020922 0.063 1.56e-1 −0.007 8.81e-1 −0.024 5.93e-1 PML ENSG00000140464 0.072 1.05e-1 0.217 9.36e-7 0.166 1.85e-4 p63 ENSG00000073282 −0.120 7.04e-3 −0.283 1.08e-10 −0.198 7.71e-6 p73 ENSG00000078900 0.104 2.03e-2 0.258 4.67e-9 0.097 3.02e-2 Supplementary Table S2.
    [Show full text]
  • Identification of Differential Modules in Ankylosing Spondylitis Using Systemic Module Inference and the Attract Method
    EXPERIMENTAL AND THERAPEUTIC MEDICINE 16: 149-154, 2018 Identification of differential modules in ankylosing spondylitis using systemic module inference and the attract method FANG-CHANG YUAN1, BO LI2 and LI-JUN ZHANG3 1Department of Orthopedics, People's Hospital of Rizhao, Rizhao, Shandong 276826; 2Department of Joint Surgery, Hospital of Xinjiang Production and Construction Corps, Urumchi, Xinjiang Uygur Autonomous Region 830002; 3Department of Orthopedics, The Fifth People's Hospital of Jinan, Jinan, Shandong 250022, P.R. China Received July 15, 2016; Accepted April 28, 2017 DOI: 10.3892/etm.2018.6134 Abstract. The objective of the present study was to identify spondyloarthropathies, which also includes reactive arthritis, differential modules in ankylosing spondylitis (AS) by inte- psoriatic arthritis and enteropathic arthritis (1). Several grating network analysis, module inference and the attract features, such as synovitis, chondroid metaplasia, cartilage method. To achieve this objective, four steps were conducted. destruction and subchondral bone marrow changes, are The first step was disease objective network (DON) for AS, commonly observed in the joints of patients with AS (2). Due and healthy objective network (HON) inference dependent on to the complex progression of the joint remodeling process, gene expression data, protein-protein interaction networks and clinical research has not systematically evaluated histopatho- Spearman's correlation coefficient. In the second step, module logical changes (3), and no clear sequence of the pathological detection was performed by utilizing a clique-merging algo- mechanism has been obtained for this disease. rithm, which comprised of exploring maximal cliques by clique With the development of high throughput technology and algorithm and refining or merging maximal cliques with a high gene data analysis over the past decade, rapid progress has been overlap.
    [Show full text]
  • Table 1. Swine Proteins Identified As Differentially Expressed at 24Dpi in OURT 88/3 Infected Animals
    Table 1. swine proteins identified as differentially expressed at 24dpi in OURT 88/3 infected animals. Gene name Protein ID Protein Name -Log p-value control vs A_24DPI Difference control Vs A_24DPI F8 K7GL28 Coagulation factor VIII 2.123919902 5.42533493 PPBP F1RUL6 C-X-C motif chemokine 3.219079808 4.493174871 SDPR I3LDR9 Caveolae associated protein 2 2.191007299 4.085711161 IGHG L8B0X5 IgG heavy chain 2.084611488 -4.282530149 LOC100517145 F1S3H9 Complement C3 (LOC100517145) 3.885740476 -4.364484406 GOLM1 F1S4I1 Golgi membrane protein 1 1.746130664 -4.767168681 FCN2 I3L5W3 Ficolin-2 2.937884686 -6.029483795 Table 2. swine proteins identified as differentially expressed at 7dpi in Benin ΔMGF infected animals. Gene name Protein ID Protein Name -Log p-value control vs B_7DPI Difference control Vs B_7DPI A0A075B7I5 Ig-like domain-containing protein 1.765578164 -3.480728149 ATP5A1 F1RPS8_PIG ATP synthase subunit alpha 2.270386995 3.270935059 LOC100627396 F1RX35_PIG Fibrinogen C-terminal domain-containing protein 2.211242648 3.967363358 LOC100514666;LOC102158263 F1RX36_PIG Fibrinogen alpha chain 2.337934993 3.758180618 FGB F1RX37_PIG Fibrinogen beta chain 2.411948004 4.03753376 PSMA8 F1SBA5_PIG Proteasome subunit alpha type 1.473601007 -3.815182686 ACAN F1SKR0_PIG Aggrecan core protein 1.974489764 -3.726634026 TFG F1SL01_PIG PB1 domain-containing protein 1.809215274 -3.131304741 LOC100154408 F1SSL6_PIG Proteasome subunit alpha type 1.701949053 -3.944885254 PSMA4 F2Z528_PIG Proteasome subunit alpha type 2.045768185 -4.502977371 PSMA5 F2Z5K2_PIG
    [Show full text]
  • Functional Gene Clusters in Global Pathogenesis of Clear Cell Carcinoma of the Ovary Discovered by Integrated Analysis of Transcriptomes
    International Journal of Environmental Research and Public Health Article Functional Gene Clusters in Global Pathogenesis of Clear Cell Carcinoma of the Ovary Discovered by Integrated Analysis of Transcriptomes Yueh-Han Hsu 1,2, Peng-Hui Wang 1,2,3,4,5 and Chia-Ming Chang 1,2,* 1 Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan; [email protected] (Y.-H.H.); [email protected] (P.-H.W.) 2 School of Medicine, National Yang-Ming University, Taipei 112, Taiwan 3 Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan 4 Department of Medical Research, China Medical University Hospital, Taichung 440, Taiwan 5 Female Cancer Foundation, Taipei 104, Taiwan * Correspondence: [email protected]; Tel.: +886-2-2875-7826; Fax: +886-2-5570-2788 Received: 27 April 2020; Accepted: 31 May 2020; Published: 2 June 2020 Abstract: Clear cell carcinoma of the ovary (ovarian clear cell carcinoma (OCCC)) is one epithelial ovarian carcinoma that is known to have a poor prognosis and a tendency for being refractory to treatment due to unclear pathogenesis. Published investigations of OCCC have mainly focused only on individual genes and lack of systematic integrated research to analyze the pathogenesis of OCCC in a genome-wide perspective. Thus, we conducted an integrated analysis using transcriptome datasets from a public domain database to determine genes that may be implicated in the pathogenesis involved in OCCC carcinogenesis. We used the data obtained from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) DataSets. We found six interactive functional gene clusters in the pathogenesis network of OCCC, including ribosomal protein, eukaryotic translation initiation factors, lactate, prostaglandin, proteasome, and insulin-like growth factor.
    [Show full text]
  • Role of Genomic Variants in the Response to Biologics Targeting Common Autoimmune Disorders
    Role of genomic variants in the response to biologics targeting common autoimmune disorders by Gordana Lenert, PhD The thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Master of Science Ottawa-Carleton Joint Program in Bioinformatics Carleton University Ottawa, Canada © 2016 Gordana Lenert Abstract Autoimmune diseases (AID) are common chronic inflammatory conditions initiated by the loss of the immunological tolerance to self-antigens. Chronic immune response and uncontrolled inflammation provoke diverse clinical manifestations, causing impairment of various tissues, organs or organ systems. To avoid disability and death, AID must be managed in clinical practice over long periods with complex and closely controlled medication regimens. The anti-tumor necrosis factor biologics (aTNFs) are targeted therapeutic drugs used for AID management. However, in spite of being very successful therapeutics, aTNFs are not able to induce remission in one third of AID phenotypes. In our research, we investigated genomic variability of AID phenotypes in order to explain unpredictable lack of response to aTNFs. Our hypothesis is that key genetic factors, responsible for the aTNFs unresponsiveness, are positioned at the crossroads between aTNF therapeutic processes that generate remission and pathogenic or disease processes that lead to AID phenotypes expression. In order to find these key genetic factors at the intersection of the curative and the disease pathways, we combined genomic variation data collected from publicly available curated AID genome wide association studies (AID GWAS) for each disease. Using collected data, we performed prioritization of genes and other genomic structures, defined the key disease pathways and networks, and related the results with the known data by the bioinformatics approaches.
    [Show full text]
  • Supplementary Table 2
    Supplementary Table 2. Differentially Expressed Genes following Sham treatment relative to Untreated Controls Fold Change Accession Name Symbol 3 h 12 h NM_013121 CD28 antigen Cd28 12.82 BG665360 FMS-like tyrosine kinase 1 Flt1 9.63 NM_012701 Adrenergic receptor, beta 1 Adrb1 8.24 0.46 U20796 Nuclear receptor subfamily 1, group D, member 2 Nr1d2 7.22 NM_017116 Calpain 2 Capn2 6.41 BE097282 Guanine nucleotide binding protein, alpha 12 Gna12 6.21 NM_053328 Basic helix-loop-helix domain containing, class B2 Bhlhb2 5.79 NM_053831 Guanylate cyclase 2f Gucy2f 5.71 AW251703 Tumor necrosis factor receptor superfamily, member 12a Tnfrsf12a 5.57 NM_021691 Twist homolog 2 (Drosophila) Twist2 5.42 NM_133550 Fc receptor, IgE, low affinity II, alpha polypeptide Fcer2a 4.93 NM_031120 Signal sequence receptor, gamma Ssr3 4.84 NM_053544 Secreted frizzled-related protein 4 Sfrp4 4.73 NM_053910 Pleckstrin homology, Sec7 and coiled/coil domains 1 Pscd1 4.69 BE113233 Suppressor of cytokine signaling 2 Socs2 4.68 NM_053949 Potassium voltage-gated channel, subfamily H (eag- Kcnh2 4.60 related), member 2 NM_017305 Glutamate cysteine ligase, modifier subunit Gclm 4.59 NM_017309 Protein phospatase 3, regulatory subunit B, alpha Ppp3r1 4.54 isoform,type 1 NM_012765 5-hydroxytryptamine (serotonin) receptor 2C Htr2c 4.46 NM_017218 V-erb-b2 erythroblastic leukemia viral oncogene homolog Erbb3 4.42 3 (avian) AW918369 Zinc finger protein 191 Zfp191 4.38 NM_031034 Guanine nucleotide binding protein, alpha 12 Gna12 4.38 NM_017020 Interleukin 6 receptor Il6r 4.37 AJ002942
    [Show full text]
  • Dendritic Spinopathy in Transgenic Mice Expressing ALS/Dementia-Linked Mutant UBQLN2
    Dendritic spinopathy in transgenic mice expressing ALS/dementia-linked mutant UBQLN2 George H. Gorriea,1, Faisal Fectoa,b,1, Daniel Radzickic, Craig Weissc,d, Yong Shia, Hongxin Dongb,e, Hong Zhaia, Ronggen Fua, Erdong Liua, Sisi Lia, Hasan Arrata, Eileen H. Bigiof,g, John F. Disterhoftc, Marco Martinac, Enrico Mugnainih, Teepu Siddiquea,b,h,2, and Han-Xiang Denga,2 aDivision of Neuromuscular Medicine, Davee Department of Neurology and Clinical Neurosciences, bInterdepartmental Neuroscience Program, cDepartment of Physiology, dBehavioral Phenotyping Core Facility, eDepartment of Psychiatry and Behavioral Sciences, fDivision of Neuropathology, Department of Pathology, gCognitive Neurology and Alzheimer Disease Center, and hDepartment of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 Edited* by David W. Russell, University of Texas Southwestern Medical Center, Dallas, TX, and approved August 27, 2014 (received for review April 1, 2014) Mutations in the gene encoding ubiquilin2 (UBQLN2) cause amyo- using chloramphenicol acetyltransferase (CAT) reporter system trophic lateral sclerosis (ALS), frontotemporal type of dementia, or and constructed a 10.8-kb EcoRI/BamHI human UBQLN2 ge- both. However, the molecular mechanisms are unknown. Here, nomic DNA transgene with a P497H mutation, which was P497H we show that ALS/dementia-linked UBQLN2 transgenic mice identified in a large family with ALS and dementia (2) (Fig. S1 develop neuronal pathology with ubiquilin2/ubiquitin/p62- A and B). Transgenic mice were developed by microinjection positive inclusions in the brain, especially in the hippocampus, re- of the transgene into fertilized eggs. capitulating several key pathological features of dementia ob- We identified 13 transgenic founders and performed initial ge- served in human patients with UBQLN2 mutations.
    [Show full text]
  • Oliver Stewart (150263067) and Luke Gaughan Ph.D Upon Tyne, Tyne and Wear, UK Due to the Decreased Relative Expression of PSA in All but One of the Conditions
    PSMA4 and PSMA6 of the 20S Proteasome and their roles in Androgen Receptor signalling in Prostate Cancer Discussion Northern Institute for Cancer Research, Newcastle University, NE2 4HH, Newcastle PSMA4 and PSMA6 knockdown proved to be successful By Oliver Stewart (150263067) and Luke Gaughan Ph.D upon Tyne, Tyne and Wear, UK due to the decreased relative expression of PSA in all but one of the conditions. Western Blot analysis also reinforces the successive knockdown of the proteasome subunits. Introduction Hypothesis, Aims and Objectives Results and Conclusions Conversely, PCR analysis for the PSMA4 KD –ENZ group Background Hypothesis: shows a higher relative expression of PSA than the Scr 1. Knockdown of proteasome subunits (control) group. This anomaly can be explained by the PSMA4 and PSMA6 compromises fact that only one reading of PSA expression was taken. In the UK 2014, prostate cancer was found to be the transcriptional activity of PSA second most common cancer overall, with the disease Gene knockdown of PSMA4 and PSMA6 To improve on this, I would take multiple readings for the being the most common cancer in males. Fortunately, decreases AR signalling and subsequently relative expression of PSA, allowing the calculation of an prostate cancer is very treatable, with an 84% survival reduces the expression of AREs in CW22Rv1 accurate average, thus, removing any anomalous data. rate for 10 or more years between 2010-2011 in England cells. Consequently, a conclusion regarding the individual and Wales. effectiveness of either a PSMA4 or PSMA6 knockdown on reducing ARE transcriptional activity could not be made. Aims and Objectives: However, individual patients can fail to respond to treatments, including: androgen depletion therapy, Moreover, the absence or presence of Enzalutamide antiandrogens (such as Enzalutamide (ENZ)) or • To investigate the functions of PSMA4 and seemed to show no effect on the transcriptional activity orchidectomy which can result in castration-resistant PSMA6 in AR signalling of PSA.
    [Show full text]
  • Anti-PSMA4 Picoband Antibody Catalog # ABO11708
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 Anti-PSMA4 Picoband Antibody Catalog # ABO11708 Specification Anti-PSMA4 Picoband Antibody - Product Information Application WB Primary Accession P25789 Host Rabbit Reactivity Human, Mouse, Rat Clonality Polyclonal Format Lyophilized Description Rabbit IgG polyclonal antibody for Proteasome subunit alpha type-4(PSMA4) detection. Tested with WB in Human;Mouse;Rat. Reconstitution Add 0.2ml of distilled water will yield a Western blot analysis of PSMA4 expression in concentration of 500ug/ml. rat liver extract (lane 1), mouse spleen extract (lane 2) and HELA whole cell lysates (lane 3). PSMA4 at 29KD was detected using Anti-PSMA4 Picoband Antibody - Additional rabbit anti- PSMA4 Antigen Affinity purified Information polyclonal antibody (Catalog # ABO11708) at 0.5 ??g/mL. The blot was developed using Gene ID 5685 chemiluminescence (ECL) method . Other Names Proteasome subunit alpha type-4, 3.4.25.1, Anti-PSMA4 Picoband Antibody - Macropain subunit C9, Multicatalytic Background endopeptidase complex subunit C9, Proteasome component C9, Proteasome Proteasome subunit alpha type-4, also known subunit L, PSMA4, HC9, PSC9 as macropain subunit C9, proteasome component C9, and 20S proteasome subunit Calculated MW alpha-3, is a protein that in humans is encoded 29484 MW KDa by the PSMA4 gene. The proteasome is a multicatalytic proteinase complex with a highly Application Details ordered ring-shaped 20S core structure. The Western blot, 0.1-0.5 µg/ml, Human, Mouse, Rat<br> core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of Subcellular Localization 7 alpha subunits and 2 rings are composed of 7 Cytoplasm.
    [Show full text]