Biochemical Composition of Sardinella Gibbosa, Clupeonella Engrauliformis and Stolephorus Indicus Bones from the Oman Sea and Caspian Sea

Total Page:16

File Type:pdf, Size:1020Kb

Biochemical Composition of Sardinella Gibbosa, Clupeonella Engrauliformis and Stolephorus Indicus Bones from the Oman Sea and Caspian Sea Iranian Journal of Fisheries Sciences 16(4) 1312-1324 2017 Biochemical composition of Sardinella gibbosa, Clupeonella engrauliformis and Stolephorus indicus bones from the Oman Sea and Caspian Sea Taheri A.1*; Sarhaddi N.2; Bakhshizadeh G.A.3; Sharifian S.1 Received: December 2015 Accepted: September 2016 Abstract The present work was conducted to investigate the chemical composition (amino acid, mineral content, and lipid profile) of bones from three different Iranian pelagic fish species. The biochemical composition of Sardinella gibbosa, Clupeonella engrauliformis and Stolephorus indicus bones captured from the Iranian Ocean (the Oman Sea and Caspian Sea) were determined. The analysis of amino acids and fatty acid profiles was done by HPLC and GC and also analysis of minerals was done by means of flame atomic emission spectrophotometry. The least amount of mono unsaturated fatty acids was observed in C. engrauliformis (p<0.05). The highest contents of polyunsaturated fatty acids and n3/n6 ratio were observed in bones of C. engrauliformis. High levels of Ca, Fe, P, Zn and Cu minerals were measured in S. gibbosa and C. engrauliformis, respectively. The highest values of basic amino acid and sulfur containing amino acids were measured in S. gibbosa and C. engrauliformis, respectively. The chemical index did not reveal lack of any essential amino acids in three studied fish varieties compared to reference protein. On the basis of result, the best bone composition was observed in S. gibbosa. Therefore, the use of bone powders varieties of these fish could be useful in food industries. Keywords: Biochemical composition, Bone, Sardinella gibbosa, Clupeonella engrauliformis, Stolephorus indicus 1-Faculty of Marine Sciences, Chabahar Maritime University, Iran, P.O.BOX. 99717- 56499. 2-Department of Fisheries, Islamic Azad University, Qeshm Branch, Iran 3-Agricultural Biotechnology Research Institute of Iran, Iran *Corresponding author's Email: [email protected] 1313 Taheri et al., Biochemical composition of Sardinella gibbosa, Clupeonella engrauliformis and … Introduction comprise considerable amounts of Fishes are among the chief sources of protein rich compounds that could be animal protein, minerals, vitamins, further processed and used as fish polyunsaturated fatty acids and meals, supplements and other valuable required nutrients for human products. Fish bones accounting for 10- consumption (Zuraini et al., 2006). 15% of fish body weight is the major Fish and fish products including fish waste generated in food processing meal and fish sauces comprise (Toppe et al., 2006). Earlier published important sources of income papers confirm the presence of worldwide (Sathivel et al., 2002). minerals, carbohydrate, lipids and There are significant amounts of micro proteins in fish bones, but information and macro-elements in fish such as regarding fish bone composition is calcium, phosphorous, selenium and limited (Jones et al., 1999). Hence, fish manganese. Fish lipids are rich in long- bones and cut offs could be used as chain n-3 polyunsaturated fatty acids alternative raw materials for many (LC n-3 PUFA), especially supplementary products and as eicosapentaenoic acid (EPA) and aquaculture food (Toppe et al., 2006). docosahexaenoic acid (DHA) (Zhao et Kilka (Clupeonella sp.) and al., 2010; Ayas, 2012). It should be Anchovy (Stolephorus sp.) fishing is notified that the fatty acids, cholesterol one of the major sources of income of and mineral composition of fish species fishermen in Iran and anchovy sprat vary based on the region of fishery, sex constitutes about 80–90% of the total and age of the fish (Miniadis- kilka catches in the Caspian Sea. Meimaroglou et al., 2007). Moreover, kilka and anchovy are There has been an increase in processed for fish oil, fish sauce and production of fish, crustaceans, fishmeal production or they are directly molluscs and other aquatic animals, used as food. Despite the demands for giving rise to 97.168 million tonnes in high quality fish meals, the quality of 2013 (FAO, 2015). Over 50% of total meals is often altered by poor handling. worldwide fish production comes from The recent collapse of kilka fisheries marine sources, but approximately 70% has affected the economy and nutrition of this amount is used for processing of local people near the Caspian Sea purposes prior to their final sale (FAO, adversely. Thus, finding an alternative 2011). A total of 20-80% of fish body, way instead of fish meal production, in including fins, bones, heads, skin and order to produce value added and viscera are discarded at different levels higher quality products fulfilling of processing that accounts for 20 market demand would be profitable. million tonnes of waste, equivalent to The aim of the present work was to 25% of total marine capture worldwide investigate the chemical composition (AMEC, 2003). The fish wastes (amino acid, mineral content, and lipid Iranian Journal of Fisheries Sciences 16(4) 2017 1314 profile) of bones from three different least 300 fish specimens. Data are pelagic fish species, including gold given as mean±standard deviation. stripe sardine (Sardinella gibbosa), The proximate analysis of bone Anchovy kilka (Clupeonella contents of three fish species was engrauliformis) and Indian anchovy carried out according to AOAC (Stolephorus indicus) caught from the procedures. Crude protein (N×6. 25) Oman Sea and the Caspian Sea. was estimated by the Kjeldahl method (Foss, Germany). The moisture content Materials and methods was measured after drying for 4 h at A total of 150 gold stripe sardine 105°C, and after combustion of (Sardinella gibbosa), and 300 Indian specimens for 16 h at 550°C the ash Anchovy (Stolephorus indicus), was determined (AOAC, 2012). The collected from the fishing area of the total crude fat was also extracted and Jask port (north coast of the Oman sea) measured by Bligh and Dyer (1959) and 150 Anchovy kilka (Clupeonella method. engrauliformis), collected from The Fe, Zn, Cu, Mg, Ca, Na, P, Cr, Babolsar fishing port (south coast of I, Cl, F and K contents of fish bones the Caspian Sea) in 2009 were used in were determined after the destruction the present study. The mentioned ports of organic contents of the samples by are famous commercial fish catching dry-ashing in a furnace oven, sites in the north and south of Iran. (Lilienthal L3/P, Bremen, Germany). Fishing was carried out randomly in To prevent mineral loss, the samples September 2012 with the support of were kept at 90 – 250°C (ramp time 2 professional local fishermen. The h, hold time 2 h), 525°C (ramp time 5 samples were stored at – 20ºC for h, hold time 7 h) and 525 – 100°C further use. (ramp time 2 h). After cooling, the The frozen specimens were samples were digested using 20 ml defrosted by overnight incubation at 65% nitric acid and dried in an oven. 4°C. All the fish specimens were The digested samples were again gutted, filleted and their gills were placed in a furnace at 525 °C for 1 hour removed. After removing of the and the resulting white ash was again remaining meat and connective tissues, digested with 2 mL 65% nitric acid the bones were dipped in 1% trypsin with 0.5 mL 30% H2O2 solution (Supra solution (pH=6.9) for 3 hours at room pure, Merck). The final volume was temperature (Malde et al., 2010). The made up to 50 ml using distilled clean bones were stored at -20°C until deionized water. Na and K use. All chemicals used were of measurements were demonstrated by analytical grade and analyses were flame atomic emission carried out in triplicates each having at spectrophotometry while P analysis was carried out by visible-ultraviolet 1315 Taheri et al., Biochemical composition of Sardinella gibbosa, Clupeonella engrauliformis and … spectrophotometry using the N NaOH digestions at 110°C for 24h. ammonium vanadate molybdate The tryptophan content was determined colorimetric (AOAC, 2012). The P by the colorimetric method of (Witte et absorbance values were read in a al., 2002). All determinations were Hitachi-2000 double beam molecular performed in triplicate. spectrophotometer (Tokyo, Japan). All Essential amino acid scores (AS) other Minerals were determined using a were calculated according to reference flame atomic absorption amino acid requirements for adults spectrophotometer (Perkin-Elmer AA (Witte et al., 2002) and given by the spectrophotometer 3100, USA) with an Eq. (1). air acetylene flame e -Valverde AS = (Sample amino acid/ reference et al., 2000). amino acid) × 100 (Eq. 1) Total lipids were extracted with The total essential amino acid (Ʃ methanol: chloroform (2:1) method EAA) to the total amino acid (Ʃ AA) while fatty acids were obtained with ratio, i.e. (Ʃ EAA/ Ʃ AA); total sulfur 12% boron trifluoride (BF3) in amino acid (Ʃ SAA) and total aromatic methanol and fatty acid methyl esters amino acid (Ʃ ArAA) were determined. (FAMEs) were prepared by n-hexane The Leu/Ile ratios were calculated (Moss et al., 1974). FAMEs were while the predicted protein efficiency subsequently analysed by capillary gas ratio (P-PER) was determined using chromatography SGE BPX70 (Philips, one of the equations developed by Netherland). The conditions were as Alsmeyer et al. (1974), i.e. P-PER= follows; detector temperature at 280ºC, -0.468 + 0.454 (Leu) - 0.105 (Tyr). injector temperature at 240ºC, helium Differences between mean values speed at 1.0 mL/min, and oven were computed using one way analysis temperature ranged from 180 to 250ºC. of v i ce ANOVA). Du c ’s Thrombogenisity Index (TI) was multiple range tests was also carried calculated according to (Ulbricht and out to conduct post hoc comparisons Southgate, 1991). between pairs of treatments. To extract total amino acids, 20 mg Statistically significant differences of sample was hydrolyzed by 6 N were demonstrated at p<0.05. All chloric acid at 110°C for 20 hours.
Recommended publications
  • Buradan Da Dünya Karar Verme Yöntemi Yardımı Ile Konteyner Denizlerine Ulaşma Imkânı Sağlamaktadır Terminallerinin Performans Analizlerine (Esmer Ve Oral, 2012)
    Volume : 4 I ssue: ORDU 2 ORDU UNIVERSITY DEC UNIVERSITY EMBER Volume: 4 Issue: 2 DECEMBER 2018 201 8 TURKISH JOURNAL TURKISH OF JOURNAL OF MARITIME MARITIME AND MARINE AND S C I E N C E S MARINE SCIENCES www.jmms.odu.edu.tr e-ISSN: 2564-7016 TURKISH JOURNAL OF MARITIME AND MARINE SCIENCES The Turkish Journal of Maritime and Marine Sciences is published by Ordu University On Behalf of Fatsa Faculty of Marine Sciences Correspondence Address: Ordu University, Fatsa Faculty of Marine Sciences 52400 Fatsa/Ordu, TURKEY Web site: http://edergi.odu.edu.tr/ojs/index.php/JMMS/index http://dergipark.gov.tr/trjmms Tel: +90 (452) 423 50 53 Fax: +90 (452) 423 99 53 E-mail: [email protected] Sort of Publication: Periodically Publication Date and Place: 01 / 12 / 2018, ORDU, TURKEY Publishing Kind: Online OWNER Ordu University On Behalf of Fatsa Faculty of Marine Sciences Prof. Dr. Bahar TOKUR (Dean) EDITORS IN CHIEF Dr. Hasan TÜRE Assoc. Prof. Dr. Naciye ERDOĞAN SAĞLAM COVER DESIGN Dr. Adem YÜCEL FOREIGN LANGUAGE EDITORS Dr. Cem Tolga GÜRKANLI Teaching Asst. Şeyma VAROL ŞANLI LAYOUT EDITOR Research Asst. Enes Fatih PEHLİVAN SECTION EDITORS Fisheries and Aquaculture Prof. Dr. Bahar TOKUR Ordu University Prof. Dr. İsmet BALIK Ordu University Assoc. Prof. Dr. Mehmet AYDIN Ordu University Assoc. Prof. Dr. Yılmaz ÇİFTÇİ Ordu University Assoc. Prof. Dr. Evren TUNCA Ordu University Dr. Ali MİROĞLU Ordu University Maritime and Marine Technology Dr. Ercan YÜKSEKYILDIZ Ordu University Dr. Aziz MUSLU Ordu University Dr. Adil SÖZER Ordu University EDITORIAL BOARD (FISHERIES AND AQUACULTURE) Prof.
    [Show full text]
  • Acartia Tonsa) Was Found, Although This May Not Be Solely Due to the Presence of ML (See Below)
    Caspian Environment Programme Transboundary Diagnostic Analysis Revisit 10 December, 2007 EXECUTIVE SUMMARY The CEP TDA Revisit was completed in December 2007 following an intensive desk study of materials collected from the second phase of the Caspian Environment Programme. The intention of the CEP TDA Revisit is to provide a follow on review of the priority transboundary issues, to assess the efforts conducted during the CEP Phase II implementation, and to extrapolate where additional efforts are warranted. The SAP and NAPs are reviewed followed by an analysis of the priority areas of concern as identified in the SAP. The issues addressed in the TDA are: decline in biodiversity; decline in environmental quality (pollution); decline in bioresources (fisheries); decline in coastal infrastructure and habitat; and impacts of the oil industry in the region. This is supplemented by an analysis of governance mechanisms, socio- economic conditions in the region, and stakeholder analysis and public involvement strategy. The methodology employed by the CEP TDA Revisit team involved an intensive desk study of all reports produced for the CEP PCU from 2003 – 2007. Regional and international specialists were called upon to review the materials and assess the status of the major transboundary issues through the scope of the CEP work and related efforts in the region. The revisit directly, through its researchers, brought additional information to the fore in order to expand the understanding of the transboundary issues and new parallel studies were commissioned on climate change impacts and land-based sources and where manged by the Programme Coordination Unit. SAP and NAP review assessed the implementation of the SAP and the NCAPs in the Caspian littoral countries.
    [Show full text]
  • A Systematic Review of Organochlorinated Pesticide Residues in Caspian Sea Fishes
    Health Scope. 2017 February; 6(1):e36279. doi: 10.17795/jhealthscope-36279. Published online 2016 August 28. Review Article A Systematic Review of Organochlorinated Pesticide Residues in Caspian Sea Fishes Mohammad Ali Zazouli,1 and Marjan Safarpour1,* 1Department of Environmental Health, Faculty of Health and Health Sciences Research Center, Mazandaran University of Medical Sciences, Sari, IR Iran *Corresponding author: Marjan Safarpour, Department of Environmental Health, Faculty of Health and Health Sciences Research Center, Mazandaran University of Medical Sciences, Sari, IR Iran. Tel: +98-2314481905, E-mail: [email protected] Received 2016 April 26; Revised 2016 July 05; Accepted 2016 August 14. Abstract Context: The worldwide production and application of pesticides, especially organochlorine in agriculture can have adverse envi- ronmental pollution and human health risks. Thus, this review evaluated and summarized the toxicological data on the existence and concentrations of organochlorine compounds in Caspian sea fish tissues. Evidence Acquisition: The data were collected from published articles in PubMed, ISI, SID, Google Scholar and so on. Results: The review showed that nine studies were recorded in databases about pesticide residues in Caspian sea fish tissues. These studies reported that there is limited evidence of organochlorinated compounds in Caspian sea fishes. All researchers detected organochlorine contaminants in examined fishes in the studied area, however DDTs was the predominant pesticides. Heptachlor, Polychlorinated Biphenyls (PCBs) and Linden were ranked next, respectively. Conclusions: In conclusion, toxicological studies showed that, although contamination level in Caspian sea fishes was relatively low, the present status might pose a risk about food chain contamination. Keywords: Pesticide Residues, Fish, Environmental Toxicology, Systematic Review, DDTs 1.
    [Show full text]
  • The History and Future of the Biological Resources of the Caspian and the Aral Seas*
    Journal of Oceanology and Limnology Vol. 36 No. 6, P. 2061-2084, 2018 https://doi.org/10.1007/s00343-018-8189-z The history and future of the biological resources of the Caspian and the Aral Seas* N. V. ALADIN 1, ** , T. CHIDA 2 , Yu. S. CHUIKOV 3 , Z. K. ERMAKHANOV 4 , Y. KAWABATA 5 , J. KUBOTA 6 , P. MICKLIN 7 , I. S. PLOTNIKOV 1 , A. O. SMUROV 1 , V. F. ZAITZEV 8 1 Zoological Institute RAS, St.-Petersburg 199034, Russia 2 Nagoya University of Foreign Studies, Nisshin 470-0197, Japan 3 Astrakhan State University, Astrakhan 414056, Russia 4 Aral Branch of Kazakh Research Institute of Fishery, Aralsk 120100, Kazakhstan 5 Tokyo University of Agriculture and Technology, Fuchu Tokyo 183-8509, Japan 6 National Institutes for the Humanities, Tokyo 105-0001, Japan 7 Western Michigan University, Kalamazoo 49008, USA 8 Astrakhan State Technical University, Astrakhan 414056, Russia Received Jul. 11, 2018; accepted in principle Aug. 16, 2018; accepted for publication Sep. 10, 2018 © Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract The term ‘biological resources’ here means a set of organisms that can be used by man directly or indirectly for consumption. They are involved in economic activities and represent an important part of a country’s raw material potential. Many other organisms are also subject to rational use and protection. They can be associated with true resource species through interspecifi c relationships. The Caspian and Aral Seas are continental water bodies, giant saline lakes. Both categories of species are represented in the benthic and pelagic communities of the Caspian and Aral Seas and are involved in human economic activities.
    [Show full text]
  • Review Article Review of the Herrings of Iran (Family Clupeidae)
    Int. J. Aquat. Biol. (2017) 5(3): 128-192 ISSN: 2322-5270; P-ISSN: 2383-0956 Journal homepage: www.ij-aquaticbiology.com © 2017 Iranian Society of Ichthyology Review Article Review of the Herrings of Iran (Family Clupeidae) Brian W. Coad1 Canadian Museum of Nature, Ottawa, Ontario, K1P 6P4 Canada. Abstract: The systematics, morphology, distribution, biology, economic importance and Article history: Received 4 March 2017 conservation of the herrings (kilkas and shads) of Iran are described, the species are illustrated, and Accepted 5 May 2017 a bibliography on these fishes in Iran is provided. There are 9 native species in the genera Available online 25 June 2017 Clupeonella , Alosa and Tenualosa in the Caspian Sea and rivers of southern Iran. Keywords: Morphology, Biology, Alosa, Clupeonella, Tenualosa, Kilka, Shad. Introduction family in the Caspian Sea is seen in the number of The freshwater ichthyofauna of Iran comprises a subspecies which have been described, rather than in diverse set of families and species. These form genera. At the species level these are Caspian Sea important elements of the aquatic ecosystem and a endemics. A study by Pourrafei et al. (2016) based number of species are of commercial or other on the nuclear gene RAG1 did not support the significance. The literature on these fishes is widely monophyly of Clupeidae but, as an abstract, details scattered, both in time and place. Summaries of the are lacking. These fishes are dealt with as a single morphology and biology of these species were given family here. in a website (www.briancoad.com) which is updated Curiously, the species and subspecies in the here for one family, while the relevant section of that Caspian Sea are generally of larger size than their website is now closed down.
    [Show full text]
  • An INIRO DUCTION
    Introduction to the Black Sea Ecology Item Type Book/Monograph/Conference Proceedings Authors Zaitsev, Yuvenaly Publisher Smil Edition and Publishing Agency ltd Download date 23/09/2021 11:08:56 Link to Item http://hdl.handle.net/1834/12945 Yuvenaiy ZAITSEV шшшшшшишшвивявшиншшшаттшшшштшшщ an INIRO DUCTION TO THE BLACK SEA ECOLOGY Production and publication of this book was supported by the UNDF-GEF Black Sea Ecosystem Recovery Project (BSERP) Istanbul, TURKEY an INTRO Yuvenaly ZAITSEV TO THE BLACK SEA ECOLOGY Smil Editing and Publishing Agency ltd Odessa 2008 УДК 504.42(262.5) 3177 ББК 26.221.8 (922.8) Yuvenaly Zaitsev. An Introduction to the Black Sea Ecology. Odessa: Smil Edition and Publishing Agency ltd. 2008. — 228 p. Translation from Russian by M. Gelmboldt. ISBN 978-966-8127-83-0 The Black Sea is an inland sea surrounded by land except for the narrow Strait of Bosporus connecting it to the Mediterranean. The huge catchment area of the Black Sea receives annually about 400 ктУ of fresh water from large European and Asian rivers (e.g. Danube, Dnieper, Yeshil Irmak). This, combined with the shallowness of Bosporus makes the Black Sea to a considerable degree a stagnant marine water body wherein the dissolved oxygen disappears at a depth of about 200 m while hydrogen sulphide is present at all greater depths. Since the 1970s, the Black Sea has been seriously damaged as a result of pollution and other man-made factors and was studied by dif­ ferent specialists. There are, of course, many excellent works dealing with individual aspects of the Black Sea biology and ecology.
    [Show full text]
  • Biological-Diversity-In-The-Black-Sea-1.Pdf
    Biological Diversity in the Black Sea A Study of Change and Decline BLACK SEA ENVIRONMENTAL SERIES The Black Sea Environmental Series consists of thematic regional studies undertaken as part of a programme for improved management of the Black Sea environment. The Black Sea Environmental Programme (BSEP) was initiated in June 1993 at the urgent request of the governments of Bulgaria, Georgia, Romania, Russia, Turkey and Ukraine. The BSEP, funded by the Global Environment Facility and a number of collateral donors, is managed by the United Nations Development Programme (through UNOPS) in close cooperation with the World Bank and the United Nations Environment Programme, and donors. It closely coordinates the work of governmental and international experts, specialist UN Agencies, and national and international NGOs. The BSEP sets out to provide a sustainable basis for managing the Black Sea through capacity building, environmental assessment, the development and harmonization of policy and legislation, and by facilitating appropriate environmental investments. The Black Sea Environmental Series is brought to a wider audience in order to provide a baseline of peer-reviewed quantitative information on the Black Sea which can be employed by managers, researchers and teachers. The studies also serve as case histories for the eventual application of concepts agreed at the 1992 Rio de Janerio " Earth Summit" and which are embodied in "Agenda 21". Widely considered as the most damaged sea on our planet, the Black Sea should serve as an example to future generations of mankind's ability to understand, save and protect an internationally shared resource. GEF Black Sea Environmental Programme Marine Biological Diversity in the Black Sea A Study of Change and Decline by Yu.
    [Show full text]
  • Engraulis Encrasicolus ) Increase in the North Sea
    The European anchovy (Engraulis encrasicolus ) increase in the North Sea Kristina Raab Thesis committee Promotor Prof. Dr Adriaan D. Rijnsdorp, Professor of Sustainable Fisheries Management Wageningen University Co-promotors Dr Mark Dickey-Collas Professional Officer, International Council for the Exploration of the Sea (ICES) Copenhagen, Denmark Dr Leo A.J. Nagelkerke Assistant professor, Aquaculture and Fisheries Group Wageningen University Other members Prof. Dr Brian MacKenzie, Technical University of Denmark, Institute for Aquatic Resources (DTU AQUA), Charlottenlund, Denmark Prof. Dr Jaap van der Meer, Royal Netherlands Institute for Sea Research (NIOZ), Texel, The Netherlands Prof. Dr Wolf M. Mooij, Wageningen University and Netherlands Institute for Ecology (NIOO), Wageningen Dr W. Fred de Boer, Wageningen University This research was conducted under the auspices of the Graduate School of Animal Sciences. The European anchovy (Engraulis encrasicolus ) increase in the North Sea Kristina Raab Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof.dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Thursday 10 October 2013 at 11 a.m. in the Aula. Kristina Raab The European anchovy ( Engraulis encrasicolus) increase in the North Sea, 208 pages. PhD thesis, Wageningen University, Wageningen, NL (2013) With references, with summaries in Dutch and English ISBN 978 94 6173 6826 “In liebevoller Verehrung”… To my teachers, past and present. Contents Chapter 1 - General introduction.......................................................... 9 Chapter 2 - Anchovy Engraulis encrasicolus diet in the North and Baltic Seas (Raab et al 2011).................................................................
    [Show full text]
  • Review Article Review of the Herrings of Iran (Family Clupeidae)
    Int. J. Aquat. Biol. (2017) 5(3): 128-192 ISSN: 2322-5270; P-ISSN: 2383-0956 Journal homepage: www.ij-aquaticbiology.com © 2017 Iranian Society of Ichthyology Review Article Review of the Herrings of Iran (Family Clupeidae) Brian W. Coad1 Canadian Museum of Nature, Ottawa, Ontario, K1P 6P4 Canada. Abstract: The systematics, morphology, distribution, biology, economic importance and Article history: Received 4 March 2017 conservation of the herrings (kilkas and shads) of Iran are described, the species are illustrated, and Accepted 5 May 2017 a bibliography on these fishes in Iran is provided. There are 9 native species in the genera Available online 25 June 2017 Clupeonella , Alosa and Tenualosa in the Caspian Sea and rivers of southern Iran. Keywords: Morphology, Biology, Alosa, Clupeonella, Tenualosa, Kilka, Shad. Introduction family in the Caspian Sea is seen in the number of The freshwater ichthyofauna of Iran comprises a subspecies which have been described, rather than in diverse set of families and species. These form genera. At the species level these are Caspian Sea important elements of the aquatic ecosystem and a endemics. A study by Pourrafei et al. (2016) based number of species are of commercial or other on the nuclear gene RAG1 did not support the significance. The literature on these fishes is widely monophyly of Clupeidae but, as an abstract, details scattered, both in time and place. Summaries of the are lacking. These fishes are dealt with as a single morphology and biology of these species were given family here. in a website (www.briancoad.com) which is updated Curiously, the species and subspecies in the here for one family, while the relevant section of that Caspian Sea are generally of larger size than their website is now closed down.
    [Show full text]
  • HHA 2015 Five Yearly Review Comparison of Lidar and Bathymetry Data Sets
    HHA 2015 Five Yearly Review Comparison of LiDAR and Bathymetry data sets DLM7531-RT001-R02-00 November 2017 HHA 2015 Five Yearly Review Comparison of LiDAR and Bathymetry data sets Document information Document permissions Confidential - client Project number DLM7531 Project name HHA 2015 Five Yearly Review Report title Comparison of LiDAR and Bathymetry data sets Report number RT001 Release number R02-00 Report date November 2017 Client Harwich Haven Authority Client representative John Brien Project manager Nigel Feates Project director Mike Dearnaley Document history Date Release Prepared Approved Authorised Notes 10 Nov 2017 02-00 NGF JS MPD 31 Aug 2017 01-00 NGF JS MPD Document authorisation Prepared Approved Authorised © HR Wallingford Ltd This report has been prepared for HR Wallingford’s client and not for any other person. Only our client should rely upon the contents of this report and any methods or results which are contained within it and then only for the purposes for which the report was originally prepared. We accept no liability for any loss or damage suffered by any person who has relied on the contents of this report, other than our client. This report may contain material or information obtained from other people. We accept no liability for any loss or damage suffered by any person, including our client, as a result of any error or inaccuracy in third party material or information which is included within this report. To the extent that this report contains information or material which is the output of general research it should not be relied upon by any person, including our client, for a specific purpose.
    [Show full text]
  • This Publication Is Devoted to the 25Th Anniversary of the North Caspian Project Udc 502.51(035.3) Bbc 20.1 E40
    THIS PUBLICATION IS DEVOTED TO THE 25TH ANNIVERSARY OF THE NORTH CASPIAN PROJECT UDC 502.51(035.3) BBC 20.1 E40 Reviewers: A.R. Medeu, Laureate of the State Prize of the Republic of Kazakhstan for 2013 in the field of science and technology, Member of the National Academy of Sciences of the Republic of Kazakhstan; D.Sc.Biol., Prof. N.P. Ogar, Corresponding Member of the National Academy of Sciences of the Republic of Kazakhstan, D.Sc.Biol., Prof. EDITORIAL BOARD Editor-in-Chief: V.A. Skolskiy, General Director of KAPE LLC Deputy Editor-in-Chief: M.Z. Burlibaev, Member of the Russian Academy of Water Sciences, D.Sc.Tech., Prof., KAPE LLC Deputy General Director for Science Scientific Editors: S.Z. Asylbekova, D.Sc.Biol.; F.V.Klimov, Cand.of Biol.Sc.; E.G. Krupa, D.Sc.Biol.; G.K. Mutysheva, Cand.of Biol.Sc.; L.L. Stogova, Cand.of Biol.Sc.. Responsible Editors: E.A. Skolskaya; V.N. Uvarov, Cand.of Geogr.Sc. Approved for publication by the Scientific and Technical Council of the Kazakhstan Agency of Applied Ecology (KAPE STC) E40 Environmental Monitoring of the North-East Caspian Sea during Development of NCOC N.V. Oil Fields in the Period 2006- 2016. – Almaty: NCOC N.V., KAPE, 2018 - 400p. ISBN 978-601-332-146-2 The Monograph contains materials based on the results of environmental monitoring conducted by Agip KCO / NCOC N.V. during development of oil fields in Kazakhstan part of the North Caspian Sea. This second edition summarizes the monitoring materials for the period 2006-2016.
    [Show full text]
  • Parasites of the Sprats of Some Zones of the Caspian Sea in the Water
    Journal of Entomology and Zoology Studies 2018; 6(2): 319-321 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Parasites of the sprats of some zones of the JEZS 2018; 6(2): 319-321 © 2018 JEZS Caspian Sea in the water area of Azerbaijan Received: 10-01-2018 Accepted: 12-02-2018 Seyidli YM Seyidli YM and Nasirov АМ Institute of Zoology of National Academy Sciences of Azerbaijan, Abstract Passage 1128, block 504, Baku, Az.1073, Azerbaijan During the period of research, 6 species of parasites were detected in the sprat. From the selected parasites 1 species refers to ciliates (Trichodina caspioloza),1 species to monogeneans (Mazokraes Nasirov АМ alosae), two species to trematodes (Pronoprymna ventricosa and Bunocotyle cingulata), 1 species to Institute of Zoology of National acanthocephalans (Corynosoma caspicum) and 1 species to the nematodes (Anisakis schupakovi).Of Academy Sciences of Azerbaijan, these, Trichodina caspialosae and Mazocraes alosae develop without a change of hosts. Among the Passage 1128, block 504, Baku, parasites of sprats, predominantly, Pronoprymna ventricosa trematode, a specific parasite of herrings. Az.1073, Azerbaijan More species of parasites were identified in ordinary sprat than in anchovy sprat. This is due to the habitat of ordinary sprat in the coastal waters, the environment of which favorably affects the development of the intermediate host of some parasites. Anchovy sprat inhabits far from the coastal zones of the sea, where the species diversity is lower than the coastal thickening. All the parasites found in the sprats are typical marine species. Keywords: fish, sprat, parasites, ciliates, monogenea, trematode, nematode, acanthocephalans Introduction The Caspian Sea is of great importance from the point of view of ichthyology and ichthyoparasitology.
    [Show full text]