Ada Lovelace: First Computer Programmer and Hacker?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Computer History – the Pitfalls of Past Futures
Research Collection Working Paper Computer history – The pitfalls of past futures Author(s): Gugerli, David; Zetti, Daniela Publication Date: 2019 Permanent Link: https://doi.org/10.3929/ethz-b-000385896 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library TECHNIKGESCHICHTE DAVID GUGERLI DANIELA ZETTI COMPUTER HISTORY – THE PITFALLS OF PAST FUTURES PREPRINTS ZUR KULTURGESCHICHTE DER TECHNIK // 2019 #33 WWW.TG.ETHZ.CH © BEI DEN AUTOREN Gugerli, Zetti/Computer History Preprints zur Kulturgeschichte der Technik #33 Abstract The historicization of the computer in the second half of the 20th century can be understood as the effect of the inevitable changes in both its technological and narrative development. What interests us is how past futures and therefore history were stabilized. The development, operation, and implementation of machines and programs gave rise to a historicity of the field of computing. Whenever actors have been grouped into communities – for example, into industrial and academic developer communities – new orderings have been constructed historically. Such orderings depend on the ability to refer to archival and published documents and to develop new narratives based on them. Professional historians are particularly at home in these waters – and nevertheless can disappear into the whirlpool of digital prehistory. Toward the end of the 1980s, the first critical review of the literature on the history of computers thus offered several programmatic suggestions. It is one of the peculiar coincidences of history that the future should rear its head again just when the history of computers was flourishing as a result of massive methodological and conceptual input. -
Turing's Influence on Programming — Book Extract from “The Dawn of Software Engineering: from Turing to Dijkstra”
Turing's Influence on Programming | Book extract from \The Dawn of Software Engineering: from Turing to Dijkstra" Edgar G. Daylight∗ Eindhoven University of Technology, The Netherlands [email protected] Abstract Turing's involvement with computer building was popularized in the 1970s and later. Most notable are the books by Brian Randell (1973), Andrew Hodges (1983), and Martin Davis (2000). A central question is whether John von Neumann was influenced by Turing's 1936 paper when he helped build the EDVAC machine, even though he never cited Turing's work. This question remains unsettled up till this day. As remarked by Charles Petzold, one standard history barely mentions Turing, while the other, written by a logician, makes Turing a key player. Contrast these observations then with the fact that Turing's 1936 paper was cited and heavily discussed in 1959 among computer programmers. In 1966, the first Turing award was given to a programmer, not a computer builder, as were several subsequent Turing awards. An historical investigation of Turing's influence on computing, presented here, shows that Turing's 1936 notion of universality became increasingly relevant among programmers during the 1950s. The central thesis of this paper states that Turing's in- fluence was felt more in programming after his death than in computer building during the 1940s. 1 Introduction Many people today are led to believe that Turing is the father of the computer, the father of our digital society, as also the following praise for Martin Davis's bestseller The Universal Computer: The Road from Leibniz to Turing1 suggests: At last, a book about the origin of the computer that goes to the heart of the story: the human struggle for logic and truth. -
Biographies of Computer Scientists
1 Charles Babbage 26 December 1791 (London, UK) – 18 October 1871 (London, UK) Life and Times Charles Babbage was born into a wealthy family, and started his mathematics education very early. By . 1811, when he went to Trinity College, Cambridge, he found that he knew more mathematics then his professors. He moved to Peterhouse, Cambridge from where he graduated in 1814. However, rather than come second to his friend Herschel in the final examinations, Babbage decided not to compete for an honors degree. In 1815 he co-founded the Analytical Society dedicated to studying continental reforms of Newton's formulation of “The Calculus”. He was one of the founders of the Astronomical Society in 1820. In 1821 Babbage started work on his Difference Engine designed to accurately compile tables. Babbage received government funding to construct an actual machine, but they stopped the funding in 1832 when it became clear that its construction was running well over-budget George Schuetz completed a machine based on the design of the Difference Engine in 1854. On completing the design of the Difference Engine, Babbage started work on the Analytical Engine capable of more general symbolic manipulations. The design of the Analytical Engine was complete in 1856, but a complete machine would not be constructed for over a century. Babbage's interests were wide. It is claimed that he invented cow-catchers for railway engines, the uniform postal rate, a means of recognizing lighthouses. He was also interested in locks and ciphers. He was politically active and wrote many treatises. One of the more famous proposed the banning of street musicians. -
Analytical Engine, 1838 ALLAN G
Charles Babbage’s Analytical Engine, 1838 ALLAN G. BROMLEY Charles Babbage commenced work on the design of the Analytical Engine in 1834 following the collapse of the project to build the Difference Engine. His ideas evolved rapidly, and by 1838 most of the important concepts used in his later designs were established. This paper introduces the design of the Analytical Engine as it stood in early 1838, concentrating on the overall functional organization of the mill (or central processing portion) and the methods generally used for the basic arithmetic operations of multiplication, division, and signed addition. The paper describes the working of the mechanisms that Babbage devised for storing, transferring, and adding numbers and how they were organized together by the “microprogrammed” control system; the paper also introduces the facilities provided for user- level programming. The intention of the paper is to show that an automatic computing machine could be built using mechanical devices, and that Babbage’s designs provide both an effective set of basic mechanisms and a workable organization of a complete machine. Categories and Subject Descriptors: K.2 [History of Computing]- C. Babbage, hardware, software General Terms: Design Additional Key Words and Phrases: Analytical Engine 1. Introduction 1838. During this period Babbage appears to have made no attempt to construct the Analytical Engine, Charles Babbage commenced work on the design of but preferred the unfettered intellectual exploration of the Analytical Engine shortly after the collapse in 1833 the concepts he was evolving. of the lo-year project to build the Difference Engine. After 1849 Babbage ceased designing calculating He was at the time 42 years o1d.l devices. -
A Bibliography of Publications By, and About, Charles Babbage
A Bibliography of Publications by, and about, Charles Babbage Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 08 March 2021 Version 1.24 Abstract -analogs [And99b, And99a]. This bibliography records publications of 0 [Bar96, CK01b]. 0-201-50814-1 [Ano91c]. Charles Babbage. 0-262-01121-2 [Ano91c]. 0-262-12146-8 [Ano91c, Twe91]. 0-262-13278-8 [Twe93]. 0-262-14046-2 [Twe92]. 0-262-16123-0 [Ano91c]. 0-316-64847-7 [Cro04b, CK01b]. Title word cross-reference 0-571-17242-3 [Bar96]. 1 [Bab97, BRG+87, Mar25, Mar86, Rob87a, #3 [Her99]. Rob87b, Tur91]. 1-85196-005-8 [Twe89b]. 100th [Sen71]. 108-bit [Bar00]. 1784 0 [Tee94]. 1 [Bab27d, Bab31c, Bab15]. [MB89]. 1792/1871 [Ynt77]. 17th [Hun96]. 108 000 [Bab31c, Bab15]. 108000 [Bab27d]. 1800s [Mar08]. 1800s-Style [Mar08]. 1828 1791 + 200 = 1991 [Sti91]. $19.95 [Dis91]. [Bab29a]. 1835 [Van83]. 1851 $ $ $21.50 [Mad86]. 25 [O’H82]. 26.50 [Bab51a, CK89d, CK89i, She54, She60]. $ [Enr80a, Enr80b]. $27.95 [L.90]. 28 1852 [Bab69]. 1853 [She54, She60]. 1871 $ [Hun96]. $35.00 [Ano91c]. 37.50 [Ano91c]. [Ano71b, Ano91a]. 1873 [Dod00]. 18th $45.00 [Ano91c]. q [And99a, And99b]. 1 2 [Bab29a]. 1947 [Ano48]. 1961 Adam [O’B93]. Added [Bab16b, Byr38]. [Pan63, Wil64]. 1990 [CW91]. 1991 Addison [Ano91c]. Addison-Wesley [Ano90, GG92a]. 19th [Ano91c]. Addition [Bab43a]. Additions [Gre06, Gre01, GST01]. -
Women in Computing
History of Computing CSE P590A (UW) PP190/290-3 (UCB) CSE 290 291 (D00) Women in Computing Katherine Deibel University of Washington [email protected] 1 An Amazing Photo Philadelphia Inquirer, "Your Neighbors" article, 8/13/1957 2 Diversity Crisis in Computer Science Percentage of CS/IS Bachelor Degrees Awarded to Women National Center for Education Statistics, 2001 3 Goals of this talk ! Highlight the many accomplishments made by women in the computing field ! Learn their stories, both good and bad 4 Augusta Ada King, Countess of Lovelace ! Translated and extended Menabrea’s article on Babbage’s Analytical Engine ! Predicted computers could be used for music and graphics ! Wrote the first algorithm— how to compute Bernoulli numbers ! Developed notions of looping and subroutines 5 Garbage In, Garbage Out The Analytical Engine has no pretensions whatever to originate anything. It can do whatever we know how to order it to perform. It can follow analysis; but it has no power of anticipating any analytical relations or truths. — Ada Lovelace, Note G 6 On her genius and insight If you are as fastidious about the acts of your friendship as you are about those of your pen, I much fear I shall equally lose your friendship and your Notes. I am very reluctant to return your admirable & philosophic 'Note A.' Pray do not alter it… All this was impossible for you to know by intuition and the more I read your notes the more surprised I am at them and regret not having earlier explored so rich a vein of the noblest metal. -
Ada Lovelace the first Computer Programmer 1815 - 1852
Ada Lovelace The first computer programmer 1815 - 1852 Biography Ada Lovelace Day I Born on December 10th, 1815 in London as Augusta Ada Byron Each second Tuesday in October is Ada Lovelace Day. A day to raise the I Parents separated when she was a baby profile of women in science, technology, engineering, and maths to create new role models for girls and women in these fields. During this day the I Father Lord Byron was a poet and died when she was 8 years old accomplishments of those women are celebrated. I Mother Lady Wentworth was a social reformer I Descended from a wealthy family I Early interest in mathematics and science, encouraged by her mother Portrait I Obtained private classes and got in touch with intellectuals, e.g. Mary Sommerville who tutored her and later introduced Lovelace to Charles Babbage at the age of 17 I Married in 1835 William King at the age of 19, shortly after becoming the Countess of Lovelace I By 1839, she had given birth to 3 children I Continued studying maths, supported among others by Augustus De Morgan, a math professor in London who taught her via correspondence I In 1843, she published a translation of an Italian academic paper about Babbage's Analytical Engine and added her famous note section (see Contributions) I Died on November 27th, 1852 at the age of 36 Contributions I First computer programmer, roughly a century before the electronic computer I A two decade lasting correspondence with Babbage about his idea of an Analytical Engine I Developed an algorithm that would enable the Analytical Engine to calculate a sequence of Bernoulli numbers, unfortunately, the machine was never built I First person to realize the power of computer programs: Not only used for calculations with numbers I Combined arts and logic, calling it poetical science Figure 3:Ada Lovelace I First reflections about artificial intelligence, but she rejected the idea Bernoulli Numbers Quotes I Play an important role in several domains of mathematics, e.g. -
William Gibson Fonds
William Gibson fonds Compiled by Christopher Hives (1993) University of British Columbia Archives Table of Contents Fonds Description o Title / Dates of Creation / Physical Description o Biographical Sketch o Scope and Content o Notes File List Catalogue entry (UBC Library catalogue) Fonds Description William Gibson fonds. - 1983-1993. 65 cm of textual materials Biographical Sketch William Gibson is generally recognized as the most important science fiction writer to emerge in the 1980s. His first novel, Neuromancer, is the first novel ever to win the Hugo, Nebula and Philip K. Dick awards. Neuromancer, which has been considered to be one of the influential science fiction novels written in the last twenty-five years, inspired a whole new genre in science fiction writing referred to as "cyberpunk". Gibson was born in 1948 in Conway, South Carolina. He moved to Toronto in the late 1960s and then to Vancouver in the early 1970s. Gibson studied English at the University of British Columbia. He began writing science fiction short stories while at UBC. In 1979 Gibson wrote "Johnny Mnemonic" which was published in Omni magazine. An editor at Ace books encouraged him to try writing a novel. This novel would become Neuromancer which was published in 1984. After Neuromancer, Gibson wrote Count Zero (1986), Mona Lisa Overdrive (1988), and Virtual Light (1993). He collaborated with Bruce Sterling in writing The Difference Engine (1990). Gibson has also published numerous short stories, many of which appeared in a collection of his work, Burning Chrome (1986). Scope and Content Fonds consists of typescript manuscripts and copy-edited, galley or page proof versions of all five of Gibson's novels (to 1993) as well as several short stories. -
Science Fiction, Steampunk, Cyberpunk
SCIENCE FICTION: speculative but scientific plausability, write rationally, realistically about alternative possible worlds/futures, no hesitation, suspension of disbelief estrangement+cognition: seek rational understanding of NOVUM (D. Suvin—cognitive estrangement) continuum bw real-world empiricism & supernatural transcendentalism make the incredible plausible BUT alienation/defamiliarization effect (giant bug) Literature of human being encountering CHANGE (techn innovat, sci.disc, nat. events, soc shifts) origins: speculative wonder stories, antiquity’s fabulous voyages, utopia, medieval ISLAND story, scientifiction & Campbell: Hero with a 1000 Faces & Jules Verne, HG Wells (Time Machine, War of the Worlds, The Island of Dr Moreau), Mary Shelley (Frankenstein), Swift Gulliver’s Travels Imaginative, Speculative content: • TIME: futurism, alternative timeline, diff hist. past, time travel (Wells, 2001. A Space Odyssey) • SPACE: outer space, extra-terrestrial adventures, subterranean regions, deep oceans, terra incognita, parallel universe, lost world stories • CHARACTERS: alien life forms, UFO, AI, GMO, transhuman (Invisible Man), mad scientist • THEMES: *new scientific principles, *futuristic technology, (ray guns, teleportation, humanoid computers), *new political systems (post-apocalyptic dystopia), *PARANORMAL abilities (mindcontrol, telekinesis, telepathy) Parallel universe: alternative reality: speculative fiction –scientific methods to explore world Philosophical ideas question limits & prerequisites of humanity (AI) challenge -
Mirrorshade Women: Feminism and Cyberpunk
Mirrorshade Women: Feminism and Cyberpunk at the Turn of the Twenty-first Century Carlen Lavigne McGill University, Montréal Department of Art History and Communication Studies February 2008 A thesis submitted to McGill University in partial fulfilment of the requirements of the degree of Doctor of Philosophy in Communication Studies © Carlen Lavigne 2008 2 Abstract This study analyzes works of cyberpunk literature written between 1981 and 2005, and positions women’s cyberpunk as part of a larger cultural discussion of feminist issues. It traces the origins of the genre, reviews critical reactions, and subsequently outlines the ways in which women’s cyberpunk altered genre conventions in order to advance specifically feminist points of view. Novels are examined within their historical contexts; their content is compared to broader trends and controversies within contemporary feminism, and their themes are revealed to be visible reflections of feminist discourse at the end of the twentieth century. The study will ultimately make a case for the treatment of feminist cyberpunk as a unique vehicle for the examination of contemporary women’s issues, and for the analysis of feminist science fiction as a complex source of political ideas. Cette étude fait l’analyse d’ouvrages de littérature cyberpunk écrits entre 1981 et 2005, et situe la littérature féminine cyberpunk dans le contexte d’une discussion culturelle plus vaste des questions féministes. Elle établit les origines du genre, analyse les réactions culturelles et, par la suite, donne un aperçu des différentes manières dont la littérature féminine cyberpunk a transformé les usages du genre afin de promouvoir en particulier le point de vue féministe. -
The Early Mathematical Education of Ada Lovelace. Hollings, Martin And
BSHM Bulletin: Journal of the British Society for the History of Mathematics ISSN: 1749-8430 (Print) 1749-8341 (Online) Journal homepage: http://www.tandfonline.com/loi/tbsh20 The early mathematical education of Ada Lovelace Christopher Hollings, Ursula Martin & Adrian Rice To cite this article: Christopher Hollings, Ursula Martin & Adrian Rice (2017): The early mathematical education of Ada Lovelace, BSHM Bulletin: Journal of the British Society for the History of Mathematics, DOI: 10.1080/17498430.2017.1325297 To link to this article: http://dx.doi.org/10.1080/17498430.2017.1325297 © 2017 British Society for the History of Mathematics Published online: 01 Jun 2017. Submit your article to this journal Article views: 226 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tbsh20 Download by: [the Bodleian Libraries of the University of Oxford] Date: 21 June 2017, At: 06:49 BSHM Bulletin, 2017 https://doi.org/10.1080/17498430.2017.1325297 The early mathematical education of Ada Lovelace CHRISTOPHER HOLLINGS and URSULA MARTIN University of Oxford, UK ADRIAN RICE Randolph-Macon College, USA Ada, Countess of Lovelace, is remembered for a paper published in 1843, which translated and considerably extended an article about the unbuilt Analytical Engine, a general-purpose computer designed by the mathematician and inventor Charles Babbage. Her substantial appendices, nearly twice the length of the original work, contain an account of the principles of the machine, along with a table often described as ‘the first computer program’. In this paper we look at Lovelace’s education before 1840, which encompassed older traditions of practical geometry; newer textbooks influenced by continental approaches; wide reading; and a fascination with machinery. -
Lovelace & Babbage and the Creation of the 1843 'Notes'
Lovelace & Babbage and the Creation of the 1843 ‘Notes’ John Fuegi and Jo Francis Flare/MITH Augusta Ada Lovelace worked with Charles Babbage to create a description of Babbage’s unbuilt invention, the Analytical Engine, a highly advanced mechanical calculator often considered a forerunner of the electronic calculating computers of the 20th century. Ada Lovelace’s “Notes,” describing the Analytical Engine, published in Taylor’s Scientific Memoirs in 1843, contained a ground-breaking description of the possibilities of programming the machine to go beyond number-crunching to “computing” in the wider sense in which we understand the term today. This article expands on research first presented by the authors in their documentary film, To Dream Tomorrow. What shall we do to get rid of Mr. Babbage and known to have crossed the intellectual thresh- his calculating Machine? Surely if completed it old between conceptualizing computing as would be worthless as far as science is con- only for calculation on the one hand, and on cerned? the other hand, computing as we know it —British Prime Minister Sir Robert Peel, 18421 today: with wider applications made possible by symbolic substitution. The Analytical Engine does not occupy common In an early background interview at the ground with mere ‘calculating machines.’ … In Science Museum (London) for the historical enabling mechanism to combine together gen- documentary film about collaboration between eral symbols, in successions of unlimited variety Lovelace and Babbage, To Dream Tomorrow,3 and extent, a uniting link is established between Babbage authority Doron Swade mentioned the operations of matter and the abstract mental that he thought Babbage and Lovelace had processes of the most abstract branch of mathe- “very different qualities of mind.” Swade’s matical science.