Generalisations of the Laplace-Runge-Lenz Vector
Journal of Nonlinear Mathematical Physics Volume 10, Number 3 (2003), 340–423 Review Article Generalisations of the Laplace–Runge–Lenz Vector 1 2 3 1 4 P G L LEACH † † † and G P FLESSAS † † 1 † GEODYSYC, School of Sciences, University of the Aegean, Karlovassi 83 200, Greece 2 † Department of Mathematics, University of the Aegean, Karlovassi 83 200, Greece 3 † Permanent address: School of Mathematical and Statistical Sciences, University of Natal, Durban 4041, Republic of South Africa 4 † Department of Information and Communication Systems Engineering, University of the Aegean, Karlovassi 83 200, Greece Received October 17, 2002; Revised January 22, 2003; Accepted January 27, 2003 Abstract The characteristic feature of the Kepler Problem is the existence of the so-called Laplace–Runge–Lenz vector which enables a very simple discussion of the properties of the orbit for the problem. It is found that there are many classes of problems, some closely related to the Kepler Problem and others somewhat remote, which share the possession of a conserved vector which plays a significant rˆole in the analysis of these problems. Contents arXiv:math-ph/0403028v1 15 Mar 2004 1 Introduction 341 2 Motions with conservation of the angular momentum vector 346 2.1 The central force problem r¨ + fr =0 .....................346 2.1.1 The conservation of the angular momentum vector, the Kepler problemandKepler’sthreelaws . .346 2.1.2 The model equation r¨ + fr =0.....................350 2.2 Algebraic properties of the first integrals of the Kepler problem . 355 2.3 Extension of the model equation to nonautonomous systems.........356 Copyright c 2003 by P G L Leach and G P Flessas Generalisations of the Laplace–Runge–Lenz Vector 341 3 Conservation of the direction of angular momentum only 360 3.1 Vector conservation laws for the equation of motion r¨ + grˆ + hθˆ = 0 .
[Show full text]