The Effects of in Vitro Hemolysis on the Comprehensive

Total Page:16

File Type:pdf, Size:1020Kb

The Effects of in Vitro Hemolysis on the Comprehensive T H E E F F E C T S O F I N V I T R O H E M O L Y S I S O N T H E C O M P R E H E N S I V E M E T A B O L I C P A N E L A Report of Senior Thesis by Brent Thomas Carl Robinson Major: Biology Maryville College Fall, 2002 Date Approved , by Faculty Supervisor , by Editor ii ABSTRACT Hemolysis is a common problem in clinical chemistry analyses because it interferes in the determination of several chemical parameters. Using fully mechanized autoanalyzers, the effects of hemolysis in the determination the 16 clinical blood chemistry parameters that are included in the comprehensive metabolic panel were determined quantitatively by adding hemolysate to serum. Free hemoglobin concentrations up to 800 mg/dL did not significantly affect the following analytes: chloride ion, sodium ion, calcium ion, blood urea nitrogen, creatinine, alkaline phosphatase, conjugated bilirubin, and carbon dioxide. However, hemolysis at 800 mg/dL of free hemoglobin and higher caused erroneously high values for: potassium ion, glucose, total bilirubin, unconjugated bilirubin, total protein, and albumin. Hemolysis at 400 mg/dL of free hemoglobin and higher caused significantly high values in aspartate aminotransferase, and significantly low values in alanine aminotransferase. These results differ subtly from those of other studies; therefore, it is extremely important for each laboratory to know how hemolysis affects its chemical analyses because iii the effects vary among methodologies. After such determination, hemolysis should be accounted for when interpreting results and in diagnosis. iv TABLE OF CONTENTS Page Chapter I Introduction ............................... 1 Components of the Blood ............... 1 Clinical Chemistry .................... 16 Hemolysis ............................. 23 Purpose and Hypothesis ................ 27 II Materials and Methods ...................... 28 III Results .................................... 32 IV Discussion ................................. 38 Potassium ............................. 40 Glucose ............................... 41 Aspartate Aminotransferase ............ 42 Total, Unconjugated, and Conjugated Bilirubin ............................. 43 Total Protein ......................... 44 Albumin ............................... 44 Alanine Aminotransferase .............. 45 Urea Nitrogen, Calcium, Sodium, Creatinine, Carbon Dioxide, Alkaline Phosphatase, and Chloride ............. 46 MLT Qualitative Grades ................ 47 Conclusions ........................... 50 Appendix .. ....................................... 53 References ....................................... 63 v LIST OF TABLES Table Page 1 Functions of Formed Elements of the Blood............................ 2 2 Normal Values of the Individual Determinations within the Comprehensive Metabolic Panel in Adults............................... 18 3 The Comprehensive Metabolic Panel Analyses and Methodology in the Ortho-Diagnostics Vitros 950............ 31 4 Intracellular Hemoglobin Concentrations of the 5 Participants............................ 32 5 MLT Visual Hemolysis Grades vs. Actual Grades....................... 33 6 Mean Results (± 1 SE) of the Comprehensive Metabolic Panels for Each Degree of Hemolysis ........... 35 vi ACKNOWLEDGEMENTS I would like to thank the following employees of the Blount Memorial Hospital Laboratory who helped in performing the analyses: Mary Corbitt, George Easton, Karen Easton, and James Houser. I would also like to thank the following employees of the Blount Memorial Hospital Laboratory who were participants in the study: Nathena Bruce, Karen Easton, Kim Bailey, Donna Sweitzer, and Kris Loggins. Thank you to John Bleazey, Blount Memorial Hospital Laboratory Manager, for authorizing the conductance and financing of the study. In addition, I would like to thank Dr. Drew Crain for his time and effort in supervising my study and for providing a very structured agenda that was helpful in completing the study. Finally, I would like to thank my wife Michelle and my son Brock for tolerating my diverted attention from them during the course of this study. vii 8 9 CHAPTER I INTRODUCTION Components of Blood Blood is composed of plasma and formed elements. Plasma is the protein-rich, acellular fluid in the blood. The formed elements are erythrocytes, also called red-blood cells, leukocytes, also termed white- blood cells, and platelets. Functions of the formed elements are summarized in Table 1. Around 55% of blood is plasma, and about 45% is red blood cells; platelets and white blood cells make up only about 1% of the blood (Vick, 1984). When blood is centrifuged, the more dense formed elements go to the bottom and the less dense plasma sits on the top. The percentage of formed elements in the blood is called the hematocrit (Fox, 1999). On average adult humans have just over ten pints of blood. The bright red blood flowing from the heart to the capillaries via the arteries is called arterial blood. It is oxygen enriched which yields the bright red color. After the blood has been oxygen depleted 1 Table 1. Functions of Formed Elements of the Blood. Component Function Erythrocyte Transports oxygen and carbon dioxide Leukocytes Granulocytes 1. Neutrophil Phagocytic 2. Eosinophil Helps detoxify foreign substances; secretes enzymes that dissolve clots; fights parasitic infections 3. Basophil Releases anticoagulant heparin Agranulocytes 1. Monocyte Phagocytic 2. Lymphocyte Provides specific immune response, including antibodies Platelet Enables clotting, releases serotonin causing vasoconstriction Source: (Fox, 1999, p. 368). in the capillaries, it is returned to the heart by the veins. This darker blood is termed venous blood. 2 Erythrocytes Erythrocytes are shaped like flattened biconcave discs (Fox, 1999). This unusual shape increases substrate surface area and aids in oxygen binding, which allows oxygen transport throughout the body. The main function of the erythrocytes is to circulate oxygen, which is bound to hemoglobin in the lungs and transported to the rest of the cells in the body. Another function of hemoglobin is that it is an excellent acid-base buffer, which makes the erythrocytes accountable for roughly 70% of the buffering capacity of the blood. Additionally, red blood cells contain a large amount of carbonic anhydrase, which acts as a catalyst in the reaction of carbon dioxide and water (Guyton & Hall, 2000). The catalysis of this reaction allows blood to react with vast amounts of carbon dioxide and, in turn, transport it back to the lungs. Red blood cells, although having a biconcave disk-like shape, are very amoeboid in nature. They can change shape dramatically when flowing through the capillaries (Guyton & Hall, 2000). The reason the shape of the erythrocytes is so adaptable is that the cell membrane is very excessive compared to the material inside the cell, so the cell is not filled to capacity. This allows the erythrocyte to be plastic. 3 Mature erythrocytes are also anucleated and lack an endoplasmic reticulum. Erythrocyte production In the early fetal months, red blood cells are produced in the yolk sac (Vick, 1984). As the yolk sac recedes, the liver, spleen, and lymph nodes assume the responsibility of erythrocyte production. By the fifth month, the bone marrow begins to produce red cells, and by the time of birth, the bone marrow exclusively produces the erythrocytes (Guyton & Hall, 2000). Early in life all of the bones produce red blood cells, but as they are not needed, the longer bones become infiltrated with fat. By age twenty, only the bones of the axial skeleton produce erythrocytes. The bone marrow contains hematopoetic, or blood-forming, tissue. These tissues are separated by venous sinuses that drain into a central vein. In addition, arterial blood flows through the tissue and drains into the central vein via the venous sinuses (Vick). The bone marrow contains primordial stem cells that can lead to the formation of many types of cells. These are responsible for producing the hemocytoblasts. The genesis of red blood cells begins with the hemocytoblast. The hemocytoblast forms the basophil erythroblast which begins to produce hemoglobin (Guyton & Hall, 2000). The basophil 4 erythroblast gives rise to the polychromatophil erythroblast, and as the nucleus becomes smaller while even more hemoglobin is being produced, the cell becomes a normoblast. After the concentration of hemoglobin in the cell reaches its maximum, the normoblast then completely loses its nucleus, while at the same time the endoplasmic reticulum is shrinking. At this point the cell is an immature red blood cell, or a reticulocyte. The reticulocytes make their way into the capillaries by moving through the pores in the membrane. After the reticulocyte passes into the bloodstream, it continues to make hemoglobin for a couple of more days until the endoplasmic reticulum is completely reabsorbed (Guyton & Hall). At this point, the cell is now a mature red blood cell, or erythrocyte. Once mature, the erythrocytes circulate approximately 120 days before destruction, and red cells are synthesized at a rate higher than any other tissue in the body (Vick, 1984). There are two essential nutrients that aid in erythrocyte genesis: vitamin B12 and folic acid. Both of these vitamins are needed for DNA synthesis; thus, deficiency in these vitamins causes failure of nuclear maturation and division. Without this ability, red cells cannot be produced efficiently. As a result of this deficiency, erythrocytes become macrocytes, which are large,
Recommended publications
  • Section 8: Hematology CHAPTER 47: ANEMIA
    Section 8: Hematology CHAPTER 47: ANEMIA Q.1. A 56-year-old man presents with symptoms of severe dyspnea on exertion and fatigue. His laboratory values are as follows: Hemoglobin 6.0 g/dL (normal: 12–15 g/dL) Hematocrit 18% (normal: 36%–46%) RBC count 2 million/L (normal: 4–5.2 million/L) Reticulocyte count 3% (normal: 0.5%–1.5%) Which of the following caused this man’s anemia? A. Decreased red cell production B. Increased red cell destruction C. Acute blood loss (hemorrhage) D. There is insufficient information to make a determination Answer: A. This man presents with anemia and an elevated reticulocyte count which seems to suggest a hemolytic process. His reticulocyte count, however, has not been corrected for the degree of anemia he displays. This can be done by calculating his corrected reticulocyte count ([3% × (18%/45%)] = 1.2%), which is less than 2 and thus suggestive of a hypoproliferative process (decreased red cell production). Q.2. A 25-year-old man with pancytopenia undergoes bone marrow aspiration and biopsy, which reveals profound hypocellularity and virtual absence of hematopoietic cells. Cytogenetic analysis of the bone marrow does not reveal any abnormalities. Despite red blood cell and platelet transfusions, his pancytopenia worsens. Histocompatibility testing of his only sister fails to reveal a match. What would be the most appropriate course of therapy? A. Antithymocyte globulin, cyclosporine, and prednisone B. Prednisone alone C. Supportive therapy with chronic blood and platelet transfusions only D. Methotrexate and prednisone E. Bone marrow transplant Answer: A. Although supportive care with transfusions is necessary for treating this patient with aplastic anemia, most cases are not self-limited.
    [Show full text]
  • Metabolic Regulation of Heme Catabolism and Bilirubin Production
    Metabolic Regulation of Heme Catabolism and Bilirubin Production. I. HORMONAL CONTROL OF HEPATIC HEME OXYGENASE ACTIVITY Arne F. Bakken, … , M. Michael Thaler, Rudi Schmid J Clin Invest. 1972;51(3):530-536. https://doi.org/10.1172/JCI106841. Research Article Heme oxygenase (HO), the enzyme system catalyzing the conversion of heme to bilirubin, was studied in the liver and spleen of fed, fasted, and refed rats. Fasting up to 72 hr resulted in a threefold increase in hepatic HO activity, while starvation beyond this period led to a gradual decline in enzyme activity. Refeeding of rats fasted for 48 hr depressed hepatic HO activity to basal values within 24 hr. Splenic HO was unaffected by fasting and refeeding. Hypoglycemia induced by injections of insulin or mannose was a powerful stimulator of hepatic HO. Glucose given together with the insulin abolished the stimulatory effect of the latter. Parenteral treatment with glucagon led to a twofold, and with epinephrine to a fivefold, increase of hepatic HO activity; arginine, which releases endogenous glucagon, stimulated the enzyme fivefold. These stimulatory effects of glucagon and epinephrine could be duplicated by administration of cyclic adenosine monophosphate (AMP), while thyroxine and hydroxortisone were ineffective. Nicotinic acid, which inhibits lipolysis, failed to modify the stimulatory effect of epinephrine. None of these hormones altered HO activity in the spleen. These findings demonstrate that the enzymatic mechanism involved in the formation of bilirubin from heme in the liver is stimulated by fasting, hypoglycemia, epinephrine, glucagon, and cyclic AMP. They further suggest that the enzyme stimulation produced by fasting may be […] Find the latest version: https://jci.me/106841/pdf Metabolic Regulation of Heme Catabolism and Bilirubin Production I.
    [Show full text]
  • Jaundice Protocol
    fighting childhood liver disease Jaundice Protocol Early identification and referral of liver disease in infants fighting childhood liver disease 36 Great Charles Street Birmingham B3 3JY Telephone: 0121 212 3839 yellowalert.org childliverdisease.org [email protected] Registered charity number 1067331 (England & Wales); SC044387 (Scotland) The following organisations endorse the Yellow Alert Campaign and are listed in alphabetical order. 23957 CLDF Jaundice Protocol.indd 1 03/08/2015 18:25:24 23957 3 August 2015 6:25 PM Proof 1 1 INTRODUCTION This protocol forms part of Children’s Liver Disease Foundation’s (CLDF) Yellow Alert Campaign and is written to provide general guidelines on the early identification of liver disease in infants and their referral, where appropriate. Materials available in CLDF’s Yellow Alert Campaign CLDF provides the following materials as part of this campaign: • Yellow Alert Jaundice Protocol for community healthcare professionals • Yellow Alert stool colour book mark for quick and easy reference • Parents’ leaflet entitled “Jaundice in the new born baby”. CLDF can provide multiple copies to accompany an antenatal programme or for display in clinics • Yellow Alert poster highlighting the Yellow Alert message and also showing the stool chart 2 GENERAL AWARENESS AND TRAINING The National Institute of Health and Clinical Excellence (NICE) has published a clinical guideline on neonatal jaundice which provides guidance on the recognition, assessment and treatment of neonatal jaundice in babies from birth to 28 days. Neonatal Jaundice Clinical Guideline guidance.nice.org.uk cg98 For more information go to nice.org.uk/cg98 • Jaundice Community healthcare professionals should be aware that there are many causes for jaundice in infants and know how to tell them apart: • Physiological jaundice • Breast milk jaundice • Jaundice caused by liver disease • Jaundice from other causes, e.g.
    [Show full text]
  • THE EFFECT of POTASSIUM CHLORIDE on HYPONATREMIA1 by JOHN H
    THE EFFECT OF POTASSIUM CHLORIDE ON HYPONATREMIA1 By JOHN H. LARAGH2 (From the Department of Medicine, College of Physicians and Surgeons, Columbia University; and the Presbyterian Hospital in the City of New York) (Submitted for publication August 31, 1953; accepted February 10, 1954) In cardiac edema as well as in various other tration might favorably influence disturbances in states characterized by excessive retention of fluid sodium metabolism manifested by pathologic dis- there is observed frequently an abnormally low con- tribution of sodium and potassium within the body. centration of sodium in the serum and extracellular Two recent studies have served to emphasize this fluid (1, 2). Rigorous sodium restriction, mer- important relationship between sodium and potas- curial diuretics, and cation exchange resins may sium. In vivo, with potassium depletion there is exaggerate or produce this tendency to hypo- a movement of sodium ions into cells and an associ- tonicity. Sodium administration often enhances ated extracellular alkalosis. This intracellular so- accumulation of fluid, without increasing its to- dium can then be mobilized by potassium adminis- nicity, and hypertonic sodium chloride, though tration (11). In vitro it has been shown that po- effective at times, may be neither beneficial nor tassium transport is dependent upon energy of safe (3). aerobic oxidation. If the cell is injured or meta- Because of the shortcomings of these various bolically inhibited potassium fails to accumulate therapies and because hyponatremia per se may and is replaced by an influx of sodium and water play a role in the production of adverse symptoms, (12). it seemed desirable to search for another diuretic Accordingly, potassium chloride (KCl) was agent which might promote the loss of excessive given to an edematous, hyponatremic cardiac body water without aggravating disturbances in patient with the hope of effecting water diuresis.
    [Show full text]
  • Serum Levels of True Insulin, C-Peptide and Proinsulin in Peripheral Blood of Patients with Cirrhosis
    Diabetologia (1983) 25: 506-509 Diabetologia Springer-Verlag 1983 Serum Levels of True Insulin, C-Peptide and Proinsulin in Peripheral Blood of Patients with Cirrhosis T. Kasperska-Czy~ykowa 1, L. G. Heding 2 and A. Czy2yk 1 1Department of Gastroenterology and Metabolic Diseases, Medical Academy of Warsaw, Poland, and 2Novo Research Institute, Bagsvaerd, Denmark Summary. The levels of proinsulin, immunoreactive insulin, but the difference was less pronounced and only significant at true insulin (calculated from the difference, namely immuno- a few of the time points. The serum level of C-peptide was reactive insulin-proinsulin) and C-peptide were determined in very similar in both groups. These results emphasize that cir- the fasting state and during a 3-h oral glucose tolerance test af- rhosis is a condition in which the serum proinsulin level is ter administration of 100 g of glucose in 12 patients with cir- raised and that this hyperproinsulinaemia contributes greatly rhosis with normal oral glucose tolerance test (50 g) and in to the increased immunoreactive insulin levels observed in 12 healthy subjects serving as controls. In the patients with cir- patients with this disease. rhosis the serum levels of proinsulin and immunoreactive in- sulin were significantly higher in the fasting state and after Key words: Insulin, cirrhosis, C-peptide, proinsulin, oral glu- glucose loading than in the healthy subjects. The serum level cose tolerance test. of true insulin was also higher in the patients with cirrhosis, After the introduction of a radioimmunoassay for se- Patients and Methods rum (plasma) insulin determination (IRI) many authors reported raised levels of this hormone in the peripheral blood of patients with cirrhosis [1, 5-7, 9, 16-19].
    [Show full text]
  • A Novel Perspective on the Biology of Bilirubin in Health and Disease
    Opinion A Novel Perspective on the Biology of Bilirubin in Health and Disease 1,z 2,z, 3 Silvia Gazzin, Libor Vitek, * Jon Watchko, 4,5,6,7 1,8, Steven M. Shapiro, and Claudio Tiribelli * Unconjugated bilirubin (UCB) is known to be one of the most potent endogenous Trends antioxidant substances. While hyperbilirubinemia has long been recognized as Historically known for its toxicity but an ominous sign of liver dysfunction, recent data strongly indicate that mildly recently recognized as a powerful pro- tective molecule, BLB is gaining more elevated bilirubin (BLB) levels can be protective against an array of diseases attention due to its pleiotropic biomo- associated with increased oxidative stress. These clinical observations are lecular effects and those of the supported by new discoveries relating to the role of BLB in immunosuppression enzymes involved in BLB metabolism (the ‘Yellow Players’). and inhibition of protein phosphorylation, resulting in the modulation of intra- cellular signaling pathways in vascular biology and cancer, among others. Both heme oxygenase (HMOX) and bili- Collectively, the evidence suggests that targeting BLB metabolism could be verdin reductase (BLVR) (the main enzymes in BLB metabolism) act on considered a potential therapeutic approach to ameliorate a variety of numerous signaling pathways, with conditions. unsuspected biological consequences. The interconnections of such pathways highlight an incredibly complex biomo- From a Biological Waste Product to a Potent Biological Compound lecular network. Yellow player mole- UCB (see Glossary), the end product of the heme catabolic pathway, has long been recognized cules can have important physiological as a sign of liver dysfunction or a potential toxic factor causing severe brain damage in newborns.
    [Show full text]
  • The Nature of Storage Iron in Idiopathic Hemochromatosis and in Hemosiderosis
    THE NATURE OF STORAGE IRON IN IDIOPATHIC HEMOCHROMATOSIS AND IN HEMOSIDEROSIS ELECTRON OPTICAL, CHEMICAL, AND SEROLOGIC STUDIES ON ISOLATED HEMOSIDERIN GRANULES* BY GOETZ W. RICHTER, M.D. (From the Department of Pathology, Cornell University Medical College, New York) PLATES 47 TO 51 (Received for publication, April 21, 1960) Although ferritin has long been recognized as an important iron storage compound and as an intermediary in normal iron metabolism, its role in idiopathic hemochromatosis and in secondary hemosiderosis is still unkuown. Diverse means have been employed to gain more knowledge on the pathway of iron in these conditions, and numerous publications attest the difficulties inherent in trying to distinguish between normal and abnormal storage of iron in cells of various sorts. Histochemical studies have provided evidence that inorganic compounds of iron stored in cells as hemosiderin are combined with an organic carrier substance that contains variable quantities of protein, lipid, and carbohydrate (1, 2). Results of chemical analyses led Ludewig to emphasize the heterogeneity of hemosiderin granules (3); his findings have provided qualitative and quantitative data on the carbohydrate, lipid, protein, and iron content of various hemosiderin preparations. The term "hemosiderin" has been used rather loosely; generally it refers to granules that are visible in the light micro- scope, brown when unstained, and give a positive Prussian blue test. Iron that gives a positive Prussian blue test with potassium ferrocyanide without the previous application of oxidizing agents must be in the trivalent (ferric) state. This is true of the bulk of iron in hemosiderin granules; it is also true of the iron hydroxide present in ferritin (4, 5, 7).
    [Show full text]
  • Visualization of Microbleeds with Optical Histology in Mouse Model of Cerebral Amyloid Angiopathy
    Microvascular Research 105 (2016) 109–113 Contents lists available at ScienceDirect Microvascular Research journal homepage: www.elsevier.com/locate/ymvre Visualization of microbleeds with optical histology in mouse model of cerebral amyloid angiopathy Patrick Lo a,b, Christian Crouzet a,b, Vitaly Vasilevko c,1,BernardChoia,b,d,⁎,1 a Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Road East, Irvine, CA 92612, USA b Department of Biomedical Engineering, University of California, Irvine, 3120 Natural Sciences II, Irvine, CA 92697, USA c Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 1207 Gillespie NRF, Irvine, CA 92697-4540, USA d Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 2400 Engineering Hall, Irvine, CA 92697, USA article info abstract Article history: Cerebral amyloid angiopathy (CAA) is a neurovascular disease that is strongly associated with an increase in the Received 14 May 2015 number and size of spontaneous microbleeds. Conventional methods of magnetic resonance imaging for detec- Revised 3 February 2016 tion of microbleeds, and positron emission tomography with Pittsburgh Compound B imaging for amyloid Accepted 4 February 2016 deposits, can separately demonstrate the presence of microbleeds and CAA in affected brains in vivo;however, Available online 10 February 2016 there still is a critical need for strong evidence that shows involvement of CAA in microbleed formation. Here, we show in a Tg2576 mouse model of Alzheimer's disease, that the combination of histochemical staining and Keywords: Intracerebral hemorrhage an optical clearing method called optical histology, enables simultaneous, co-registered three-dimensional visu- DiI alization of cerebral microvasculature, microbleeds, and amyloid deposits.
    [Show full text]
  • DKA Protocol - Insulin Deficiency - Pregnancy
    Diabetic Ketoacidosis in Pregnancy Diagnosis of DKA: Initial STAT labs include • CBC with diff • Serum electrolytes • BUN • Creatinine • Glucose • Arterial blood gases • Bicarbonate • Urinalysis • Lactate • Serum ketones • Calculation of the Anion Gap serum anion gap = serum sodium – (serum chloride + bicarbonate) • Electrocardiogram Treatment Protocol for Diabetic Ketoacidosis Reviewed 5/2/2017 1 Updated 05/02/17 DKA/HHS Pathway Phase 1 (Adult) DKA Diagnostic Criteria: Blood glucose >250 mg/dl *PREGNANCY Arterial pH <7.3 Utilize OB DKA order set Phase 1 Bicarbonate ≤18 mEq/l When glucose reaches 200mg/dL, Initiate OB Anion Gap Acidosis DKA Phase 2 Moderate ketonuria or ketonemia Glucose goals 100 -150mg/dL OB DKA Phase 2 1. Start IV fluids (1 L of 0.9% NaCl per hr initially) Look for the Cause 2. If serum K+ is <3.3 mEq/L hold insulin - Infection/Inflammation (PNA, UTI, Give 40 mEq/h until K ≥ 3.3 mEq/L pancreatitis, cholecystitis) 3. Initiate DKA Order Set Phase I ( *In PREGNANCY utilize OB DKA - Ischemia/Infarction (myocardial, cerebral, gut) order set ) - Intoxication (EtOH, drugs) 4. Start insulin 0.14 units/kg/hr IV infusion (calculate dose) - Iatrogenic (drugs, lack of insulin) RN will titrate per DKA protocol - Insulin deficiency - Pregnancy IVF Insulin Potassium Bicarbonate + Determine hydration status Initiate and If initial serum K is Assess need for bicarbonate continue insulin gtt <3.3 mEq/L, hold until serum insulin and give 40 + glucose reaches mEq K per h (2/3 250 mg/dl. KCL and 1/3 KP0 ) Hypovolemic Mild Cardiogenic 4 pH <6.9 pH >7.0 shock hypotension shock RN will titrate per until K ≥ 3.3 mEq/L protocol to achieve target.
    [Show full text]
  • Understanding Your Liver Function Results
    www.healthinfo.org.nz Understanding your liver function results Your liver is a very important organ that has many jobs. Some of its jobs are to make proteins, make bile to help you digest fats, store energy, and break down some toxins and medicines. Liver function tests are done if you have symptoms of a liver condition or risk factors for liver disease such as fatty liver, viral hepatitis or high alcohol use. They are also checked if you are taking medicines that can affect how your liver works. Terms used Protein: this is the total of all the different types of protein in your blood. Albumin: this is the main protein your liver makes. It goes into your blood and helps to carry many things around your body. Bilirubin: this is something your body makes when it breaks down old red blood cells and replaces them with new ones. Bilirubin gives bile its yellow colour. Alkaline phosphatase (ALP): this is an enzyme in your liver and bones. (An enzyme is a chemical that helps to speed up other chemical processes.) GGT: this stands for gamma glutamyltransferase, which is an enzyme in your liver. ALT: this stands for alanine aminotransferase, which is another enzyme in your liver. AST: this stands for aspartate aminotransferase, which is also an enzyme in your liver. Normal result If you have a copy of your test results, it will show your results and a normal range for each test. The normal ranges may vary depending on your gender and age group and whether you're pregnant or have any underlying health conditions.
    [Show full text]
  • Brain Metastasis from Unknown Primary Tumour: Moving from Old Retrospective Studies to Clinical Trials on Targeted Agents
    cancers Review Brain Metastasis from Unknown Primary Tumour: Moving from Old Retrospective Studies to Clinical Trials on Targeted Agents Roberta Balestrino 1,* , Roberta Rudà 2,3 and Riccardo Soffietti 3 1 Department of Neuroscience, University of Turin, Via Cherasco 15, 10121 Turin, Italy 2 Department of Neurology, Castelfranco Veneto/Treviso Hospital, Via dei Carpani, 16/Z, 31033 Castelfranco Veneto, Italy; [email protected] 3 Department of Neuro-Oncology, University of Turin, Via Cherasco 15, 10121 Turin, Italy; riccardo.soffi[email protected] * Correspondence: [email protected] Received: 13 October 2020; Accepted: 9 November 2020; Published: 12 November 2020 Simple Summary: Brain metastases (BMs) are the most common intracranial tumours in adults and occur up to 3–10 times more frequently than primary brain tumours. In up to 15% of patients with BM, the primary tumour cannot be identified. These cases are known as BM of cancer of unknown primary (CUP) (BM-CUP). The understanding of BM-CUP, despite its relative frequency and unfavourable outcome, is still incomplete and clear indications on management are missing. The aim of this review is to summarize current evidence on the diagnosis and treatment of BM-CUP. Abstract: Brain metastases (BMs) are the most common intracranial tumours in adults and occur up to 3–10 times more frequently than primary brain tumours. BMs may be the cause of the neurological presenting symptoms in patients with otherwise previously undiagnosed cancer. In up to 15% of patients with BMs, the primary tumour cannot be identified. These cases are known as BM of cancer of unknown primary (CUP) (BM-CUP).
    [Show full text]
  • Acid-Base Physiology & Anesthesia
    ACID-BASE PHYSIOLOGY & ANESTHESIA Lyon Lee DVM PhD DACVA Introductions • Abnormal acid-base changes are a result of a disease process. They are not the disease. • Abnormal acid base disorder predicts the outcome of the case but often is not a direct cause of the mortality, but rather is an epiphenomenon. • Disorders of acid base balance result from disorders of primary regulating organs (lungs or kidneys etc), exogenous drugs or fluids that change the ability to maintain normal acid base balance. • An acid is a hydrogen ion or proton donor, and a substance which causes a rise in H+ concentration on being added to water. • A base is a hydrogen ion or proton acceptor, and a substance which causes a rise in OH- concentration when added to water. • Strength of acids or bases refers to their ability to donate and accept H+ ions respectively. • When hydrochloric acid is dissolved in water all or almost all of the H in the acid is released as H+. • When lactic acid is dissolved in water a considerable quantity remains as lactic acid molecules. • Lactic acid is, therefore, said to be a weaker acid than hydrochloric acid, but the lactate ion possess a stronger conjugate base than hydrochlorate. • The stronger the acid, the weaker its conjugate base, that is, the less ability of the base to accept H+, therefore termed, ‘strong acid’ • Carbonic acid ionizes less than lactic acid and so is weaker than lactic acid, therefore termed, ‘weak acid’. • Thus lactic acid might be referred to as weak when considered in relation to hydrochloric acid but strong when compared to carbonic acid.
    [Show full text]