Astrophysics Large Strategic Missions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Precollimator for X-Ray Telescope (Stray-Light Baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017
Mindrum.com Precollimator for X-Ray Telescope (stray-light baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017 1 Overview Mindrum.com Precollimator •Past •Present •Future 2 Past Mindrum.com • Space X-Ray Telescopes (XRT) • Basic Structure • Effectiveness • Past Construction 3 Space X-Ray Telescopes Mindrum.com • XMM-Newton 1999 • Chandra 1999 • HETE-2 2000-07 • INTEGRAL 2002 4 ESA/NASA Space X-Ray Telescopes Mindrum.com • Swift 2004 • Suzaku 2005-2015 • AGILE 2007 • NuSTAR 2012 5 NASA/JPL/ASI/JAXA Space X-Ray Telescopes Mindrum.com • Astrosat 2015 • Hitomi (ASTRO-H) 2016-2016 • NICER (ISS) 2017 • HXMT/Insight 慧眼 2017 6 NASA/JPL/CNSA Space X-Ray Telescopes Mindrum.com NASA/JPL-Caltech Harrison, F.A. et al. (2013; ApJ, 770, 103) 7 doi:10.1088/0004-637X/770/2/103 Basic Structure XRT Mindrum.com Grazing Incidence 8 NASA/JPL-Caltech Basic Structure: NuSTAR Mirrors Mindrum.com 9 NASA/JPL-Caltech Basic Structure XRT Mindrum.com • XMM Newton XRT 10 ESA Basic Structure XRT Mindrum.com • XMM-Newton mirrors D. de Chambure, XMM Project (ESTEC)/ESA 11 Basic Structure XRT Mindrum.com • Thermal Precollimator on ROSAT 12 http://www.xray.mpe.mpg.de/ Basic Structure XRT Mindrum.com • AGILE Precollimator 13 http://agile.asdc.asi.it Basic Structure Mindrum.com • Spektr-RG 2018 14 MPE Basic Structure: Stray X-Rays Mindrum.com 15 NASA/JPL-Caltech Basic Structure: Grazing Mindrum.com 16 NASA X-Ray Effectiveness: Straylight Mindrum.com • Correct Reflection • Secondary Only • Backside Reflection • Primary Only 17 X-Ray Effectiveness Mindrum.com • The Crab Nebula by: ROSAT (1990) Chandra 18 S. -
Gaianir Combining Optical and Near-Infra-Red (NIR) Capabilities with Time-Delay-Integration (TDI) Sensors for a Future Gaia-Like Mission
Proposal title: GaiaNIR Combining optical and Near-Infra-Red (NIR) capabilities with Time-Delay-Integration (TDI) sensors for a future Gaia-like mission. PI: Dr. David Hobbs, Lund Observatory, Box 43, SE-221 00 Lund, Sweden. Email: [email protected]. Tel.: +46-46-22 21573 Core team members: The following minimum team is needed to initiate the project. D. Hobbs Lund Observatory, Sweden. A. Brown Leiden Observatory, Holland. A. Mora Aurora Technology B.V., Spain. C. Crowley HE Space Operations B.V., Spain. N. Hambly University of Edinburgh, UK. J. Portell Institut de Ciències del Cosmos, ICCUB-IEEC, Spain. C. Fabricius Institut de Ciències del Cosmos, ICCUB-IEEC, Spain. M. Davidson University of Edinburgh, UK. Proposal writers: See Appendix A. Other supporting scientists: See Appendix B and Appendix C. Senior science advisors: E. Høg Copenhagen University (Retired), Denmark. L. Lindegren Lund Observatory, Sweden. C. Jordi Institut de Ciències del Cosmos, ICCUB-IEEC, Spain. S. Klioner Lohrmann Observatory, Germany. F. Mignard Observatoire de la Côte d’Azur, France. arXiv:1609.07325v2 [astro-ph.IM] 22 May 2020 Fig. 1: Left is an IR image from the Two Micron All-Sky Survey (image G. Kopan, R. Hurt) while on the right an artist’s concept of the Gaia mission superimposed on an optical image, (Image ESA). Images not to scale. 1 1. Executive summary ESA recently called for new “Science Ideas” to be investigated in terms of feasibility and technological developments – for tech- nologies not yet sufficiently mature. These ideas may in the future become candidates for M or L class missions within the ESA Science Program. -
The Making of the Chandra X-Ray Observatory: the Project Scientist’S Perspective
SPECIAL FEATURE: PERSPECTIVE The making of the Chandra X-Ray Observatory: The project scientist’s perspective Martin C. Weisskopf1 National Aeronautics and Space Administration/Marshall Space Flight Center, Huntsville, AL 35805 Edited by Harvey D. Tananbaum, Smithsonian Astrophysical Observatory, Cambridge, MA, and approved January 22, 2010 (received for review December 16, 2009) The history of the development of the Chandra X-Ray Observatory is reviewed from a personal perspective. This review is necessarily biased and limited by space because it attempts to cover a time span approaching five decades. historical perspective | x-ray astronomy t is sobering for me to realize that there arescientistswhoareworkingwithdata Ifrom this truly great observatory who were not even born when the founda- tion for what is now the Chandra X-Ray Observatory was laid. Thus, it may surprise many to know that the beginning was suc- cinctly and accurately outlined in a research proposal that Riccardo Giacconi and col- leagues wrote in 1963, a mere 9 months after he and his team’s discovery of the first ex- trasolar x-ray source Scorpius X-1. As im- portant, the data from this rocket flight also indicated the presence of the “diffuse x-ray background.” Fig. 1 illustrates the showpiece of this insightful proposal. It shows a ≈1-m diameter, 10-m focal length, grazing-incidence x-ray telescope. The telescope was of sufficient area and angular resolution to determine the nature of the unresolved x-ray background. We all owe Riccardo an enormous debt of gratitude for his insight, leadership, and, in my case (and I suspect for many others), inspiration. -
EUCLID Mission Assessment Study
EUCLID Mission Assessment Study Executive Summary ESA Contract. No. 5856/08/F/VS September 2009 EUCLID– Mapping the Dark Universe EUCLID is a mission to study geometry and nature of the dark universe. It is a medium-class mission candidate within ESA's Cosmic Vision 2015– 2025 Plan for launch around 2017. EUCLID has been derived by ESA from DUNE and SPACE, two complementary Cosmic Vision proposals addressing questions on the origin and the constitution of the Universe. 70% Dark Energy The observational methods applied by EUCLID are shape and redshift measure- ments of galaxies and clusters of galaxies. To 4% Baryonic Matter this end EUCLID is equipped with 3 scientific instruments: 26% Dark Matter • Visible Imager (VIS) • Near-Infrared Photometer (NIP) • Near-Infrared Spectrograph (NIS) The EUCLID Mission Assessment Study is the industrial part of the EUCLID assessment phase. The study has been performed by Astrium from September 2008 to September 2009 and is intended for space segment definition and programmatic evaluation. The prime responsibility is with Astrium GmbH (Friedrichshafen, Germany) with support from Astrium SAS (Toulouse, France) and Astrium Ltd (Stevenage, UK). EUCLID Mission EUCLID shall observe 20.000 deg2 of the extragalactic sky at galactic latitudes |b|>30 deg. The sky is sampled in step & b>30° stare mode with instantaneous fields of about 0.5 deg2 . Nominally a strip of about 20 deg in latitude is scanned per day (corresponding to about 1 deg in longitude). galactic plane step 1 b<30° step 2 step 3 The sky is nominally observed along great circles in planes perpendicular to the Sun- spacecraft axis (SAA=0). -
Will the Real Monster Black Hole Please Stand Up? 8 January 2015
Will the real monster black hole please stand up? 8 January 2015 how the merging of galaxies can trigger black holes to start feeding, an important step in the evolution of galaxies. "When galaxies collide, gas is sloshed around and driven into their respective nuclei, fueling the growth of black holes and the formation of stars," said Andrew Ptak of NASA's Goddard Space Flight Center in Greenbelt, Maryland, lead author of a The real monster black hole is revealed in this new new study accepted for publication in the image from NASA's Nuclear Spectroscopic Telescope Astrophysical Journal. "We want to understand the Array of colliding galaxies Arp 299. In the center panel, mechanisms that trigger the black holes to turn on the NuSTAR high-energy X-ray data appear in various and start consuming the gas." colors overlaid on a visible-light image from NASA's Hubble Space Telescope. The panel on the left shows NuSTAR is the first telescope capable of the NuSTAR data alone, while the visible-light image is pinpointing where high-energy X-rays are coming on the far right. Before NuSTAR, astronomers knew that the each of the two galaxies in Arp 299 held a from in the tangled galaxies of Arp 299. Previous supermassive black hole at its heart, but they weren't observations from other telescopes, including sure if one or both were actively chomping on gas in a NASA's Chandra X-ray Observatory and the process called accretion. The new high-energy X-ray European Space Agency's XMM-Newton, which data reveal that the supermassive black hole in the detect lower-energy X-rays, had indicated the galaxy on the right is indeed the hungry one, releasing presence of active supermassive black holes in Arp energetic X-rays as it consumes gas. -
The Most Dangerous Ieos in STEREO
EPSC Abstracts Vol. 6, EPSC-DPS2011-682, 2011 EPSC-DPS Joint Meeting 2011 c Author(s) 2011 The most dangerous IEOs in STEREO C. Fuentes (1), D. Trilling (1) and M. Knight (2) (1) Northern Arizona University, Arizona, USA, (2) Lowell Observatory, Arizona, USA ([email protected]) Abstract (STEREO-B) which view the Sun-Earth line using a suite of telescopes. Each spacecraft moves away 1 from the Earth at a rate of 22.5◦ year− (Figure 1). IEOs (inner Earth objects or interior Earth objects) are ∼ potentially the most dangerous near Earth small body Our search for IEOs utilizes the Heliospheric Imager population. Their study is complicated by the fact the 1 instruments on each spacecraft (HI1A and HI1B). population spends all of its time inside the orbit of The HI1s are centered 13.98◦ from the Sun along the the Earth, giving ground-based telescopes a small win- Earth-Sun line with a square field of view 20 ◦ wide, 1 dow to observe them. We introduce STEREO (Solar a resolution of 70 arcsec pixel− , and a bandpass of TErrestrial RElations Observatory) and its 5 years of 630—730 nm [3]. Images are taken every 40 minutes, archival data as our best chance of studying the IEO providing a nearly continuous view of the inner solar population and discovering possible impactor threats system since early 2007. The nominal visual limit- ing magnitude of HI1 is 13, although the sensitivity to Earth. ∼ We show that in our current search for IEOs in varies somewhat with solar elongation, and asteroids STEREO data we are capable of detecting and char- fainter than 13 can be seen near the outer edges. -
New Publication: Commission A1 Annual Report 2016
IAU Commission A1 - Astrometry Anthony Brown, Norbert Zacharias, Yoshiyuki Yamada, Jean Souchay, Alexandre Humberto Andrei, Dafydd Evans, Stephen Unwin Annual Report 2016 Gaia mission The first release of Gaia data (Gaia DR1, Gaia Collaboration et al 2016) took place on September 14 2016. This first Gaia catalogue consists of 1.1 billion sources to magnitude 20.7 for which positions are provided with typical uncertainties of 10 milliarcsec. For a subset of about 2 million sources from the Hipparcos and Tycho-2 catalogues proper motions and parallaxes are provided with a typical uncertainty of 1 milliarcsec/yr and 0.3 milliarcsec, respectively. Gaia DR1 represents a large step forward in the densification of the astrometric reference frame in the optical at faint magnitudes, and has consequently already been employed as the reference positional catalogue for several other large surveys (see below). The radio positions of around 2000 ICRF2 sources were compared to the optical positions from Gaia (Mignard et al 2016). No systematic differences larger than a few tenths of amilliarcsec were found. For most sources the true offsets are likely to be less than 1 mas. This is a very encouraging result in connection with the efforts to develop multi-wavelength realizations of the ICRS. The optical tracking of the position of Gaia on the sky was continued throughout 2016 by the GBOT (Ground Based Optical Tracking). The aim is to get an optimized position of the satellite with respect to the surrounding stars. The observations are made with the help of CCD frames taken at the focus of T1-2m class telescopes located at various places in the world. -
Spacecraft Aims to Expose Violent Hearts of Galaxies Low-Cost Mission Will Tap Into the Unexplored Upper Reaches of the X-Ray Spectrum
IN FOCUS NEWS ASTROPHYSICS Spacecraft aims to expose violent hearts of galaxies Low-cost mission will tap into the unexplored upper reaches of the X-ray spectrum. BY ERIC HAND ho would have thought that a ring- side seat at some of the Universe’s most extreme events could come NASA/JPL–CALTECH Wcheap? But by the standards of space-based astronomy, the NuSTAR telescope that NASA plans to launch as early as this month has a modest budget, US$165 million. Yet it will be sensitive to the high-energy photons produced at the turbulent thresholds of supermassive black holes. Due to be lofted into orbit by a Pegasus rocket launched in mid-air from a carrier jet, NuSTAR (Nuclear Spectroscopic Telescope Array) is taking aim at an under-explored region of the spectrum. It will detect ‘hard’ X-rays at 5–80 kiloelectronvolts, an energy range between the softer, lower-energy X-rays probed by tele scopes such as the Chandra X-ray Observatory A deployable mast will allow the NuSTAR space telescope to image high-energy X-rays. and the γ-rays measured by satellites such as the Fermi telescope. The spacecraft, which features metallic films. The thickness of each layer is the 26 minutes while NuSTAR unpacks itself an array of technical innovations, “will be the tuned to reflect photons of a specific energy. will be the most anxious phase of the mission. first mission that can resolve these high-energy Each layer reflects a small number of photons, The telescope will focus on active galactic X-rays”, says Fiona Harrison, an astronomer at but they add up to produce a strong reflection. -
Joint UV Survey Telescope
S. Basa, Laboratoire d’Astrophysique de Marseille, France distant sample of SMBHs, which in turn, hold the greatest promise of extending the existing M-σ relation beyond current limitations by revealing dormant SMBHs in galactic nuclei [15,16]. Finally is the class of unknown transients for which we currently lack both predictions and detections. This class represents a significant area of discovery space that only a wide-field The transientand sensitivesky X-ray transient “machine” can uniquely explore. In the sections below, we outline the importance of extending our knowledge of known, predicted, and unknown X-ray transients, on par with the on-going ground-based technological efforts to advance our understanding of the dynamic sky at optical (LSST) and radio (SKA pathfinders) wavelengths. Sky is intrinsically variable!! • Hard X-ray monitoring instruments show a restless X-ray sky (Swift-BAT, INTEGRAL, MAXI).! ! distant sample of SMBHs, which in turn, hold the greatest promise of extending the existing ! M-σ relation beyond current limitations by revealing dormant SMBHs in galactic nuclei [15,16]. Finally is the class of unknown transients for which we currently lack both predictions and Time domain astronomy still in its infancy, but detections. This class represents a significant area of discovery space that only a wide-field and sensitive X-ray transient “machine” can uniquely explore. In the sections below, we outline theSoderberg et al. 2009 importance of extending our knowledge of known, predicted, and unknown X-ray should quickly evolve especially at optical (PTF, transients, on par with the on-going ground-based technological efforts to advance our understanding of the dynamic sky at optical (LSST) and radio (SKA pathfinders)EXPLORING wavelengths. -
NASA Program & Budget Update
NASA Update AAAC Meeting | June 15, 2020 Paul Hertz Director, Astrophysics Division Science Mission Directorate @PHertzNASA Outline • Celebrate Accomplishments § Science Highlights § Mission Milestones • Committed to Improving § Inspiring Future Leaders, Fellowships § R&A Initiative: Dual Anonymous Peer Review • Research Program Update § Research & Analysis § ROSES-2020 Updates, including COVID-19 impacts • Missions Program Update § COVID-19 impact § Operating Missions § Webb, Roman, Explorers • Planning for the Future § FY21 Budget Request § Project Artemis § Creating the Future 2 NASA Astrophysics Celebrate Accomplishments 3 SCIENCE Exoplanet Apparently Disappears HIGHLIGHT in the Latest Hubble Observations Released: April 20, 2020 • What do astronomers do when a planet they are studying suddenly seems to disappear from sight? o A team of researchers believe a full-grown planet never existed in the first place. o The missing-in-action planet was last seen orbiting the star Fomalhaut, just 25 light-years away. • Instead, researchers concluded that the Hubble Space Telescope was looking at an expanding cloud of very fine dust particles from two icy bodies that smashed into each other. • Hubble came along too late to witness the suspected collision, but may have captured its aftermath. o This happened in 2008, when astronomers announced that Hubble took its first image of a planet orbiting another star. Caption o The diminutive-looking object appeared as a dot next to a vast ring of icy debris encircling Fomalhaut. • Unlike other directly imaged exoplanets, however, nagging Credit: NASA, ESA, and A. Gáspár and G. Rieke (University of Arizona) puzzles arose with Fomalhaut b early on. Caption: This diagram simulates what astronomers, studying Hubble Space o The object was unusually bright in visible light, but did not Telescope observations, taken over several years, consider evidence for the have any detectable infrared heat signature. -
Cosmic Evolution Through Uv Surveys (Cetus) Final Report
COSMIC EVOLUTION THROUGH UV SURVEYS (CETUS) FINAL REPORT Thematic Activity: Project (probe mission concept) Program: Electromagnetic observations from space Authors of Final Report: Jonathan Arenberg, Northrop Grumman Corporation Sally Heap, Univ. of Maryland, [email protected] Tony Hull, Univ. of New Mexico Steve Kendrick, Kendrick Aerospace Consulting LLC Bob Woodruff, Woodruff Consulting Scientific Contributors: Maarten Baes, Rachel Bezanson, Luciana Bianchi, David Bowen, Brad Cenko, Yi-Kuan Chiang, Rachel Cochrane, Mike Corcoran, Paul Crowther, Simon Driver, Bill Danchi, Eli Dwek, Brian Fleming, Kevin France, Pradip Gatkine, Suvi Gezari, Lea Hagen, Chris Hayward, Matthew Hayes, Tim Heckman, Edmund Hodges-Kluck, Alexander Kutyrev, Thierry Lanz, John MacKenty, Steve McCandliss, Harvey Moseley, Coralie Neiner, Goren Östlin, Camilla Pacifici, Marc Rafelski, Bernie Rauscher, Jane Rigby, Ian Roederer, David Spergel, Dan Stark, Alexander Szalay, Bryan Terrazas, Jonathan Trump, Arjun van der Wel, Sylvain Veilleux, Kate Whitaker, Isak Wold, Rosemary Wyse Technical Contributors: Jim Burge, Kelly Dodson, Chip Eckles, Brian Fleming, Jamie Kennea, Gerry Lemson, John MacKenty, Steve McCandliss, Greg Mehle, Shouleh Nikzad, Trent Newswander, Lloyd Purves, Manuel Quijada, Ossy Siegmund, Dave Sheikh, Phil Stahl, Ani Thakar, John Vallerga, Marty Valente, the Goddard IDC/MDL. September 2019 Cosmic Evolution Through UV Surveys (CETUS) TABLE OF CONTENTS INTRODUCTION TO CETUS ................................................................................................................ -
Prelude To, and Nature of the Space Photometry Revolution
EPJ Web of Conferences 101, 0001(0 2015) DOI: 10.1051/epjconf/20151010000 1 C Owned by the authors, published by EDP Sciences, 2015 Prelude to, and Nature of the Space Photometry Revolution Ronald L. Gilliland1,a Space Telescope Science Institute and Department of Astronomy and Astrophysics, and Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA Abstract. It is now less than a decade since CoRoT initiated the space photometry revo- lution with breakthrough discoveries, and five years since Kepler started a series of similar advances. I’ll set the context for this revolution noting the status of asteroseismology and exoplanet discovery as it was 15-25 years ago in order to give perspective on why it is not mere hyperbole to claim CoRoT and Kepler fostered a revolution in our sciences. Primary events setting up the revolution will be recounted. I’ll continue with noting the major discoveries in hand, and how asteroseismology and exoplanet studies, and indeed our approach to doing science, have been forever changed thanks to these spectacular missions. 1 Introduction I would like to start by thanking Rafa Garcia, Jer´ omeˆ Ballot and the Science Organizing Committee for inviting me to give the introductory talk at this conference. It is a great honor for me to do so. Of course we’re here to discuss the results that come from CoRoT and Kepler; these were French and American missions respectively with Annie Baglin as the PI for CoRoT and Bill Borucki as the PI for Kepler.