Inositol and Higher Inositol Phosphates in Neural Tissues: Homeostasis, Metabolism and Functional Significance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Compositions and Methods for Selective Delivery of Oligonucleotide Molecules to Specific Neuron Types
(19) TZZ ¥Z_T (11) EP 2 380 595 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 26.10.2011 Bulletin 2011/43 A61K 47/48 (2006.01) C12N 15/11 (2006.01) A61P 25/00 (2006.01) A61K 49/00 (2006.01) (2006.01) (21) Application number: 10382087.4 A61K 51/00 (22) Date of filing: 19.04.2010 (84) Designated Contracting States: • Alvarado Urbina, Gabriel AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Nepean Ontario K2G 4Z1 (CA) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL • Bortolozzi Biassoni, Analia Alejandra PT RO SE SI SK SM TR E-08036, Barcelona (ES) Designated Extension States: • Artigas Perez, Francesc AL BA ME RS E-08036, Barcelona (ES) • Vila Bover, Miquel (71) Applicant: Nlife Therapeutics S.L. 15006 La Coruna (ES) E-08035, Barcelona (ES) (72) Inventors: (74) Representative: ABG Patentes, S.L. • Montefeltro, Andrés Pablo Avenida de Burgos 16D E-08014, Barcelon (ES) Edificio Euromor 28036 Madrid (ES) (54) Compositions and methods for selective delivery of oligonucleotide molecules to specific neuron types (57) The invention provides a conjugate comprising nucleuc acid toi cell of interests and thus, for the treat- (i) a nucleic acid which is complementary to a target nu- ment of diseases which require a down-regulation of the cleic acid sequence and which expression prevents or protein encoded by the target nucleic acid as well as for reduces expression of the target nucleic acid and (ii) a the delivery of contrast agents to the cells for diagnostic selectivity agent which is capable of binding with high purposes. -
The Role of Regulated Necrosis in Endocrine Diseases
PERSPECTIVES system results in the typical morphological features such as rapid shrinking of the cell, The role of regulated necrosis nuclear condensation, DNA fragmentation, exposure of phosphatidylserine and a in endocrine diseases process known as membrane blebbing11,12. Phosphatidylserine exposure functions Wulf Tonnus , Alexia Belavgeni , Felix Beuschlein , Graeme Eisenhofer, as an ‘eat me’ signal to macrophages13–15. Martin Fassnacht , Matthias Kroiss , Nils P. Krone, Martin Reincke , Importantly, the plasma membrane remains intact in apoptotically dying cells, Stefan R. Bornstein and Andreas Linkermann a mechanism that prevents the release of Abstract | The death of endocrine cells is involved in type 1 diabetes mellitus, intracellular content to the interstitial and/or autoimmunity, adrenopause and hypogonadotropism. Insights from research on extracellular space. Therefore, apoptosis is immunologically silent. The detection basic cell death have revealed that most pathophysiologically important cell death of apoptosis has been misinterpreted for is necrotic in nature, whereas regular metabolism is maintained by apoptosis decades by the TdT-mediated dUTP-biotin programmes. Necrosis is defined as cell death by plasma membrane rupture, which nick end- labelling (TUNEL) method (BOx 1). allows the release of damage- associated molecular patterns that trigger an Mechanistically, extrinsic apoptosis immune response referred to as necroinflammation. Regulated necrosis comes in is mediated by death receptors such as different forms, such as necroptosis, pyroptosis and ferroptosis. In this Perspective, tumour necrosis factor receptor 1 (TNFR1) or the FAS receptor (also known as with a focus on the endocrine environment, we introduce these cell death CD95)16. To kill a cell through a TNFR1 pathways and discuss the specific consequences of regulated necrosis. -
Relating Metatranscriptomic Profiles to the Micropollutant
1 Relating Metatranscriptomic Profiles to the 2 Micropollutant Biotransformation Potential of 3 Complex Microbial Communities 4 5 Supporting Information 6 7 Stefan Achermann,1,2 Cresten B. Mansfeldt,1 Marcel Müller,1,3 David R. Johnson,1 Kathrin 8 Fenner*,1,2,4 9 1Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, 10 Switzerland. 2Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 11 Zürich, Switzerland. 3Institute of Atmospheric and Climate Science, ETH Zürich, 8092 12 Zürich, Switzerland. 4Department of Chemistry, University of Zürich, 8057 Zürich, 13 Switzerland. 14 *Corresponding author (email: [email protected] ) 15 S.A and C.B.M contributed equally to this work. 16 17 18 19 20 21 This supporting information (SI) is organized in 4 sections (S1-S4) with a total of 10 pages and 22 comprises 7 figures (Figure S1-S7) and 4 tables (Table S1-S4). 23 24 25 S1 26 S1 Data normalization 27 28 29 30 Figure S1. Relative fractions of gene transcripts originating from eukaryotes and bacteria. 31 32 33 Table S1. Relative standard deviation (RSD) for commonly used reference genes across all 34 samples (n=12). EC number mean fraction bacteria (%) RSD (%) RSD bacteria (%) RSD eukaryotes (%) 2.7.7.6 (RNAP) 80 16 6 nda 5.99.1.2 (DNA topoisomerase) 90 11 9 nda 5.99.1.3 (DNA gyrase) 92 16 10 nda 1.2.1.12 (GAPDH) 37 39 6 32 35 and indicates not determined. 36 37 38 39 S2 40 S2 Nitrile hydration 41 42 43 44 Figure S2: Pearson correlation coefficients r for rate constants of bromoxynil and acetamiprid with 45 gene transcripts of ECs describing nucleophilic reactions of water with nitriles. -
Substrate-Mediated Reduction of the Diiron Center for 5-Demethoxyubiquinone Hydroxylation
Aging-Associated Enzyme Human Clock-1: Substrate-Mediated Reduction of the Diiron Center for 5-Demethoxyubiquinone Hydroxylation The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Lu, Tsai-Te, Seung Jae Lee, Ulf-Peter Apfel, and Stephen J. Lippard. “Aging-Associated Enzyme Human Clock-1: Substrate-Mediated Reduction of the Diiron Center for 5-Demethoxyubiquinone Hydroxylation.” Biochemistry 52, no. 13 (April 2, 2013): 2236–2244. As Published http://dx.doi.org/10.1021/bi301674p Publisher American Chemical Society (ACS) Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/95488 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. NIH Public Access Author Manuscript Biochemistry. Author manuscript; available in PMC 2014 April 02. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Biochemistry. 2013 April 2; 52(13): 2236–2244. doi:10.1021/bi301674p. Aging-Associated Enzyme Human Clock-1: Substrate-Mediated Reduction of the Diiron Center for 5-Demethoxyubiquinone Hydroxylation† Tsai-Te Lu, Seung Jae Lee, Ulf-Peter Apfel, and Stephen J. Lippard* Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States Abstract The mitochondrial membrane-bound enzyme Clock-1 (CLK-1) extends the average longevity of mice and C. elegans, as demonstrated for Δclk-1 constructs for both organisms. Such an apparent impact on aging and the presence of a carboxylate-bridged diiron center in the enzyme inspired the present work. -
Electronic Supplementary Material (ESI) for Metallomics
Electronic Supplementary Material (ESI) for Metallomics. This journal is © The Royal Society of Chemistry 2018 Uniprot Entry name Gene names Protein names Predicted Pattern Number of Iron role EC number Subcellular Membrane Involvement in disease Gene ontology (biological process) Id iron ions location associated 1 P46952 3HAO_HUMAN HAAO 3-hydroxyanthranilate 3,4- H47-E53-H91 1 Fe cation Catalytic 1.13.11.6 Cytoplasm No NAD biosynthetic process [GO:0009435]; neuron cellular homeostasis dioxygenase (EC 1.13.11.6) (3- [GO:0070050]; quinolinate biosynthetic process [GO:0019805]; response to hydroxyanthranilate oxygenase) cadmium ion [GO:0046686]; response to zinc ion [GO:0010043]; tryptophan (3-HAO) (3-hydroxyanthranilic catabolic process [GO:0006569] acid dioxygenase) (HAD) 2 O00767 ACOD_HUMAN SCD Acyl-CoA desaturase (EC H120-H125-H157-H161; 2 Fe cations Catalytic 1.14.19.1 Endoplasmic Yes long-chain fatty-acyl-CoA biosynthetic process [GO:0035338]; unsaturated fatty 1.14.19.1) (Delta(9)-desaturase) H160-H269-H298-H302 reticulum acid biosynthetic process [GO:0006636] (Delta-9 desaturase) (Fatty acid desaturase) (Stearoyl-CoA desaturase) (hSCD1) 3 Q6ZNF0 ACP7_HUMAN ACP7 PAPL PAPL1 Acid phosphatase type 7 (EC D141-D170-Y173-H335 1 Fe cation Catalytic 3.1.3.2 Extracellular No 3.1.3.2) (Purple acid space phosphatase long form) 4 Q96SZ5 AEDO_HUMAN ADO C10orf22 2-aminoethanethiol dioxygenase H112-H114-H193 1 Fe cation Catalytic 1.13.11.19 Unknown No oxidation-reduction process [GO:0055114]; sulfur amino acid catabolic process (EC 1.13.11.19) (Cysteamine -
Mechanistic Study of Cysteine Dioxygenase, a Non-Heme
MECHANISTIC STUDY OF CYSTEINE DIOXYGENASE, A NON-HEME MONONUCLEAR IRON ENZYME by WEI LI Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT ARLINGTON August 2014 Copyright © by Student Name Wei Li All Rights Reserved Acknowledgements I would like to thank Dr. Pierce for your mentoring, guidance and patience over the five years. I cannot go all the way through this without your help. Your intelligence and determination has been and will always be an example for me. I would like to thank my committee members Dr. Dias, Dr. Heo and Dr. Jonhson- Winters for the directions and invaluable advice. I also would like to thank all my lab mates, Josh, Bishnu ,Andra, Priyanka, Eleanor, you all helped me so I could finish my projects. I would like to thank the Department of Chemistry and Biochemistry for the help with my academic and career. At Last, I would like to thank my lovely wife and beautiful daughter who made my life meaningful and full of joy. July 11, 2014 iii Abstract MECHANISTIC STUDY OF CYSTEINE DIOXYGENASE A NON-HEME MONONUCLEAR IRON ENZYME Wei Li, PhD The University of Texas at Arlington, 2014 Supervising Professor: Brad Pierce Cysteine dioxygenase (CDO) is an non-heme mononuclear iron enzymes that catalyzes the O2-dependent oxidation of L-cysteine (Cys) to produce cysteine sulfinic acid (CSA). CDO controls cysteine levels in cells and is a potential drug target for some diseases such as Parkinson’s and Alzhermer’s. -
GAT-1, a High-Affinity GABA Plasma Membrane Transporter, Localized to Neurons and Astroglia in the Cerebral Cortex
The Journal of Neuroscience, November 1995, 75(11): 7734-7746 GAT-1, a High-Affinity GABA Plasma Membrane Transporter, Localized to Neurons and Astroglia in the Cerebral Cortex Andrea Minelli,’ Nicholas C. Brecha, 2,3,4,5,6Christine Karschiq7 Silvia DeBiasi,8 and Fiorenzo Conti’ ‘Institute of Human Physiology, University of Ancona, Ancona, Italy, *Department of Neurobiology, 3Department of Medicine, 4Brain Research Institute, and 5CURE:VA/UCLA Gastroenteric Biology Center, UCLA School of Medicine, and 6Veterans Administration Medical Center, Los Angeles, CA, 7Max-Planck-lnstitute for Experimental Medicine, Gottingen, Germany, and 8Department of General Physiology and Biochemistry, Section of Histology and Human Anatomy, University of Milan, Milan, Italy High affinity, GABA plasma membrane transporters influ- into GABAergic axon terminals, GAT-1 influences both ex- ence the action of GABA, the main inhibitory neurotrans- citatory and inhibitory transmission by modulating the mitter. The cellular expression of GAT-1, a prominent “paracrine” spread of GABA (Isaacson et al., 1993), and GABA transporter, has been investigated in the cerebral suggest that astrocytes may play an important role in this cortex of adult rats using in situ hybridizaton with %-la- process. beled RNA probes and immunocytochemistry with affinity [Key words: GABA, GABA transporlers, neocottex, syn- purified polyclonal antibodies directed to the C-terminus of apses, neurons, astrocytes] rat GAT-1. GAT-1 mRNA was observed in numerous neurons and in Synaptic transmissionmediated by GABA plays a key role in some glial cells. Double-labeling experiments were per- controlling neuronal activity and information processingin the formed to compare the pattern of GAT-1 mRNA containing mammaliancerebral cortex (Krnjevic, 1984; Sillito, 1984; Mc- and GAD67 immunoreactive cells. -
Springer Handbook of Enzymes
Dietmar Schomburg and Ida Schomburg (Eds.) Springer Handbook of Enzymes Volume 25 Class 1 • Oxidoreductases X EC 1.9-1.13 co edited by Antje Chang Second Edition 4y Springer Index of Recommended Enzyme Names EC-No. Recommended Name Page 1.13.11.50 acetylacetone-cleaving enzyme 673 1.10.3.4 o-aminophenol oxidase 149 1.13.12.12 apo-/?-carotenoid-14',13'-dioxygenase 732 1.13.11.34 arachidonate 5-lipoxygenase 591 1.13.11.40 arachidonate 8-lipoxygenase 627 1.13.11.31 arachidonate 12-lipoxygenase 568 1.13.11.33 arachidonate 15-lipoxygenase 585 1.13.12.1 arginine 2-monooxygenase 675 1.13.11.13 ascorbate 2,3-dioxygenase 491 1.10.2.1 L-ascorbate-cytochrome-b5 reductase 79 1.10.3.3 L-ascorbate oxidase 134 1.11.1.11 L-ascorbate peroxidase 257 1.13.99.2 benzoate 1,2-dioxygenase (transferred to EC 1.14.12.10) 740 1.13.11.39 biphenyl-2,3-diol 1,2-dioxygenase 618 1.13.11.22 caffeate 3,4-dioxygenase 531 1.13.11.16 3-carboxyethylcatechol 2,3-dioxygenase 505 1.13.11.21 p-carotene 15,15'-dioxygenase (transferred to EC 1.14.99.36) 530 1.11.1.6 catalase 194 1.13.11.1 catechol 1,2-dioxygenase 382 1.13.11.2 catechol 2,3-dioxygenase 395 1.10.3.1 catechol oxidase 105 1.13.11.36 chloridazon-catechol dioxygenase 607 1.11.1.10 chloride peroxidase 245 1.13.11.49 chlorite O2-lyase 670 1.13.99.4 4-chlorophenylacetate 3,4-dioxygenase (transferred to EC 1.14.12.9) . -
Control of Choline Oxidation in Rat Kidney Mitochondria
ÔØ ÅÒÙ×Ö ÔØ Control of Choline Oxidation in Rat Kidney Mitochondria Niaobh O’Donoghue, Trevor Sweeney, Robin Donagh, Kieran Clarke, Richard K. Porter PII: S0005-2728(09)00144-3 DOI: doi:10.1016/j.bbabio.2009.04.014 Reference: BBABIO 46295 To appear in: BBA - Bioenergetics Received date: 11 March 2009 Revised date: 27 April 2009 Accepted date: 29 April 2009 Please cite this article as: Niaobh O’Donoghue, Trevor Sweeney, Robin Donagh, Kieran Clarke, Richard K. Porter, Control of Choline Oxidation in Rat Kidney Mitochondria, BBA - Bioenergetics (2009), doi:10.1016/j.bbabio.2009.04.014 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Control of Choline Oxidation in Rat Kidney Mitochondria Niaobh O’Donoghue, Trevor Sweeney, Robin Donagh, Kieran Clarke and Richard K. Porter * School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2 Ireland. *Correspondence to: Richard K. Porter, School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2 Ireland. Tel. +353-1-8961617; Fax +353-1-6772400; Email: [email protected] Key words: choline, betaine, mitochondria, osmolyte, kidney, transporter ACCEPTED MANUSCRIPT Abbreviations: EGTA, ethylenebis(oxethylenenitrilo)tetraacetic acid; FCCP, carbonyl cyanide p-trifluoromethoxyphenylhyrazone; HEPES, 4-(2- hydroxyethyl)-1-peiperazine-ethanesulfonic acid; MOPS, (3-[N}- morphilino)propane sulphonic acid; TPMP, methyltriphenylphosphonium 1 ACCEPTED MANUSCRIPT ABSTRACT Choline is a quaternary amino cationic organic alcohol that is oxidized to betaine in liver and kidney mitochondria. -
The Opu Family of Compatible Solute Transporters from Bacillus Subtilis
Biol. Chem. 2017; 398(2): 193–214 Review Tamara Hoffmann and Erhard Bremer* Guardians in a stressful world: the Opu family of compatible solute transporters from Bacillus subtilis DOI 10.1515/hsz-2016-0265 Received August 8, 2016; accepted August 29, 2016; previously Introduction published online December 8, 2016 Bacillus subtilis, the model organism for Gram-positive Abstract: The development of a semi-permeable cyto- bacteria, is ubiquitously distributed in the environment, plasmic membrane was a key event in the evolution of and can be found in terrestrial, in plant-associated, and in microbial proto-cells. As a result, changes in the exter- marine ecoystems (Earl et al., 2008; Mandic-Mulec et al., nal osmolarity will inevitably trigger water fluxes along 2015). One of its main habitats is the upper layer of the the osmotic gradient. The ensuing osmotic stress has soil. The functional annotation of its 4.2 Mbp genome consequences for the magnitude of turgor and will nega- sequence (Barbe et al., 2009) shows that it is well adapted tively impact cell growth and integrity. No microorganism to life in this habitat through an abundance of uptake and can actively pump water across the cytoplasmic mem- catabolic systems allowing it to take advantage of many brane; hence, microorganisms have to actively adjust the plant-derived compounds for growth (Belda et al., 2013). B. osmotic potential of their cytoplasm to scale and direct subtilis can exist in the soil as motile cells, actively seeking water fluxes in order to prevent dehydration or -
Transcriptome Analysis of Pistacia Vera Inflorescence Buds in Bearing
G C A T T A C G G C A T genes Article Transcriptome Analysis of Pistacia vera Inflorescence Buds in Bearing and Non-Bearing Shoots Reveals the Molecular Mechanism Causing Premature Flower Bud Abscission Jubina Benny 1, Francesco Paolo Marra 2,* , Antonio Giovino 3, Bipin Balan 1,4, Tiziano Caruso 1, Federico Martinelli 5 and Annalisa Marchese 1,* 1 Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze—Ed. 4, 90128 Palermo, Italy; [email protected] (J.B.); [email protected] (B.B.); [email protected] (T.C.) 2 Department of Architecture (DARCH), University of Palermo, Viale delle Scienze—Ed. 8, 90128 Palermo, Italy 3 Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification (CREA-DC), 90011 Bagheria, Italy; [email protected] 4 Department of Plant Sciences, University of California, Davis, CA 95616, USA 5 Department of Biology, University of Florence, Sesto Fiorentino, 50019 Florence, Italy; federico.martinelli@unifi.it * Correspondence: [email protected] (F.P.M.); [email protected] (A.M.) Received: 23 June 2020; Accepted: 23 July 2020; Published: 25 July 2020 Abstract: The alteration of heavy (“ON/bearing”) and light (“OFF/non-bearing”) yield in pistachio (Pistacia vera L.) has been reported to result from the abscission of inflorescence buds on high yielding trees during the summer, but the regulatory mechanisms involved in this bud abscission remain unclear. The analysis provides insights into the transcript changes between inflorescence buds on bearing and non-bearing shoots, that we indicated as “ON” and “OFF”, and shed light on the molecular mechanisms causing premature inflorescence bud abscission in the pistachio cultivar “Bianca” which can be related to the alternate bearing behavior. -
And Fe(II)-Dependent Oxygenase Superfamily Protein(AT4G10500)
AGI code Name At4g10500 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein(AT4G10500) GOTERM_BP_DIRECT defense response to oomycetes, response to oomycetes, response to bacterium, response to fungus, response to salicylic acid, leaf senescence, secondary metabolic process, salicylic acid catabolic process, oxidation-reduction process, GOTERM_MF_DIRECT oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, 2-oxoglutarate as one donor, and incorporation of one atom each of oxygen into both donors, metal ion binding, dioxygenase activity, At5g59540 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein(AT5G59540) GOTERM_BP_DIRECT oxidation-reduction process, GOTERM_CC_DIRECT cytoplasm, GOTERM_MF_DIRECT oxidoreductase activity, metal ion binding, dioxygenase activity, At3g55090 ABC-2 type transporter family protein(ABCG16) GOTERM_BP_DIRECT pollen wall assembly, GOTERM_CC_DIRECT plasma membrane, integral component of membrane, GOTERM_MF_DIRECT ATP binding, ATPase activity, coupled to transmembrane movement of substances, At2g37360 ABC-2 type transporter family protein(ABCG2) GOTERM_BP_DIRECT transport, suberin biosynthetic process, GOTERM_CC_DIRECT plasma membrane, integral component of membrane, GOTERM_MF_DIRECT ATP binding, ATPase activity, ATPase activity, coupled to transmembrane movement of substances, At3g47780 ABC2 homolog 6(ABCA7) GOTERM_BP_DIRECT lipid transport, GOTERM_CC_DIRECT plasma membrane, plasmodesma, integral component of membrane, intracellular