Front Matter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characterizing the Function Space for Bayesian Kernel Models
Journal of Machine Learning Research 8 (2007) 1769-1797 Submitted 7/06; Revised 1/07; Published 8/07 Characterizing the Function Space for Bayesian Kernel Models Natesh S. Pillai [email protected] Qiang Wu [email protected] Department of Statistical Science Duke University Durham, NC 27708, USA Feng Liang [email protected] Department of Statistics University of Illinois at Urbana-Champaign Urbana-Champaign, IL 61820, USA Sayan Mukherjee [email protected] Department of Statistical Science Institute for Genome Sciences & Policy Duke University Durham, NC 27708, USA Robert L. Wolpert [email protected] Department of Statistical Science Professor of the Environment and Earth Sciences Duke University Durham, NC 27708, USA Editor: Zoubin Ghahramani Abstract Kernel methods have been very popular in the machine learning literature in the last ten years, mainly in the context of Tikhonov regularization algorithms. In this paper we study a coherent Bayesian kernel model based on an integral operator defined as the convolution of a kernel with a signed measure. Priors on the random signed measures correspond to prior distributions on the functions mapped by the integral operator. We study several classes of signed measures and their image mapped by the integral operator. In particular, we identify a general class of measures whose image is dense in the reproducing kernel Hilbert space (RKHS) induced by the kernel. A conse- quence of this result is a function theoretic foundation for using non-parametric prior specifications in Bayesian modeling, such as Gaussian process and Dirichlet process prior distributions. We dis- cuss the construction of priors on spaces of signed measures using Gaussian and Levy´ processes, with the Dirichlet processes being a special case the latter. -
A Calendar of Mathematical Dates January
A CALENDAR OF MATHEMATICAL DATES V. Frederick Rickey Department of Mathematical Sciences United States Military Academy West Point, NY 10996-1786 USA Email: fred-rickey @ usma.edu JANUARY 1 January 4713 B.C. This is Julian day 1 and begins at noon Greenwich or Universal Time (U.T.). It provides a convenient way to keep track of the number of days between events. Noon, January 1, 1984, begins Julian Day 2,445,336. For the use of the Chinese remainder theorem in determining this date, see American Journal of Physics, 49(1981), 658{661. 46 B.C. The first day of the first year of the Julian calendar. It remained in effect until October 4, 1582. The previous year, \the last year of confusion," was the longest year on record|it contained 445 days. [Encyclopedia Brittanica, 13th edition, vol. 4, p. 990] 1618 La Salle's expedition reached the present site of Peoria, Illinois, birthplace of the author of this calendar. 1800 Cauchy's father was elected Secretary of the Senate in France. The young Cauchy used a corner of his father's office in Luxembourg Palace for his own desk. LaGrange and Laplace frequently stopped in on business and so took an interest in the boys mathematical talent. One day, in the presence of numerous dignitaries, Lagrange pointed to the young Cauchy and said \You see that little young man? Well! He will supplant all of us in so far as we are mathematicians." [E. T. Bell, Men of Mathematics, p. 274] 1801 Giuseppe Piazzi (1746{1826) discovered the first asteroid, Ceres, but lost it in the sun 41 days later, after only a few observations. -
Heritage and Early History of the Boundary Element Method
Engineering Analysis with Boundary Elements 29 (2005) 268–302 www.elsevier.com/locate/enganabound Heritage and early history of the boundary element method Alexander H.-D. Chenga,*, Daisy T. Chengb aDepartment of Civil Engineering University of Mississippi, University, MS, 38677, USA bJohn D. Williams Library, University of Mississippi, University, MS 38677, USA Received 10 December 2003; revised 7 December 2004; accepted 8 December 2004 Available online 12 February 2005 Abstract This article explores the rich heritage of the boundary element method (BEM) by examining its mathematical foundation from the potential theory, boundary value problems, Green’s functions, Green’s identities, to Fredholm integral equations. The 18th to 20th century mathematicians, whose contributions were key to the theoretical development, are honored with short biographies. The origin of the numerical implementation of boundary integral equations can be traced to the 1960s, when the electronic computers had become available. The full emergence of the numerical technique known as the boundary element method occurred in the late 1970s. This article reviews the early history of the boundary element method up to the late 1970s. q 2005 Elsevier Ltd. All rights reserved. Keywords: Boundary element method; Green’s functions; Green’s identities; Boundary integral equation method; Integral equation; History 1. Introduction industrial settings, mesh preparation is the most labor intensive and the most costly portion in numerical After three decades of development, the boundary modeling, particularly for the FEM [9] Without the need element method (BEM) has found a firm footing in the of dealing with the interior mesh, the BEM is more cost arena of numerical methods for partial differential effective in mesh preparation. -
History of the Boundary Element Method
Engineering Analysis with Boundary Elements 29 (2005) 268–302 www.elsevier.com/locate/enganabound Heritage and early history of the boundary element method Alexander H.-D. Chenga,*, Daisy T. Chengb aDepartment of Civil Engineering University of Mississippi, University, MS, 38677, USA bJohn D. Williams Library, University of Mississippi, University, MS 38677, USA Received 10 December 2003; revised 7 December 2004; accepted 8 December 2004 Available online 12 February 2005 Abstract This article explores the rich heritage of the boundary element method (BEM) by examining its mathematical foundation from the potential theory, boundary value problems, Green’s functions, Green’s identities, to Fredholm integral equations. The 18th to 20th century mathematicians, whose contributions were key to the theoretical development, are honored with short biographies. The origin of the numerical implementation of boundary integral equations can be traced to the 1960s, when the electronic computers had become available. The full emergence of the numerical technique known as the boundary element method occurred in the late 1970s. This article reviews the early history of the boundary element method up to the late 1970s. q 2005 Elsevier Ltd. All rights reserved. Keywords: Boundary element method; Green’s functions; Green’s identities; Boundary integral equation method; Integral equation; History 1. Introduction industrial settings, mesh preparation is the most labor intensive and the most costly portion in numerical After three decades of development, the boundary modeling, particularly for the FEM [9] Without the need element method (BEM) has found a firm footing in the of dealing with the interior mesh, the BEM is more cost arena of numerical methods for partial differential effective in mesh preparation. -
Creators of Mathematical and Computational Sciences Creators of Mathematical and Computational Sciences
Ravi P. Agarwal · Syamal K. Sen Creators of Mathematical and Computational Sciences Creators of Mathematical and Computational Sciences Ravi P. Agarwal • Syamal K. Sen Creators of Mathematical and Computational Sciences 123 Ravi P. Agarwal Syamal K. Sen Department of Mathematics GVP-Prof. V. Lakshmikantham Institute Texas A&M University-Kingsville for Advanced Studies Kingsville, TX, USA GVP College of Engineering Campus Visakhapatnam, India ISBN 978-3-319-10869-8 ISBN 978-3-319-10870-4 (eBook) DOI 10.1007/978-3-319-10870-4 Springer Cham Heidelberg New York Dordrecht London Library of Congress Control Number: 2014949778 Mathematics Subject Classification (2010): 01A05, 01A32, 01A61, 01A85 © Springer International Publishing Switzerland 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. -
Fredholm Operators
Fredholm Operators Alonso Delf´ın University of Oregon. October 25, 2018 Abstract. The Fredholm index is an indispensable item in the operator theorist's tool- kit and a very simple prototype of the application of algebraic topological methods to analysis. This document contains all the basics one needs to know to work with Fredholm theory, as well as many examples. The actual talk that I gave only dealt with the essentials and I omitted most of the proofs presented here. At the end, I present my solutions to some of the ex- ercises in Murphy's C∗-algebras and operator theory that deal with compact operators and Fredholm theory. A (not so brief) review of compact operators. Let X be a topological space. Recall that a subset Y ⊆ X is said to be relatively compact if Y is compact in X. Recall also that a subset Y ⊆ X is said to be totally bounded if 8 " > 0, 9 n 2 N, and x1; : : : ; xn 2 X such that n [ Y ⊆ B"(xk) k=1 Definition. A linear map u : X ! Y between Banach spaces X and Y is said to be compact if u(S) is relatively compact in Y , where S := fx 2 X : kxk ≤ 1g = B1(0). N Proposition. Let (X; d) be a complete metric space. Then Y ⊆ X is rela- tively compact if and only if Y is totally bounded. 1 Proof. Assume first that Y is relatively compact. Let " > 0. Then, fB"(x)gx2Y is an open cover for Y . Since Y is compact, it follows that n there are n 2 N, x1; : : : ; xn 2 Y such that fB"(xk)gk=1 is an open cover for Y .