Three New Species of Pseudocalotes Fitzinger (Squamata: Agamidae) from the Sky Island Archipelago of Peninsular Malaysia

Total Page:16

File Type:pdf, Size:1020Kb

Three New Species of Pseudocalotes Fitzinger (Squamata: Agamidae) from the Sky Island Archipelago of Peninsular Malaysia Zootaxa 4136 (3): 461–490 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4136.3.3 http://zoobank.org/urn:lsid:zoobank.org:pub:3A3A379B-5552-44C9-B35B-B26ECB1005EE Dragons in the mist: three new species of Pseudocalotes Fitzinger (Squamata: Agamidae) from the sky island archipelago of Peninsular Malaysia L. LEE GRISMER1, EVAN S. H. QUAH2, PERRY L. WOOD, JR.3, SHAHRUL ANUAR2, ABDUL MUIN2, HAYDEN R. DAVIS1, MATTHEW L. MURDOCH1, JESSE L. GRISMER4, MICHAEL COTA5 & ANTHONY J. COBOS1 1Herpetology Laboratory, Department of Biology, La Sierra University, 4500 Riverwalk Parkway, Riverside, California 92515 USA. E-mail: [email protected] 2School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Penang, Malaysia. E-mail: [email protected]; ; E-mail: [email protected]; E-mail: [email protected] 3Department of Biology, Brigham Young University, 150 East Bulldog Boulevard, Provo, Utah 84602 USA. E-mail: [email protected] 4Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045-7651, USA. E-mail: [email protected] 5Natural History Museum, National Science Museum, Thailand, Technopolis, Khlong 5, Khlong Luang, Pathum Thani 12120 Thai- land. E-mail: [email protected] Abstract An integrative taxonomic analysis is used to delimit and describe three new species of Pseudocalotoes from the sky island archipelago of the Banjaran (=mountain range) Titiwangsa of Peninsular Malaysia. Pseudocalotes drogon sp. nov., from Fraser’s Hill, Pahang is basal to the sister species P. larutensis from Bukit Larut, Perak in the Banjaran Bintang and the new species P. rhaegal sp. nov. from Cameron Highlands, Pahang. Pseudocalotes drogon sp. nov. is differentiated from all other species of Psuedocalotes by having the combination of a flat rostrum; seven postrostrals; an interparietal; 11 cir- cumorbitals; five canthals; 7–10 superciliaries; one scale between the rostral and nasal; nine supralabials; eight infralabi- als; 10 postnasal-suborbital scales; four postmentals; five or six sublabials; five or six chinshields; 47 smooth, wide, gular scales; weak transverse gular and antehumeral folds; two enlarged scales between the ear and eye; enlarged upper and low- er posttemporals; a single enlarged supratympanic; no enlarged postrictals; three large scales bordering the dorsal margin of the ear opening; large pretympanic scales; eight scales in the nuchal crest not separated by a gap; enlarged vertebral scales extending to the tip of the tail; keeled and non-plate-like scales on flanks; 51 midbody scales; midventrals smaller than dorsals; 19 subdigital lamellae on the fourth finger; 23 subdigital lamellae on the fourth toe; preaxial scales on third toe enlarged and spinose; subdigital lamellae not unicarinate; HW/HL 0.52; HL/SVL 0.31; no elbow or knee patches; and a male dewlap color of lime-green bearing a central yellow spot. Pseudocalotes rhaegal sp. nov. is differentiated from all other Psuedocalotes by having the combination of a convex rostrum; 6–8 postrostrals; an interparietal; nine or 10 circu- morbitals; five canthals; 7–10 superciliaries; one or two scales between the rostral and nasal scales; eight or nine suprala- bials; seven or eight infralabials; 11 or 12 postnasal-suborbital scales; four postmentals; four or five chinshields; 40–45 smooth, wide, gular scales; no transverse gular fold; a weak antehumeral fold; three or four enlarged scales between the ear and eye; an enlarged upper and lower posttemporal; an enlarged supratympanic; no enlarged postrictals; no large scales bordering the upper margin of the ear opening or in the pretympanic region; 6–8 enlarged nuchal crest scales not separated by a gap; enlarged vertebral scales extending to the base of the tail; weakly keeled, non-plate-like scales on the flanks; 52– 58 midbody scales; midventrals smaller than dorsals; 19–21 subdigital lamellae on the fourth finger; 22–26 subdigital la- mellae on the fourth toe; preaxial scales on the third enlarged and rounded; subdigital lamellae not unicarinate; HW/HL 0.50–0.54; HL/SVL 0.28–0.30; no elbow or knee patches; and female dewlap color yellow bearing a purple base. The analyses also indicated that the new species, P. v i s e r i on sp. nov. from Genting Highlands, Pahang in the southern section of the Banjaran Titiwangsa is the sister species of P. flavigula from Cameron Highlands 121 km to the north and can be separated from all other species of Psuedocalotes by having the combination of three postrostrals; 10 circumorbitals; four or five canthals; 5–7 superciliaries; rostral and nasals in contact; supralabials contacting the nasal; six or seven suprala- bials; six or seven infralabials; two or three postmentals; 47 or 48 smooth, flat, gular scales; three chinshields; weak trans- verse gular and antehumeral folds; two enlarged scales between the ear and eye; an enlarged upper and lower posttemporal; an enlarged supratympanic; no enlarged postrictals; 7–9 nuchal crest scales lacking gaps and not extending beyond midbody; weakly keeled and plate-like scales on the flanks; 35–38 midbody scales; ventrals smaller than dorsals; Accepted by S. Carranza: 19 May 2016; published: 7 Jul. 2016 461 22 or 23 subdigital lamellae on the fourth finger; 26 or 27 subdigital lamellae on the fourth toe; preaxial scales on the third toe not modified; subdigital scales not unicarinate; HW/HL 0.62; no white marking below the eye; dewlap in males yel- low; and no elbow or knee patches. Pseudocalotes rhaegal sp. nov. most likely occurs in syntopy with P. flavigula in Ta- nah Rata at Cameron Highlands and its discovery adds to a growing body of literature detailing the recent descriptions of several new, upland, closely related, sympatric species in Peninsular Malaysia. Another new population referred to here as Pseudocalotes sp. nov. from the Hala-Bala Wildlife Sanctuary, Betong District, Yala Province, Thailand is discussed. The discovery and description of these three new Pseudocalotes from the upland regions of Peninsular Malaysia continues to underscore the remarkably high herpetological diversity and ecological complexity in this sky island archipelago that is still underestimated, unappreciated, and unprotected. Key words: Peninsular Malaysia, Thailand, Agamidae, Pseudocalotes, new species, uplands Introduction Globally, upland ecosystems in tropical rainforests are renown for their high levels of endemism (Blackburn & Measey, 2009; Bell et al., 2010, Grismer, 2011; Grismer et al., 2010a,b; Tolley et al., 2011). This has become patently clear in the sky island archipelago of Peninsular Malaysia that remarkably has yielded 33 new, co- distributed species of amphibians and reptiles across five different mountain systems in only the last nine years of exploration (Chan et al. 2009, 2014; Grismer 2006a,b, 2007, 2008; Grismer et al. 2004, 2008, 2009a,b, 2010a,b, 2011, 2012, 2013a,b, 2014a,b, 2015a,b; Grismer & Quah 2015; Loredo et al. 2013; Matsui et al., 2009, 2014; Wood et al. 2008, 2009) with at least 13 more species awaiting description (Grismer et. al. in prep.; Quah et al. in prep.). Joining this growing list of newly discovered montane taxa is the genus Pseudocalotes whose species content is increased here with the discovery of three new populations from the Banjaran (=mountain range) Titiwangsa. Pseudocalotes comprises a morphologically diverse group of arboreal agamid lizards ranging from the normal to the bizarre in appearance (Manthey 2012). The 21 species of this genus currently recognized generally inhabit upland areas in tropical regions and collectively extend from India to southern China and thence southward to Sumatra and Java (Hallerman et al. 2010). Although the latest phylogeny thus far indicates this genus is monophyletic (J. Grismer et al. 2016), the broader interspecific relationships have yet to be the focus of a phylogenetic systematic analysis. Currently there are four cloud forest species of Pseudocalotes known from the Thai-Malay Peninsula that represent two distinct morphological groups (Grismer 2011). Pseudocalotes khaonanensis Chan-ard, Cota, Makchai, & Laoteow from the Nakhon Si Thammarat Mountains in southern Thailand and P. larutensis Hallermann & McGuire from the Banjaran Bintang near the west coast in northern Peninsular Malaysia have small, uniformly keeled dorsal and flank scales and a relatively narrow head with an elongate snout. Whereas P. flavigula (Smith) from the centrally located Banjaran Titiwangsa and P. dringi Hallermann & Böhme from the eastern Banjaran Timur in Peninsular Malaysia have large, plate-like, flank scales (much more pronounced in P. flavigula) and a wider head and shorter snout (Fig. 1). Our ongoing fieldwork in the sky-island archipelago of Peninsular Malaysia has resulted in the discovery of three new populations of Pseudocalotes and the collection of additional specimens from the type localities of P. flavigula and P. larutensis (Appendix). Two of the three new populations come from Cameron Highlands and Fraser’s Hill, Pahang (Fig. 2) and bear the P. larutensis-khaonanensis morphology as well as having relatively short tails, a naked tympanum, prominent nuchal crests that do not extend onto the body, and no elongate postorbital and nuchal spines—characters that separate them from all other agamid genera from the Thai-Malaya Peninsula and align them with the genus Pseudocalotes (Grismer 2011). The third population from
Recommended publications
  • (Daudin, 1802) (Sauria: Agamidae) from Iran
    Archive of SID Iranian Journal of Animal Biosystematics (IJAB) Vol.14, No.1, 29-35, 2018 ISSN: 1735-434X (print); 2423-4222 (online) DOI: 10.22067/ijab.v14i1.63469 Additional records and Further Data on Indian garden lizard Calotes versicolor (Daudin, 1802) (Sauria: Agamidae) from Iran Damadi, E.1, Rastegar-Pouyani, N.2, Karamiani, R.2 and Akbarpour, M.2,3 1Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran 2 Iranian Plateau Herpetology Research Group (IPHRG), Razi University, Kermanshah, Iran 3Department of Biology, Faculty of Science, Razi University of Kermanshah, Iran (Received: 20 April 2018; Accepted: 12 June 2018) In this study a total of four Calotes versicolor specimens (three males, one female), collected in different localities from April 2013 to March 2014 in Southeast of Iran were examined. The study was based on morphological features including color pattern, morphometric measurements, habits, biological observations especially habitat and distribution. Habits features, habitat and new distribution localities were documented. This is the first record of Calotes versicolor from the Kalesari village is 44 km away from the last record in Nahang River. Key words: Agamidae, Calotes versicolor, Distribution, Habits, Habitats, Iran. INTRODUCTION The genus Calotes Cuvier, 1817 belongs to the family Agamidae and contains at least 26 species distributed in South and Southeast Asia (Uetz & Hosek, 2016) and only one species reported from Iran (Anderson, 1999; Rastegar-Pouyani et al., 2008; Šmíd et al., 2014). Calotes versicolor (Daudin, 1802) has a wide distribution in Afghanistan, Iran, Pakistan, Nepal, Bhutan, India, Sri Lanka, Myanmar, southern China (Yunnan, Hainan Island, Hong Kong), Laos, Thailand, Vietnam, Singapore, western Malaysia, Indonesia (Sumatra) (Ananjeva et al.
    [Show full text]
  • Download Download
    HAMADRYAD Vol. 27. No. 2. August, 2003 Date of issue: 31 August, 2003 ISSN 0972-205X CONTENTS T. -M. LEONG,L.L.GRISMER &MUMPUNI. Preliminary checklists of the herpetofauna of the Anambas and Natuna Islands (South China Sea) ..................................................165–174 T.-M. LEONG & C-F. LIM. The tadpole of Rana miopus Boulenger, 1918 from Peninsular Malaysia ...............175–178 N. D. RATHNAYAKE,N.D.HERATH,K.K.HEWAMATHES &S.JAYALATH. The thermal behaviour, diurnal activity pattern and body temperature of Varanus salvator in central Sri Lanka .........................179–184 B. TRIPATHY,B.PANDAV &R.C.PANIGRAHY. Hatching success and orientation in Lepidochelys olivacea (Eschscholtz, 1829) at Rushikulya Rookery, Orissa, India ......................................185–192 L. QUYET &T.ZIEGLER. First record of the Chinese crocodile lizard from outside of China: report on a population of Shinisaurus crocodilurus Ahl, 1930 from north-eastern Vietnam ..................193–199 O. S. G. PAUWELS,V.MAMONEKENE,P.DUMONT,W.R.BRANCH,M.BURGER &S.LAVOUÉ. Diet records for Crocodylus cataphractus (Reptilia: Crocodylidae) at Lake Divangui, Ogooué-Maritime Province, south-western Gabon......................................................200–204 A. M. BAUER. On the status of the name Oligodon taeniolatus (Jerdon, 1853) and its long-ignored senior synonym and secondary homonym, Oligodon taeniolatus (Daudin, 1803) ........................205–213 W. P. MCCORD,O.S.G.PAUWELS,R.BOUR,F.CHÉROT,J.IVERSON,P.C.H.PRITCHARD,K.THIRAKHUPT, W. KITIMASAK &T.BUNDHITWONGRUT. Chitra burmanica sensu Jaruthanin, 2002 (Testudines: Trionychidae): an unavailable name ............................................................214–216 V. GIRI,A.M.BAUER &N.CHATURVEDI. Notes on the distribution, natural history and variation of Hemidactylus giganteus Stoliczka, 1871 ................................................217–221 V. WALLACH.
    [Show full text]
  • Conservation Challenges Regarding Species Status Assessments in Biogeographically Complex Regions: Examples from Overexploited Reptiles of Indonesia KYLE J
    Conservation challenges regarding species status assessments in biogeographically complex regions: examples from overexploited reptiles of Indonesia KYLE J. SHANEY, ELIJAH WOSTL, AMIR HAMIDY, NIA KURNIAWAN MICHAEL B. HARVEY and ERIC N. SMITH TABLE S1 Individual specimens used in taxonomic evaluation of Pseudocalotes tympanistriga, with their province of origin, latitude and longitude, museum ID numbers, and GenBank accession numbers. Museum ID GenBank Species Province Coordinates numbers accession Bronchocela cristatella Lampung -5.36079, 104.63215 UTA R 62895 KT180148 Bronchocela jubata Lampung -5.54653, 105.04678 UTA R 62896 KT180152 B. jubata Lampung -5.5525, 105.18384 UTA R 62897 KT180151 B. jubata Lampung -5.57861, 105.22708 UTA R 62898 KT180150 B. jubata Lampung -5.57861, 105.22708 UTA R 62899 KT180146 Calotes versicolor Jawa Barat -6.49597, 106.85198 UTA R 62861 KT180149 C. versicolor* NC009683.1 Gonocephalus sp. Lampung -5.2787, 104.56198 UTA R 60571 KT180144 Pseudocalotes cybelidermus Sumatra Selatan -4.90149, 104.13401 UTA R 60551 KT180139 P. cybelidermus Sumatra Selatan -4.90711, 104.1348 UTA R 60549 KT180140 Pseudocalotes guttalineatus Lampung -5.28105, 104.56183 UTA R 60540 KT180141 P. guttalineatus Sumatra Selatan -4.90681, 104.13457 UTA R 60501 KT180142 Pseudocalotes rhammanotus Lampung -4.9394, 103.85292 MZB 10804 KT180147 Pseudocalotes species 4 Sumatra Barat -2.04294, 101.31129 MZB 13295 KT211019 Pseudocalotes tympanistriga Jawa Barat -6.74181, 107.0061 UTA R 60544 KT180143 P. tympanistriga Jawa Barat -6.74181, 107.0061 UTA R 60547 KT180145 Pogona vitticeps* AB166795.1 *Entry to GenBank by previous authors TABLE S2 Reptile species currently believed to occur Java and Sumatra, Indonesia, with IUCN Red List status, and certainty of occurrence.
    [Show full text]
  • La Collezione Erpetologica Del Museo Civico Di Storia Naturale “G. Doria” Di Genova the Herpetological Collection of the Museo Civico Di Storia Naturale “G
    MUSEOLOGIA SCIENTIFICA MEMORIE • N. 5/2010 • 62-68 Le collezioni erpetologiche dei Musei italiani The herpetological collections of italian museums Stefano Mazzotti (ed.) La collezione erpetologica del Museo Civico di Storia Naturale “G. Doria” di Genova The herpetological collection of the Museo Civico di Storia Naturale “G. Doria” of Genoa Giuliano Doria Museo Civico di Storia Naturale “G. Doria”, Via Brigata Liguria 9. I-16121 Genova. E-mail: [email protected] RIASSUNTO Il primo nucleo della collezione erpetologica del Museo Civico di Storia Naturale “Giacomo Doria” di Genova è costituito dalle raccolte effettuate da Giacomo Doria, fondatore del Museo, nella zona di La Spezia, in Persia (oggi Iran) e in Borneo (insieme a Odoardo Beccari) negli anni 1862-1868. Successivamente la collezione viene incrementata col materiale di numerose spedizioni condotte in tutti i conti - nenti; i risultati di tali raccolte sono stati spesso pubblicati sugli “Annali” del Museo. Nella collezione sono pre - senti 593 specie di Anfibi e 1.456 di Rettili; 171 taxa, attualmente validi, sono rappresentati da tipi. Parole chiave: Anfibi, Rettili, Museo di Genova, annali, tipi. ABSTRACT The first nucleus of the herpetological collection of the Museo Civico di Storia Naturale “Giacomo Doria” (Italy, Genoa) was made up of the specimens collected in the years 1862-1868 near La Spezia (Italy, Liguria), in Persia (now Iran) and in Borneo (with Odoardo Beccari) by its founder, Giacomo Doria. Later, it was increased with thousands of specimens collected during several expeditions throughout all the continents. Many important studies about this rich material have been published in “Annali”, the museum’s journal.
    [Show full text]
  • Life After Logging: Reconciling Wildlife Conservation and Production Forestry in Indonesian Borneo
    Life after logging Reconciling wildlife conservation and production forestry in Indonesian Borneo Erik Meijaard • Douglas Sheil • Robert Nasi • David Augeri • Barry Rosenbaum Djoko Iskandar • Titiek Setyawati • Martjan Lammertink • Ike Rachmatika • Anna Wong Tonny Soehartono • Scott Stanley • Timothy O’Brien Foreword by Professor Jeffrey A. Sayer Life after logging: Reconciling wildlife conservation and production forestry in Indonesian Borneo Life after logging: Reconciling wildlife conservation and production forestry in Indonesian Borneo Erik Meijaard Douglas Sheil Robert Nasi David Augeri Barry Rosenbaum Djoko Iskandar Titiek Setyawati Martjan Lammertink Ike Rachmatika Anna Wong Tonny Soehartono Scott Stanley Timothy O’Brien With further contributions from Robert Inger, Muchamad Indrawan, Kuswata Kartawinata, Bas van Balen, Gabriella Fredriksson, Rona Dennis, Stephan Wulffraat, Will Duckworth and Tigga Kingston © 2005 by CIFOR and UNESCO All rights reserved. Published in 2005 Printed in Indonesia Printer, Jakarta Design and layout by Catur Wahyu and Gideon Suharyanto Cover photos (from left to right): Large mature trees found in primary forest provide various key habitat functions important for wildlife. (Photo by Herwasono Soedjito) An orphaned Bornean Gibbon (Hylobates muelleri), one of the victims of poor-logging and illegal hunting. (Photo by Kimabajo) Roads lead to various impacts such as the fragmentation of forest cover and the siltation of stream— other impacts are associated with improved accessibility for people. (Photo by Douglas Sheil) This book has been published with fi nancial support from UNESCO, ITTO, and SwedBio. The authors are responsible for the choice and presentation of the facts contained in this book and for the opinions expressed therein, which are not necessarily those of CIFOR, UNESCO, ITTO, and SwedBio and do not commit these organisations.
    [Show full text]
  • From Agamid Lizards on Luzon Island, Philippines
    J. Parasitol., 98(3), 2012, pp. 608–611 F American Society of Parasitologists 2012 A NEW SPECIES OF RHABDIAS (NEMATODA: RHABDIASIDAE) FROM AGAMID LIZARDS ON LUZON ISLAND, PHILIPPINES Yuriy Kuzmin, Vasyl V. Tkach*, and Sarah E. BushÀ Institute of Zoology, Ukrainian National Academy of Sciences, Kiev, Ukraine. e-mail: [email protected] ABSTRACT: Rhabdias odilebaini n. sp. is described on the basis of specimens found in the lungs of 2 species of agamid lizards: the Philippine flying lizard Draco spilopterus and the marbled bloodsucker Bronchocela marmorata. Specimens were collected in Aurora Province, Luzon Island, Philippines. The new species of Rhabdias is characterized by presence of 4 submedian lips, inconspicuous lateral lips, rounded cross-shaped oral opening, and tail end bent dorsally. This species is morphologically distinct from other Rhabdias spp. that parasitize reptilian and amphibian hosts, including 3 other species known to parasitize lizards of the Agamidae. Rhabdias Stiles et Hassall, 1905, includes approximately 70 preserved in 70% ethanol. Before examination using light microscopy, species of nematodes parasitic in amphibians and reptiles nematodes were cleared in phenol/glycerine solution (ratio 2:1). Drawings were made with aid of a drawing tube. All measurements in the text are in worldwide (Kuzmin and Tkach, 2002–2011). To date, lizards of micrometers unless otherwise stated. the Agamidae Spix, 1825, were known to host only 3 Rhabdias Type specimens were deposited in the Harold W. Manter Laboratory species, namely, Rhabdias japalurae Kuzmin, 2003, described from (HWML), University of Nebraska, Lincoln, Nebraska, and the parasite 2 species of japalures in southern Japan and Taiwan, Rhabdias collection at the College of Veterinary Medicine, University of the Philippines–Los Banos, Los Banos, Philippines.
    [Show full text]
  • Contents/Lnhalt
    Contents/lnhalt Introduction/Einfiihrung 6 How to use the book/Benutzerhinweise 9 References/Literaturhinweise 12 Acknowledgments/Danksagung 15 AGAMIDAE: Draconinae FITZINGER, 1826 Acanthosaiira GRAY, 1831 - Pricklenapes/Nackenstachler Acanthosaura armata (HARDWICKE & GRAY, 1827) - Armored Pricklenape/GroGer Nackenstachler 16 Acanthosaura capra GUNTHER, 1861 - Green Pricklenape/Griiner Nackenstachler 20 Acanthosaura coronata GUNTHER, 1861 - Striped Pricklenape/Streifen-Nackenstachler 21 Acanthosaura crucigera BOULENGER, 1885 - Masked Pricklenape/Masken-Nackelstachler 23 Acanthosaura lepidogaster (CUVIER, 1829) - Brown Pricklenape/Schwarzkopf-Nackenstachler 28 Acanthosaura nataliae ORLOV, NGUYEN & NGUYEN, 2006 - Natalia's Pricklenape/Natalias Nackenstachler 35 Aphaniotis PETERS, 1864 - Earless Agamas/Blaumaulagamen Aphaniotis acutirostris MODIGLIANI, 1889 - Indonesia Earless Agama/Spitzschnauzige Blaumaulagame 39 Aphaniotis fusca PETERS, 1864 - Dusky Earless Agama/Stumpfschnauzige Blaumaulagame 40 Aphaniotis ornata (LIDTH DE JEUDE, 1893) - Ornate Earless Agama/Horn-Blaumaulagame 42 Bronchocela KAUP, 1827 - Slender Agamas/Langschwanzagamen Bronchocela celebensis GRAY, 1845 - Sulawesi Slender Agama/Sulawesi-Langschwanzagame 44 Bronchocela cristatella (KUHL, 1820) - Green Crested Lizard/Borneo-Langschwanzagame 45 Bronchocela danieli (TIWARI & BISWAS, 1973) - Daniel's Forest Lizard/Daniels Langschwanzagame 48 Bronchocela hayeki (MULLER, 1928) - Hayek's Slender Agama/Hayeks Langschwanzagame 51 Bronchocela jubata DUMERIL & BIBRON, 1837 - Maned
    [Show full text]
  • (Amphibia: Ranidae) on Sumatra, Indonesia
    Phylogenetic systematics, diversity, and biogeography of the frogs with gastromyzophorous tadpoles (Amphibia: Ranidae) on Sumatra, Indonesia Dissertation zur Erlangung des Doktorgrades Fachbereich Biologie An der Fakultät für Mathematik, Informatik und Naturwissenschaften der Universität Hamburg Vorgelegt von Umilaela Arifin Hamburg, 2018 Tag der Disputation: 25 January 2019 Folgende Gutachter empfehlen die Annahme der Dissertation: 1. Prof. Dr. Alexander Haas 2. Prof. Dr. Bernhard Hausdorf “To reach the same destination, some people might only need one step but some other people might need two, three, a hundred, or a thousand steps. Never give up! Some are successful because they work harder than other people, not because they are smart.” –dti- Preface Preface It is such a relief to have finally finished writing this dissertation entitled “Phylogenetic systematics, diversity, and biogeography of the frogs with gastromyzophorous tadpoles (Amphibia: Ranidae) on Sumatra, Indonesia”. Thank to Allah, who has always embraced me in any situation, especially during my doctoral studies. The work I have done over the past five years is dedicated not only to myself, but also to all the people, who came into my life for various reasons. Also, this thesis is my small contribution to Indonesia (the “Ibu Pertiwi”) and its fascinating biodiversity. I hope to continue actively contributing to the field of herpetology in the future, simply because it is my greatest passion! During my childhood, especially through my high school years, it never crossed my mind that I would end up becoming a scientist. Coming from an ordinary Indonesian family and living in a small town made my parents worry about the education their children would need, in order to have a better life in the future.
    [Show full text]
  • A Biogeographic Synthesis of the Amphibians and Reptiles of Indochina
    BAIN & HURLEY: AMPHIBIANS OF INDOCHINA & REPTILES & HURLEY: BAIN Scientific Publications of the American Museum of Natural History American Museum Novitates A BIOGEOGRAPHIC SYNTHESIS OF THE Bulletin of the American Museum of Natural History Anthropological Papers of the American Museum of Natural History AMPHIBIANS AND REPTILES OF INDOCHINA Publications Committee Robert S. Voss, Chair Board of Editors Jin Meng, Paleontology Lorenzo Prendini, Invertebrate Zoology RAOUL H. BAIN AND MARTHA M. HURLEY Robert S. Voss, Vertebrate Zoology Peter M. Whiteley, Anthropology Managing Editor Mary Knight Submission procedures can be found at http://research.amnh.org/scipubs All issues of Novitates and Bulletin are available on the web from http://digitallibrary.amnh.org/dspace Order printed copies from http://www.amnhshop.com or via standard mail from: American Museum of Natural History—Scientific Publications Central Park West at 79th Street New York, NY 10024 This paper meets the requirements of ANSI/NISO Z39.48-1992 (permanence of paper). AMNH 360 BULLETIN 2011 On the cover: Leptolalax sungi from Van Ban District, in northwestern Vietnam. Photo by Raoul H. Bain. BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY A BIOGEOGRAPHIC SYNTHESIS OF THE AMPHIBIANS AND REPTILES OF INDOCHINA RAOUL H. BAIN Division of Vertebrate Zoology (Herpetology) and Center for Biodiversity and Conservation, American Museum of Natural History Life Sciences Section Canadian Museum of Nature, Ottawa, ON Canada MARTHA M. HURLEY Center for Biodiversity and Conservation, American Museum of Natural History Global Wildlife Conservation, Austin, TX BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 360, 138 pp., 9 figures, 13 tables Issued November 23, 2011 Copyright E American Museum of Natural History 2011 ISSN 0003-0090 CONTENTS Abstract.........................................................
    [Show full text]
  • Updated Checklist of Indian Reptiles R
    Updated Checklist of Indian Reptiles R. Aengals, V.M. Sathish Kumar & Muhamed Jafer Palot* Southern Regional Centre, Zoological Survey of India, Chennai-600 028 *Western Ghat Regional Centre, Zoological Survey of India, Calicut-673 006 Corresponding author: [email protected] INTRODUCTION Reptiles are cold-blooded animals found in almost all the parts of the world, except the very cold regions. In India, all the three living orders of reptiles have their representatives - Crocodylia (crocodiles), Testudines (turtles and tortoises) and Squamata (lizards and snakes). The diversified climate, varying vegetation and different types of soil in the country form a wide range of biotopes that support a highly diversified reptilian fauna. The Western Ghats, Eastern Himalaya, and the Andaman and Nicobar Islands are endowed with varied and unique reptilian fauna. The monumental works on Indian reptiles are, ‘The Reptiles of British India’ by Gunther (1864), ‘Fauna of British India - ‘Reptilia and Batrachia’ by Boulenger (1890) and Smith (1931, 1935, 1943). The work of Smith stood the test of time and forms the standard work on the subject. Further contributions were made by Tiwari & Biswas (1973), Sharma (1977, 1978, 1981, 1998, 2002, 2007), Murthy (1985, 1994, 2010), Das (1991, 1994, 1996, 1997, 2003), Tikedar & Sharma (1992), Das & Bauer (2000), Das & Sengupta (2000), Daniel (2002), Whitaker and Captain (2004), Sharma (2007), Thrope et. al. (2007), Mukherjee and Bhupathy (2007), Gower and Winkler (2007), Manamendra-Arachchi et al. (2007), Das and Vijayakumar (2009), Giri (2008), Giri & Bauer (2008), Giri, et al. (2009a), Giri et al.(2009b), Zambre et al. (2009), Haralu (2010), Pook et al.(2009), Van Rooijen and Vogel (2009), Mahony (2009, 2010) and Venugopal (2010).
    [Show full text]
  • Non-Reproductive Seasonal Colour Change in a Population of Calotes “Versicolor” from Myanmar (Squamata: Agamidae)
    SALAMANDRA 46(2) 104–107 20 May 2010 ISSNCorrespondence 0036–3375 Correspondence Non-reproductive seasonal colour change in a population of Calotes “versicolor” from Myanmar (Squamata: Agamidae) George R. Zug1, Jeremy F. Jacobs1, Jens V. Vindum2 & Kyi Soe Win3 1)Department of Vertebrate Zoology, National Museum of Natural History, PO Box 37012, Washington DC, USA 20013-7012 2)Department of Herpetology, California Academy of Sciences, Golden Gate Park, San Francisco CA, USA 94103 3)Kyi Soe Win, Nature and Wildlife Conservation Division, Naypyidaw, Myanmar Corresponding author: George Zug, e-mail: [email protected] Manuscript received: 29 May 2009 The bright red head of breeding male Calotes “versicolor” What has not been observed is a shift within a popula- is a well-known aspect of their biology, and unfortunate- tion of lizards from one background colour to another in ly, this colouration has led to a horrific vernacular name, association with the wet-dry seasonal cycle. We assume that common bloodsucker. A previously unobserved coloura- the colour shift observed in the Hlawga lizards is crypsis. tion feature is a seasonal shift of background colour in Lowland south-central and central Myanmar has a strong adult females and males, at least for the population of C. monsoonal cycle. The rains normally begin in mid-May, “versicolor” in the Yangon region of Myanmar (The use of are heaviest from June through early August, and continue quotes denotes the absence of a specific epithet for a popu- regularly through September. Rain is uncommon from De- lation. C. versicolor is a group of species, most of which are cember to April.
    [Show full text]
  • Dragons in Neglect: Taxonomic Revision of the Sulawesi Sailfin Lizards of the Genus Hydrosaurus Kaup, 1828 (Squamata, Agamidae)
    Zootaxa 4747 (2): 275–301 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4747.2.3 http://zoobank.org/urn:lsid:zoobank.org:pub:6D32355F-DBFD-44C6-AC13-086F13A35066 Dragons in neglect: Taxonomic revision of the Sulawesi sailfin lizards of the genus Hydrosaurus Kaup, 1828 (Squamata, Agamidae) WOLFGANG DENZER1,6, PATRICK D. CAMPBELL2, ULRICH MANTHEY3, ANDREA GLÄSSER-TROBISCH4 & ANDRÉ KOCH5 1Society for Southeast Asian Herpetology, Rubensstrasse 90, 12157 Berlin, Germany 2Department of Life Sciences, Darwin Centre, Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD, Eng- land 3Society for Southeast Asian Herpetology, Kindelbergweg 15, 12249 Berlin, Germany 4Hauptstrasse 7, 56414 Bilkheim, Germany 5Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany 6Corresponding author. E-mail: [email protected] Abstract Currently three different species are recognized within the Southeast Asian agamid genus Hydrosaurus: H. amboinensis (Schlosser, 1768) from Ambon, Seram, Sulawesi and New Guinea, H. pustulatus (Eschscholtz, 1829) from the Philippines and H. weberi Barbour, 1911 from Halmahera and adjacent islands. Historically, two additional species were described from the island of Sulawesi, but were synonymized with H. amboinensis more than a century ago and have been treated as such in most subsequent publications. In order to revise the taxonomy and diversity of these enigmatic agamid lizards, we examined the corresponding type specimens and additional material originating from Sulawesi and compared them to photographs of live specimens from field trips. Due to differences in colour pattern and scalation characters, we resurrect the taxa celebensis Peters, 1872 and microlophus Bleeker, 1860 from the synonymy of H.
    [Show full text]