Rapportannuel 2005 2006

Total Page:16

File Type:pdf, Size:1020Kb

Rapportannuel 2005 2006 Rapportannuel 2005 2006 Rapportannuel 2005 2006 Centre de recherches mathématiques Université de Montréal C.P. 6128, succ. Centre-ville Montréal, QC H3C 3J7 Canada Le rapport annuel est également disponible sur le site web du CRM www.crm.umontreal.ca c Centre de recherches mathématiques Université de Montréal, 2006 ISBN 2-921120-43-7 CENTRE DE RECHERCHES MATHÉMATIQUES Présentation du rapport annuel 5 Une année cruciale pour les mathématiques au Canada . 6 Programme thématique 9 Thème de l’année 2005-2006 : Analyse en théorie des nombres . 10 Titulaires des chaires Aisenstadt 2005-2006 : M. Bhargava, K. Soundararajan et T. Tao . 10 Activités de l’année thématique . 13 Programmes thématiques antérieurs . 23 Programme général 24 Activités du CRM . 25 Les colloques CRM-ISM . 34 Programme multidisciplinaire et industriel 37 Activités du CRM du programme multidisciplinaire et industriel . 38 Prix du CRM 45 Le prix CRM-Fields-PIMS décerné à Nicole Tomczak-Jaegermann . 46 Le prix André-Aisenstadt 2006 décerné conjointement à Iosif Polterovich et Tai-Peng Tsai . 47 Le prix ACP-CRM 2006 décerné à John Harnad . 48 Le prix CRM-SSC 2006 décerné à Jeffrey Rosenthal . 49 Grandes Conférences du CRM 50 Jean-Marie De Koninck . 51 Ivar Ekeland . 52 Partenariats du CRM 54 Partenaires du CRM . 55 Initiatives conjointes . 59 Éducation et formation 63 Institut des sciences mathématiques (ISM) . 64 Autres initiatives conjointes . 66 Laboratoires de recherche 68 Laboratoire d’analyse mathématique . 69 CICMA................................................. 72 CIRGET . 75 LaCIM ................................................. 77 Laboratoire de mathématiques appliquées . 80 Laboratoire de physique mathématique . 83 PhysNum . 87 Laboratoire de statistique . 90 Publications 94 Parutions récentes . 95 Parutions antérieures . 95 Prépublications du CRM . 98 Personnel scientifique 100 Membres du CRM en 2005-2006 . 101 Stagiaires postdoctoraux . 103 Visiteurs à long terme . 103 Visiteurs à court terme . 105 Comités à la tête du CRM 107 Bureau de direction . 108 Comité consultatif scientifique . 108 3 CENTRE DE RECHERCHES MATHÉMATIQUES Personnel administratif 111 Direction . 112 Administration et soutien à la recherche . 112 Activités scientifiques . 112 Informatique . 112 Publications . 112 Communications . 112 État des revenus et dépenses de l’exercice financier se terminant le 31 mai 2006 113 Mandat du CRM 116 4 Présentation du rapport annuel CENTRE DE RECHERCHES MATHÉMATIQUES Une année cruciale pour les mathématiques au Canada L’année 2005-2006 au boratoires. De la théorie des nombres, la géomé- CRM fut l’une des an- trie et la topologie jusqu’à l’imagerie cérébrale nées les plus profondes et l’informatique quantique, en passant par les et les plus marquantes groupes de recherche en statistiques et en mathé- de la vie des instituts matiques appliquées, la vitalité du CRM repose, canadiens de mathé- en fin de compte, sur ses laboratoires. matiques. Avec pour Le CRM est en train de mettre sur pied deux organisateurs Andrew nouveaux laboratoires, le laboratoire d’informa- Granville (Université de tique quantique INTRIQ (Institut transdiscipli- Montréal), Chantal Da- naire en informatique quantique) et un autre la- vid (Université Concor- boratoire. L’équipe du CRM a également trans- dia) et Henri Darmon formé son site web, qui comprend 80 000 pages (Université McGill), l’année thématique en ana- dynamiques mises à jour quotidiennement et lyse et théorie des nombres fut une année splen- 7 500 pages produites manuellement, en français dide et merveilleusement remplie de créativité, et en anglais. Ce site web est le résultat d’un long de collaboration et de découvertes. Les trois titu- effort pour diffuser le plus largement et complè- laires de chaires Aisenstadt, approchés au début tement possible tout ce qui peut intéresser les de l’année 2004 par les organisateurs, donnèrent chercheurs travaillant dans les sciences mathé- de magnifiques conférences et passèrent plu- matiques. Le site web reçoit ses informations du sieurs mois au CRM. Il s’agit de M. Bhargava, de « Monstre », une des plus grandes bases de don- Princeton University (invité à donner une confé- nées du monde dans le domaine mathématique. rence plénière au congrès ICM 2006), K. Sounda- Allez à l’adresse www.crm.umontreal.ca et choi- rarajan, de Stanford University, et Terence Tao, sissez votre langue (le choix est restreint, mais de UCLA (qui a reçu la médaille Fields en 2006). c’est quand même un choix !). À la source des innovations et de l’effervescence Le CRM fut le premier institut canadien à sol- du CRM, on trouve les scientifiques qui lui sont liciter des fonds à la fois de la NSF, de l’OTAN attachés et dont le travail attire naturellement et du Clay Institute, et à recevoir de généreuses les mathématiciens éminents du monde entier. subventions de ces organismes : toutes nos de- Alors qu’il est relativement facile pour un insti- mandes furent couronnées de plus de succès que tut d’inviter un récipiendaire de médaille Fields ce à quoi nous nous attendions. Notons que le ou de prix Nobel à donner une conférence, il seul congrès du type « NATO Advanced Study est beaucoup plus difficile et intéressant d’invi- Institute » à recevoir un financement de l’OTAN ter ces récipiendaires et de travailler avec eux chaque année est le « Séminaire de mathéma- pendant plusieurs mois juste avant qu’ils ne re- tiques supérieures », organisé conjointement par çoivent les plus grands honneurs (et la médaille le CRM et le Département de mathématiques et Fields en particulier). C’est ce qui se produi- de statistique de l’Université de Montréal. En sit l’année dernière dans le cas des trois jeunes 2007, le CRM organisera pour la première fois titulaires des chaires Aisenstadt. Pendant l’an- un congrès aux États-Unis. Ce congrès aura lieu née thématique, plus de quarante chercheurs du à Stanford University en juin 2007 et sera le pre- monde entier et de nombreux stagiaires postdoc- mier à réunir la plupart des mathématiciens tra- toraux firent de longs séjours au CRM. Des cen- vaillant en théorie symplectique des champs. À taines de conférenciers invités vinrent au CRM l’heure où nous écrivons ces lignes, nous venons dans le cadre de l’année thématique, y com- tout juste d’apprendre que la NSF nous accordait pris Tim Gowers, de Cambridge University (ré- le montant demandé. cipiendaire d’une médaille Fields), Jean Bour- gain, de l’Institute for Advanced Study (réci- Le CRM a signé cette année de nouveaux ac- piendaire d’une médaille Fields), et Barry Ma- cords internationaux, notamment des accords zur, de Harvard University. avec l’INRIA et l’INSERM (deux instituts fran- çais), et des accords avec l’Amérique Latine et Le CRM est beaucoup plus qu’un centre où ont l’Europe de l’Est (DIMATIA). Des négociations lieu des congrès et des ateliers ; c’est à la fois sont en cours avec le CNRS afin de créer trois un milieu d’incubation pour des progrès fasci- ou quatre GDRI (Groupe de recherche interna- nants qui ont des répercussions dans le monde tional) comprenant une vaste gamme de pro- entier, et un institut comprenant dix grands la- 6 PRÉSENTATION DU RAPPORT ANNUEL jets dans la plupart des domaines des mathéma- Le CRM a aussi lancé cette année le pro- tiques, financés conjointement, pour la première gramme« Grandes conférences du CRM » afin de fois, par des organismes européens et nord- rejoindre le grand public, les professeurs de se- américains. Enfin, le CRM prépare une mission condaire et de collège et leurs étudiants. La qua- scientifique en Inde qui jettera les bases de liens lité et le rayonnement de ces conférences ont été durables entre le Canada et les grands centres tels qu’elles ont touché tous les milieux de la so- scientifiques de ce pays. Cette mission, prépa- ciété, même les universitaires, aussi bien en bio- rée avec le gouvernement du Québec et plu- logie, médecine et philosophie qu’en physique et sieurs vice-recteurs, aura lieu en novembre 2006. informatique. Avec comme conférenciers Jean- Puisque les mathématiques sont l’une des trois Marie De Koninck, choisi scientifique de l’an- disciplines choisies pour cette mission et que le née par Radio-Canada, Ivar Ekeland, directeur congrès ICM aura lieu en Inde en 2010 (après du PIMS et ancien président de l’Université de une lutte serrée avec Montréal), il est naturel de Paris-Dauphine, et en novembre 2006 Bart de créer des liens à la fois avec des centres de ma- Smit, de l’Université de Leyde aux Pays-Bas, thématiques pures et des centres de mathéma- ces conférences ont suscité un engouement re- tiques appliquées. marquable et attiré chaque fois environ 300 per- En collaboration avec l’Institut des sciences ma- sonnes de tous les milieux. thématiques (ISM), son partenaire en enseigne- Les Grandes conférences du CRM ont lieu à tour ment universitaire, le CRM a lancé cette an- de rôle dans les grandes universités québécoises, née la revue Accromαth. Ses textes sont rédi- et pourraient très bien avoir lieu hors campus gés et révisés par la plus belle équipe éditoriale dans de grandes salles de Montréal, Québec, canadienne qui soit, constituée d’André Ross Sherbrooke ou Ottawa. Le CRM veut contribuer (rédacteur en chef), France Caron, Louis Char- (et contribue déjà) au rayonnement intellectuel bonneau, Jocelyn Dagenais, Jean-Marie De Ko- des universités et de ses chercheurs, où que ce ninck, André Deschênes, Christian Genest, Fré- soit, et en tout temps. Nous voulons animer la déric Gourdeau, Bernard Hodgson et Christiane vie intellectuelle de ce pays, la faire entrer dans Rousseau. Tous ses membres s’impliquent dans les moeurs de façon nette et naturelle et faire l’enseignement des mathématiques, que ce soit connaître aux Québécois et aux Canadiens les au niveau secondaire, collégial ou universitaire, plus grands enjeux scientifiques et culturels du et plusieurs d’entre eux sont reconnus pour leurs XXIe siècle.
Recommended publications
  • Pleat Folding, 6.849 Fall 2010
    Demaine, Demaine, Lubiw Courtesy of Erik D. Demaine, Martin L. Demaine, and Anna Lubiw. Used with permission. 1999 1 Hyperbolic Paraboloid Courtesy of Jenna Fizel. Used with permission. [Albers at Bauhaus, 1927–1928] 2 Circular Variation from Bauhaus [Albers at Bauhaus, 1927–1928] 3 Courtesy of Erik Demaine, Martin Demaine, Jenna Fizel, and John Ochsendorf. Used with permission. Virtual Origami Demaine, Demaine, Fizel, Ochsendorf 2006 4 Virtual Origami Demaine, Demaine, Fizel, Ochsendorf 2006 Courtesy of Erik Demaine, Martin Demaine, Jenna Fizel, and John Ochsendorf. Used with permission. 5 “Black Hexagon” Demaine, Demaine, Fizel 2006 Courtesy of Erik Demaine, Martin Demaine, and Jenna Fizel. Used with permission. 6 Hyparhedra: Platonic Solids [Demaine, Demaine, Lubiw 1999] 7 Courtesy of Erik Demaine, Martin Demaine, Jenna Fizel, and John Ochsendorf. Used with permission. Virtual Origami Demaine, Demaine, Fizel, Ochsendorf 2006 8 “Computational Origami” Erik & Martin Demaine MoMA, 2008– Elephant hide paper ~9”x15”x7” Courtesy of Erik Demaine and Martin Demaine. Used with permission. See also http://erikdemaine.org/curved/Computational/. 9 Peel Gallery, Houston Nov. 2009 Demaine & Demaine 2009 Courtesy of Erik Demaine and Martin Demaine. Used with permission. See also http://erikdemaine.org/curved/Limit/. 10 “Natural Cycles” Erik & Martin Demaine JMM Exhibition of Mathematical Art, San Francisco, 2010 Courtesy of Erik Demaine and Martin Demaine. Used with permission. See also http://erikdemaine.org/curved/NaturalCycles/. 11 Courtesy of Erik Demaine and Martin Demaine. Used with permission. See also http://erikdemaine.org/curved/BlindGlass/. Demaine & Demaine 2010 12 Hyperbolic Paraboloid Courtesy of Jenna Fizel. Used with permission. [Demaine, Demaine, Hart, Price, Tachi 2009/2010] 13 θ = 30° n = 16 Courtesy of Erik D.
    [Show full text]
  • Algorithmic Folding Complexity∗
    Algorithmic Folding Complexity∗ Jean Cardinal1, Erik D. Demaine2, Martin L. Demaine2, Shinji Imahori3, Tsuyoshi Ito4, Masashi Kiyomi5, Stefan Langerman1, Ryuhei Uehara5, Takeaki Uno6 1 D´epartement d'Informatique, Universit´eLibre de Bruxelles, CP 212, B-1050 Brussels, Belgium. e-mail: fjcardin,[email protected] 2 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technol- ogy, Cambridge, MA 02139, USA. e-mail: fedemaine,[email protected] 3 Department of Computational Science and Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan. e-mail: [email protected] 4 Institute for Quantum Computing and School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada. e-mail: [email protected] 5 School of Information Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan. e-mail: fmkiyomi,[email protected] 6 National Institute of Informatics, Chiyoda-ku, Tokyo 101-8430, Japan. e-mail: [email protected] Abstract. How do we most quickly fold a paper strip (modeled as a line) to obtain a desired mountain-valley pattern of equidistant creases (viewed as a binary string)? Define the folding complexity of a mountain-valley string as the minimum number of simple folds required to construct it. We first show that the folding complexity of a length-n uniform string (all mountains or all valleys), and hence of a length-n pleat (alternating mountain/valley), is O(lg2 n). We also show that a lower bound of the complexity of the problems is Ω(lg2 n= lg lg n). Next we show that almost all mountain-valley patterns require Ω(n= lg n) folds, which means that the uniform and pleat foldings are relatively easy problems.
    [Show full text]
  • Annual Report 2010–11
    ANNUAL REPORT 2010–11 ANNUAL REPORT 2010–11 The National Gallery of Australia is a Commonwealth (cover) authority established under the National Gallery Act 1975. Thapich Gloria Fletcher Dhaynagwidh (Thaynakwith) people The vision of the National Gallery of Australia is the Eran 2010 cultural enrichment of all Australians through access aluminium to their national art gallery, the quality of the national 270 cm (diam) collection, the exceptional displays, exhibitions and National Gallery of Australia, Canberra programs, and the professionalism of Gallery staff. acquired through the Founding Donors 2010 Fund, 2010 Photograph: John Gollings The Gallery’s governing body, the Council of the National Gallery of Australia, has expertise in arts administration, (back cover) corporate governance, administration and financial and Hans Heysen business management. Morning light 1913 oil on canvas In 2010–11, the National Gallery of Australia received 118.6 x 102 cm an appropriation from the Australian Government National Gallery of Australia, Canberra totalling $50.373 million (including an equity injection purchased with funds from the Ruth Robertson Bequest Fund, 2011 of $15.775 million for development of the national in memory of Edwin Clive and Leila Jeanne Robertson collection and $2 million for the Stage 1 South Entrance and Australian Indigenous Galleries project), raised $27.421 million, and employed 262 full‑time equivalent staff. © National Gallery of Australia 2011 ISSN 1323 5192 All rights reserved. No part of this publication can be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording or any information storage and retrieval system, without permission in writing from the publisher.
    [Show full text]
  • A Salamander Sculpture Barn Raising
    BRIDGES Mathematical Connections in Art, Music, and Science A Salamander Sculpture Barn Raising George W. Hart Computer Science Department. Stony Brook University Stony Brook, NY 11794-4400, USA E-mrul:[email protected] Abstract Salamanders is a thirty-piece wooden sculpture that was group assembled by thirty volunteers in an exciting sculpture "barn raising" when I was artist-in-residence at M.I.T. in OctoberlNovember 2003. It is composed of laser-cut salamander-shaped components which lie in the planes of a rhombic triacontahedron and were mathematically designed to weave through each other and exactly fit together on the outside. 1. Introduction M.e. Escher playfully incorporated chameleons and other reptiles or amphibians in his two-dimensional geometric artwork [1]. In homage to his creative spirit, I designed my sculpture Salamanders to feature flat salamanders which interweave in three dimensions. Figure 1 shows it hanging temporarily inside a window overlooking the construction of Frank O. Gehry's new Stata Center at M.I.T. [2], where the sculpture will eventually reside. Figure 1: Salamanders 54 2004 Bridges Proceedings My ultimate concept, if funding can be found, is for a large metal double sphere as shown in Figure 2. The inner and outer spheres are each made of thirty identical two-headed salamander shapes. Each part is parallel to an identical part similarly oriented in the other sphere. I find it visually interesting to show that the same salamander parts can be joined in these two contrasting arrangements---one very open and one very interlocked. It is a puzzle with two very different solutions.
    [Show full text]
  • The Hollywood Cinema Industry's Coming of Digital Age: The
    The Hollywood Cinema Industry’s Coming of Digital Age: the Digitisation of Visual Effects, 1977-1999 Volume I Rama Venkatasawmy BA (Hons) Murdoch This thesis is presented for the degree of Doctor of Philosophy of Murdoch University 2010 I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution. -------------------------------- Rama Venkatasawmy Abstract By 1902, Georges Méliès’s Le Voyage Dans La Lune had already articulated a pivotal function for visual effects or VFX in the cinema. It enabled the visual realisation of concepts and ideas that would otherwise have been, in practical and logistical terms, too risky, expensive or plain impossible to capture, re-present and reproduce on film according to so-called “conventional” motion-picture recording techniques and devices. Since then, VFX – in conjunction with their respective techno-visual means of re-production – have gradually become utterly indispensable to the array of practices, techniques and tools commonly used in filmmaking as such. For the Hollywood cinema industry, comprehensive VFX applications have not only motivated the expansion of commercial filmmaking praxis. They have also influenced the evolution of viewing pleasures and spectatorship experiences. Following the digitisation of their associated technologies, VFX have been responsible for multiplying the strategies of re-presentation and story-telling as well as extending the range of stories that can potentially be told on screen. By the same token, the visual standards of the Hollywood film’s production and exhibition have been growing in sophistication.
    [Show full text]
  • Professor, EECS Massachusetts Institute of Technology [email protected] Artist-In-Residence, EECS Massach
    ERIK D. DEMAINE MARTIN L. DEMAINE Professor, EECS Artist-in-Residence, EECS Massachusetts Institute of Technology Massachusetts Institute of Technology [email protected] [email protected] http://erikdemaine.org/ http://martindemaine.org/ BIOGRAPHY Erik Demaine and Martin Demaine are a father-son math-art team. Martin started the first private hot glass studio in Canada and has been called the father of Canadian glass. Since 2005, Martin Demaine has been an Artist-in-Residence at the Massachusetts Institute of Technology. Erik is also at the Massachusetts Institute of Technology, as a Professor in computer science. He received a MacArthur Fellowship in 2003. In these capacities, Erik and Martin work together in paper, glass, and other material. They use their ex- ploration in sculpture to help visualize and understand unsolved problems in science, and their scientific abilities to inspire new art forms. Their artistic work includes curved origami sculptures in the permanent collections of the Museum of Modern Art (MoMA) in New York, and the Renwick Gallery in the Smith- sonian. Their scientific work includes over 60 published joint papers, including several about combining mathematics and art. They recently won a Guggenheim Fellowship (2013) for exploring folding of other materials, such as hot glass. SOLO/JOINT EXHIBITIONS work by Demaine & Demaine 2014 Duncan McClellan Gallery, Florida (joint with Peter Houk) 2013 Edwards Art Gallery, New Hampshire (joint with Shandra McLane) 2013 Dwight School, New York City (solo show) 2013 The Art Museum,
    [Show full text]
  • Origamizer: a Practical Algorithm for Folding Any Polyhedron
    Origamizer: A Practical Algorithm for Folding Any Polyhedron Erik D. Demaine∗1 and Tomohiro Tachi†2 1 MIT Computer Science and Artificial Intelligence Laboratory 32 Vassar St., Cambridge, MA 02139, USA [email protected] 2 Department of General Systems Studies, The University of Tokyo 3-8-1 Komaba, Meguro-Ku, Tokyo 153-8902, Japan [email protected] Abstract It was established at SoCG’99 that every polyhedral complex can be folded from a sufficiently large square of paper, but the known algorithms are extremely impractical, wasting most of the material and making folds through many layers of paper. At a deeper level, these foldings get the topology wrong, introducing many gaps (boundaries) in the surface, which results in flimsy foldings in practice. We develop a new algorithm designed specifically for the practical folding of real paper into complicated polyhedral models. We prove that the algorithm correctly folds any oriented polyhedral manifold, plus an arbitrarily small amount of additional structure on one side of the surface (so for closed manifolds, inside the model). This algorithm is the first to attain the watertight property: for a specified cutting of the manifold into a topological disk with boundary, the folding maps the boundary of the paper to within ε of the specified boundary of the surface (in Fréchet distance). Our foldings also have the geometric feature that every convex face is folded seamlessly, i.e., as one unfolded convex polygon of the piece of paper. This work provides the theoretical underpinnings for Origamizer, freely available software written by the second author, which has enabled practical folding of many complex polyhedral models such as the Stanford bunny.
    [Show full text]
  • No Title Given
    Grid Vertex-Unfolding Orthostacks Erik D. Demaine1?, John Iacono2??, and Stefan Langerman3??? 1 MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St., Cambridge, MA 02139, USA, [email protected] 2 Department of Computer and Information Science, Polytechnic University, 5 MetroTech Center, Brooklyn, NY 11201, USA, http://john.poly.edu. 3 D´epartement d’informatique, Universit´eLibre de Bruxelles, ULB CP212, 1050 Brussels, Belgium. [email protected]. Abstract. An algorithm was presented in [BDD+98] for unfolding or- thostacks into one piece without overlap by using arbitrary cuts along the surface. It was conjectured that orthostacks could be unfolded using cuts that lie in a plane orthogonal to a coordinate axis and containing a vertex of the orthostack. We prove the existence of a vertex-unfolding using only such cuts. 1 Introduction A long-standing open question is whether every convex polyhedron can be edge unfolded—cut along some of its edges and unfolded into a single planar piece without overlap [She75,O’R98,Dem00,DO05]. A related open question asks whether every polyhedron without boundary4 (not necessarily convex but forming a closed surface) can be generally unfolded—cut along its surface (not just along edges) and unfolded into a single planar piece without overlap. Biedl et al. [BDD+98] made partial progress on both of these problems in the context of orthostacks. An orthostack is an orthogonal polyhedron for which every horizon- tal planar slice is connected, and for which the interior of the polyhedron is a connected solid. Thus, every horizontal planar slice of an orthostacks’s interior is a simple polygon.
    [Show full text]
  • The Origami Geometer 1999
    COMMENT BOOKS & ARTS Curved-crease origami sculptures can self-fold into intricate patterns. they looked beautiful. We’re still pursuing Q & A Erik Demaine unsolved mathematical problems too. David Huffman, who invented the compression algorithms used for mobile phones, left many beautiful origami sculptures when he died in The origami geometer 1999. He was getting to the point at which he E. DEMAINE/M. DEMAINE Computer scientist Erik Demaine uses origami to advance computational geometry and create could conceive a 3D form, then reverse engi- art. His paper sculptures, made with his father, artist Martin Demaine, are now on show at the neer the steps to fold it with curved creases. Japanese American National Museum in Los Angeles, California; from August, the exhibition We hope to have him as a posthumous co- will tour the United States. He explains the challenges of folding together mathematics and art. author on some papers. How do you actually fold the paper? How did you come to making one straight cut, then unfolding it? For prototype models we use a robotically do most of your work Houdini made a five-pointed star in this way controlled laser to score the paper, but we with your father? in the 1920s. It took us years to prove that you prefer a simple compass-like device. The NICK HIGGINS When I was five, I can make any straight-edged shape; we have final folding we always do by hand. At the helped him to design designed swans, butterflies and the MIT logo. first show we contributed to, we made three wire puzzles for toy Another result was an algorithm for folding sculptures by folding two circular pieces of shops across Canada.
    [Show full text]
  • Recent Results in Computational Origami
    Recent Results in Computational Origami Erik D. Demaine¤ Martin L. Demaine¤ Abstract Computational origami is a recent branch of computer science studying e±cient algorithms for solving paper-folding problems. This ¯eld essentially began with Robert Lang's work on algorithmic origami design [25], starting around 1993. Since then, the ¯eld of computational origami has grown signi¯cantly. The purpose of this paper is to survey the work in the ¯eld, with a focus on recent results, and to present several open problems that remain. The survey cannot hope to be complete, but we attempt to cover most areas of interest. 1 Overview Most results in computational origami ¯t into at least one of three categories: universality results, e±cient decision algorithms, and computational intractability results. A universality result shows that, subject to a certain model of folding, everything is possible. For example, any tree-shaped origami base (Section 2.1), any polygonal silhouette (Section 2.3), and any polyhedral surface (Section 2.3) can be folded out of a large-enough piece of paper. Universality results often come with e±cient algorithms for ¯nding the foldings; pure existence results are rare. When universality results are impossible (some objects cannot be folded), the next-best result is an e±cient decision algorithm to determine whether a given object is foldable. Here \e±cient" normally means \polynomial time." For example, there is a polynomial- time algorithm to decide whether a \map" (grid of creases marked mountain and valley) can be folded by a sequence of simple folds (Section 3.4). Not all paper-folding problems have e±cient algorithms, and this can be proved by a computational intractability result.
    [Show full text]
  • ERIK D DEMAINE and MARTIN L DEMAINE CV
    G U I D E D B Y I N V O I C E S 558 WEST 21ST STREET NEW YORK, NY 10011 917.226.3851 ERIK D. DEMAINE and MARTIN L. DEMAINE Permanent Collections 2012 Green Waterfall, Fuller Craft Museum, Brockton, Massachusetts 2011 Natural Cycles, Renwick Gallery, Smithsonian American Art Museum, Washington, DC 2010 Floating Glass Ceiling joint work with Jo Ann Fleischhaur, UT Health Science Center, MD Anderson Cancer Center, Houston Texas 2008 Computational Origami, Museum of Modern Art, New York, NY 1999 Hyparhedra, Southwestern College, Winfield, Kansas 1987 Topological Puzzles, Elliot Avedon Museum and Archive of Games, University of Waterloo, Ontario, Canada Solo Exhibitions 2012 Curved Crease Sculptures, curated by Chris Byrne, Guided by Invoices, New York, NY Group Exhibitions 2012 40 Under 40: Craft Futures, Renwick Gallery, Smithsonian American Art Museum, Washington DC Ocean Beasts, curated by Flo Tarjan, Simons Center for Geometry and Physics Art Gallery, Stony Brook, NY Unfolding Patterns, curated by Ombretta Agrò Andruff, Dorsky Gallery Curatorial Programs, Long Island City, NY Origami: Art + Mathematics, curated by Linda Pope, Eloise Pickard Smith Gallery, University of California, Santa Cruz ¡AHA! Art Exhibition with a Mathematical Twist, Central Library, Atlanta, GA Mens et Manus, Fuller Craft Museum, Broctkon MA Math + Art Collaborative curated by Steven Broad, Moreau Center for the Arts, Saint Mary’s College, Notre Dame, IN 2011 Exhibition of Mathematical Art, curated by Robert Fathauer, Joint Mathematics Meetings of the American Mathematical Society and Mathematical Association of America, Boston, MA 2009 Paper: Torn Twisted & Cut, curated by Steven Hempel, Peel Gallery, Houston, TX Paper, Transient Matter, Lasting Impressions, curated by Isabel De Craene, Art Cézar, Rotselaar, Belgium 2008 Rough Cut: Design Takes a Sharp Edge, curated by Paola Antonelli, Museum of Modern Art, New York, NY Design and the Elastic Mind, curated by Paola Antonelli, Museum of Modern Art, New York, NY ERIK D.
    [Show full text]
  • Article “Peter D
    What’s New in Mathematics Royal Welcome to Abel Laureate Peter Lax. Fortunately much useful scientific information survived. Norway’s Crown Prince Regent awarded the 2005 Abel More on the NASA website.] Klarreich’s piece is about Prize to Peter D. Lax on May 24. The city of Oslo the way the mathematical analysis of the Solar Sys- and the Norwegian Academy of Science and Letters tem Gravitational Dynamical System (the sum of the prepared for several days of events that honored Lax, gravitational fields of all the objects in the system) led including the prize ceremony, lectures by and in honor to the discovery of extremely fuel-efficient orbits. Ed- of Lax, a banquet at the Akershus Castle, and some ward Belbruno, now at Princeton, pioneered this ap- special events for local teachers and students. proach twenty years ago, and scored its first great suc- cess in 1991 when he rescued the Japanese Hiten space- craft, stranded in Earth orbit without enough fuel, it seemed, to reach the moon. Belbruno showed how to exploit the chaotic nature of the SSGDS to calculate a long-duration, low-cost trajectory which would lead the spacecraft to its destination. Chaotic here does not mean disorderly, but refers to the enormous change in behavior that can be produced by a tiny change in ini- tial conditions near an unstable critical point of the system. The Hiten rescue used the unstable critical points in the Earth-Moon system; there are three of them, known as the Lagrange points L1, L2 and L3. HRH the Crown Prince Regent presented the Abel Prize 2005 to Peter D.
    [Show full text]