Emergence of Viral Diseases in the Asia-Pacific Region
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Ecology of Nipah Virus in Bangladesh: a Nexus of Land-Use Change and Opportunistic Feeding Behavior in Bats
viruses Article The Ecology of Nipah Virus in Bangladesh: A Nexus of Land-Use Change and Opportunistic Feeding Behavior in Bats Clifton D. McKee 1,* , Ausraful Islam 2 , Stephen P. Luby 3, Henrik Salje 4, Peter J. Hudson 5, Raina K. Plowright 6 and Emily S. Gurley 1 1 Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; [email protected] 2 Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh; [email protected] 3 Infectious Diseases and Geographic Medicine Division, Stanford University, Stanford, CA 94305, USA; [email protected] 4 Department of Genetics, Cambridge University, Cambridge CB2 3EJ, UK; [email protected] 5 Center for Infectious Disease Dynamics, Pennsylvania State University, State College, PA 16801, USA; [email protected] 6 Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA; [email protected] * Correspondence: [email protected] Abstract: Nipah virus is a bat-borne paramyxovirus that produces yearly outbreaks of fatal en- cephalitis in Bangladesh. Understanding the ecological conditions that lead to spillover from bats to humans can assist in designing effective interventions. To investigate the current and historical processes that drive Nipah spillover in Bangladesh, we analyzed the relationship among spillover events and climatic conditions, the spatial distribution and size of Pteropus medius roosts, and patterns of land-use change in Bangladesh over the last 300 years. We found that 53% of annual variation Citation: McKee, C.D.; Islam, A.; in winter spillovers is explained by winter temperature, which may affect bat behavior, physiology, Luby, S.P.; Salje, H.; Hudson, P.J.; Plowright, R.K.; Gurley, E.S. -
Chorioméningite Lymphocytaire, Tuberculose, Échinococcose…
LES ZOONOSES INFECTIEUSES Juin 2021 Ce document vous est offert par Boehringer Ingelheim Ce fascicule fait partie de l’ensemble des documents polycopiés rédigés de manière concertée par des enseignants de maladies contagieuses des quatre Ecoles nationales vétérinaires françaises, à l’usage des étudiants vétérinaires. Sa rédaction et sa mise à jour régulière ont été sous la responsabilité de B. Toma jusqu’en 2006, avec la contribution, pour les mises à jour, de : G. André-Fontaine, M. Artois, J.C. Augustin, S. Bastian, J.J. Bénet, O. Cerf, B. Dufour, M. Eloit, N. Haddad, A. Lacheretz, D.P. Picavet, M. Prave La mise à jour est réalisée depuis 2007 par N. Haddad La citation bibliographique de ce fascicule doit être faite de la manière suivante : Haddad N. et al. Les zoonoses infectieuses, Polycopié des Unités de maladies réglementées des Ecoles vétérinaires françaises, Boehringer Ingelheim (Lyon), juin 2021, 217 p. Nous remercions Boehringer Ingelheim qui, depuis de nombreuses années, finance et assure la réalisation de ce polycopié. * 1 2 OBJECTIFS D’APPRENTISSAGE Rang A (libellé souligné) et rang B A l’issue de cet enseignement, les étudiants devront être capables : • de répondre à des questions posées par une personne (propriétaire d'animaux, médecin...) relatives à la nature des principales maladies bactériennes et virales transmissibles à l'Homme lors de morsure par un carnivore . • de répondre à des questions posées par une personne (propriétaire d'animaux, médecin...) relatives à l'évolution de la maladie chez l'Homme, les modalités de la transmission et de la prévention des principales maladies bactériennes et virales transmissibles à l'Homme à partir des carnivores domestiques et les grandes lignes de leur prophylaxie. -
Diapositiva 1
Simultaneous outbreak of Dengue and Chikungunya in Al Hodayda, Yemen (epidemiological and phylogenetic findings) Giovanni Rezza1, Gamal El-Sawaf2, Giovanni Faggioni3, Fenicia Vescio1, Ranya Al Ameri4, Riccardo De Santis3, Ghada Helaly2, Alice Pomponi3, Alessandra Lo Presti1, Dalia Metwally2, Massimo Fantini5, FV, Hussein Qadi4, Massimo Ciccozzi1, Florigio Lista3 1Department of lnfectious, Parasitic and lmmunomediated Diseases, Istituto Superiore di Sanità, Roma, Italy; 2 Medical Research lnstitute- Alexandria University, Egypt; 3Histology and Molecular Biology Section, Army Medical an d Veterinary Research Center, Roma, ltaly; 4 University of Sana’a, Republic of Yemen; 5Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Roma, ltaly * * Background Fig.1 * * Yemen, which is located in the southwestern end of the Arabian Peninsula, is one of the * countries most affected by recurrent epidemics of dengue. * I We conducted a study on individuals hospitalized with dengue-like syndrome in Al Hodayda, with the aim of identifying viral agents responsible of febrile illness (i.e., dengue [DENV], chikungunya [CHIKV], Rift Valley [RVFV] and hemorrhagic fever virus Alkhurma). * * * Methods * The study site was represented by five hospital centers located in Al-Hodayda, United Republic * of Yemen. Patients were recruited in 2011 and 2012. Serum samples were analysed by ELISA * for the presence of IgM antibody against DENV and CHIKV by using commercial assays. Nucleic * acids were extracted by automated method and analyzed by using specific PCR for the Fig. 2 presence of sequences of DENV, RVF virus, Alkhurma virus and CHIKV. To confirm the results, 15 DENV positive sera underwent specific NS1 gene amplification and sequencing reaction. Similarly, CHIKV positive sera were thoroughly investigated by amplification and sequencing Conclusions the gene encoding the E1 protein. -
Generic Amplification and Next Generation Sequencing Reveal
Dinçer et al. Parasites & Vectors (2017) 10:335 DOI 10.1186/s13071-017-2279-1 RESEARCH Open Access Generic amplification and next generation sequencing reveal Crimean-Congo hemorrhagic fever virus AP92-like strain and distinct tick phleboviruses in Anatolia, Turkey Ender Dinçer1†, Annika Brinkmann2†, Olcay Hekimoğlu3, Sabri Hacıoğlu4, Katalin Földes4, Zeynep Karapınar5, Pelin Fatoş Polat6, Bekir Oğuz5, Özlem Orunç Kılınç7, Peter Hagedorn2, Nurdan Özer3, Aykut Özkul4, Andreas Nitsche2 and Koray Ergünay2,8* Abstract Background: Ticks are involved with the transmission of several viruses with significant health impact. As incidences of tick-borne viral infections are rising, several novel and divergent tick- associated viruses have recently been documented to exist and circulate worldwide. This study was performed as a cross-sectional screening for all major tick-borne viruses in several regions in Turkey. Next generation sequencing (NGS) was employed for virus genome characterization. Ticks were collected at 43 locations in 14 provinces across the Aegean, Thrace, Mediterranean, Black Sea, central, southern and eastern regions of Anatolia during 2014–2016. Following morphological identification, ticks were pooled and analysed via generic nucleic acid amplification of the viruses belonging to the genera Flavivirus, Nairovirus and Phlebovirus of the families Flaviviridae and Bunyaviridae, followed by sequencing and NGS in selected specimens. Results: A total of 814 specimens, comprising 13 tick species, were collected and evaluated in 187 pools. Nairovirus and phlebovirus assays were positive in 6 (3.2%) and 48 (25.6%) pools. All nairovirus sequences were closely-related to the Crimean-Congo hemorrhagic fever virus (CCHFV) strain AP92 and formed a phylogenetically distinct cluster among related strains. -
Combating the Coronavirus Pandemic Early Detection, Medical Treatment
AAAS Research Volume 2020, Article ID 6925296, 35 pages https://doi.org/10.34133/2020/6925296 Review Article Combating the Coronavirus Pandemic: Early Detection, Medical Treatment, and a Concerted Effort by the Global Community Zichao Luo,1 Melgious Jin Yan Ang,1,2 Siew Yin Chan,3 Zhigao Yi,1 Yi Yiing Goh,1,2 Shuangqian Yan,1 Jun Tao,4 Kai Liu,5 Xiaosong Li,6 Hongjie Zhang ,5,7 Wei Huang ,3,8 and Xiaogang Liu 1,9,10 1Department of Chemistry, National University of Singapore, Singapore 117543, Singapore 2NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Singapore 3Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China 4Sports Medical Centre, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China 5State Key Laboratory of Rare Earth Resource Utilization, Chang Chun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China 6Department of Oncology, The Fourth Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100048, China 7Department of Chemistry, Tsinghua University, Beijing 100084, China 8Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China 9The N.1 Institute for Health, National University of Singapore, Singapore 10Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350807, China Correspondence should be addressed to Hongjie Zhang; [email protected], Wei Huang; [email protected], and Xiaogang Liu; [email protected] Received 19 April 2020; Accepted 20 April 2020; Published 16 June 2020 Copyright © 2020 Zichao Luo et al. -
Potential Arbovirus Emergence and Implications for the United Kingdom Ernest Andrew Gould,* Stephen Higgs,† Alan Buckley,* and Tamara Sergeevna Gritsun*
Potential Arbovirus Emergence and Implications for the United Kingdom Ernest Andrew Gould,* Stephen Higgs,† Alan Buckley,* and Tamara Sergeevna Gritsun* Arboviruses have evolved a number of strategies to Chikungunya virus and in the family Bunyaviridae, sand- survive environmental challenges. This review examines fly fever Naples virus (often referred to as Toscana virus), the factors that may determine arbovirus emergence, pro- sandfly fever Sicilian virus, Crimean-Congo hemorrhagic vides examples of arboviruses that have emerged into new fever virus (CCHFV), Inkoo virus, and Tahyna virus, habitats, reviews the arbovirus situation in western Europe which is widespread throughout Europe. Rift Valley fever in detail, discusses potential arthropod vectors, and attempts to predict the risk for arbovirus emergence in the virus (RVFV) and Nairobi sheep disease virus (NSDV) United Kingdom. We conclude that climate change is prob- could be introduced to Europe from Africa through animal ably the most important requirement for the emergence of transportation. Finally, the family Reoviridae contains a arthropodborne diseases such as dengue fever, yellow variety of animal arbovirus pathogens, including blue- fever, Rift Valley fever, Japanese encephalitis, Crimean- tongue virus and African horse sickness virus, both known Congo hemorrhagic fever, bluetongue, and African horse to be circulating in Europe. This review considers whether sickness in the United Kingdom. While other arboviruses, any of these pathogenic arboviruses are likely to emerge such as West Nile virus, Sindbis virus, Tahyna virus, and and cause disease in the United Kingdom in the foresee- Louping ill virus, apparently circulate in the United able future. Kingdom, they do not appear to present an imminent threat to humans or animals. -
Molecular Detection of a Novel Paramyxovirus in Fruit Bats from Indonesia
Sasaki et al. Virology Journal 2012, 9:240 http://www.virologyj.com/content/9/1/240 RESEARCH Open Access Molecular detection of a novel paramyxovirus in fruit bats from Indonesia Michihito Sasaki1†, Agus Setiyono3†, Ekowati Handharyani3†, Ibenu Rahmadani4, Siswatiana Taha5, Sri Adiani6, Mawar Subangkit3, Hirofumi Sawa1, Ichiro Nakamura2 and Takashi Kimura1* Abstract Background: Fruit bats are known to harbor zoonotic paramyxoviruses including Nipah, Hendra, and Menangle viruses. The aim of this study was to detect the presence of paramyxovirus RNA in fruit bats from Indonesia. Methods: RNA samples were obtained from the spleens of 110 fruit bats collected from four locations in Indonesia. All samples were screened by semi-nested broad spectrum reverse transcription PCR targeting the paramyxovirus polymerase (L) genes. Results: Semi-nested reverse transcription PCR detected five previously unidentified paramyxoviruses from six fruit bats. Phylogenetic analysis showed that these virus sequences were related to henipavirus or rubulavirus. Conclusions: This study indicates the presence of novel paramyxoviruses among fruit bat populations in Indonesia. Background indicate the presence of henipavirus or henipa-like The genus Henipavirus in the subfamily Paramyxoviri- viruses in Indonesian fruit bats, suggesting the need for nae, family Paramyxoviridae, contains two highly patho- further epidemiological investigations. genic viruses, i.e., Hendra virus and Nipah virus. Hendra Menangle virus, belonging to the genus Rubulavirus of virus causes fatal pneumonia and encephalitis in horses the Paramyxoviridae family, has been identified in ptero- and humans. The first case was identified in 1994 and pus bats from Australia [14]. Menangle virus is a zoo- Hendra virus disease still continues to arise sporadically notic paramyxovirus that causes febrile illness with rash in Australia [1,2]. -
Rift Valley Fever Virus Nipah Virus
Rift Valley fever virus Nipah virus (henipaviruses) Zoonotic viruses cross inter-species barrier Hana Weingartl Adjunct professor, Medical Microbiology, University of Manitoba Head, Special Pathogens Unit National Centre for Foreign Animal Disease Canadian Food Inspection Agency Canadian Science Centre for Human and Animal Health It is not in virus interest to kill the host /cell Zoonotic viruses often cause diseases with high fatality rate in humans with short clinical phase - survival of a human host is irrelevant Productive infections of multiple species, and successful intra- and inter- (optional) species transmission without a requirement for adaptation in a “new” host Interspecies barriers geographical, ecological (Wallace’s line) - Entry into the host cell: attachment to the host cell = interaction with a specific host cell receptor ability to enter the host cell to deliver the genetic information - Replication within the host cell: interaction with cell factors (molecules) in the nucleus and/or cytoplasm virus needs to gain (partial) control over specific cell functions, such as metabolism and replication to produce progeny host defence mechanisms Reservoir host Amplifying host Enzootic x Epizootic Sporadic x Endemic x Epidemic x Pandemic Dead-end host Goals of (zoonotic) viruses 1. Find/encounter a new host 2. Enter the cell by a pathway that ensures replication 3. Produce mRNA, replicate the genome, generate virus proteins, evade host defences – stage I 4. Assemble progeny virus, leave the cell 5. Evade host defences – stage -
Presentation
COMPLETE HEMORRHAGIC FEVER VIRUS INACTIVATION DURING LYSIS IN THE FILMARRAY BIOTHREAT-E ASSAY DEMONSTRATES THE BIOSAFETY OF THIS TEST. Olivier Ferraris (3), Françoise Gay-Andrieu (1), Marie Moroso (2), Fanny Jarjaval (3), Mark Miller (1), Christophe N. Peyrefitte (3) (1) bioMérieux, Marcy l’Etoile, France, (2) Fondation Mérieux, France (3) Unité de Virologie, Institut de recherche biomédicale des armées, Brétigny sur Orge, France Background : Viral hemorrhagic fevers (VHFs) are a group of illnesses caused by mainly five families of viruses namely Arenaviridae, Filoviridae , Bunyaviridae (Orthonairovirus genus ), Flaviviruses and Paramyxovirus (Henipavirus genus). The filovirus species known to cause disease in humans, Ebola virus (Zaire Ebolavirus), Sudan virus (Sudan Ebolavirus), Tai Forest virus (Tai Forest Ebolavirus), Bundibugyo virus (Bundibugyo Ebolavirus), and Marburg virus are restricted to Central Africa for 35 years, and spread to Guinea, Liberia, Sierra Leone in early 2014. Lassa fever is responsible for disease outbreaks across West Africa and in Southern Africa in 2008, with the identification of novel world arenavirus (Lujo virus). Henipavirus spread South Asia to Australia. CCHFv spread asia to south europa. They are transmitted from host reservoir by direct contacts or through vectors such as ticks bits. Working with VHF viruses, need a Biosafety Level 4 (BSL-4) laboratory, however during epidemics such observed with Ebola virus in 2014, the need to diagnose rapidly the patients raised the necessity to develop local laboratories These viruses represents a threat to healthcare workers and researches who manage infected diagnostic samples in laboratories. Aim : 1 Inactivation step An FilmArray Bio Thereat-E assay for detection of Hemorrhagic fever viruse Interfering substance HF virus + FA Lysis Buffer such as Ebola virus was developed to respond to Hemorrhagic fever virus 106 Ebola virus Whole blood + outbreak. -
Zika Virus Infection
ZIKA VIRUS UPDATE 2016 LARRY M. BUSH, MD, FACP Affiliated Professor of Clinical Biomedical Sciences Charles E. Schmidt College of Medicine Florida Atlantic University Affiliate Associate Professor of Medicine University of Miami – Miller School of Medicine / Palm Beach County NEWLY IDENTIFIED INFECTIOUS DISEASES AND PATHOGENS (2) Year Disease or Pathogen 2012 MERS-CoV 2009 H1N1 2004 Avian influenza (human cases) 2003 SARS 1999 Nipah virus 1997 H5N1 (avian influenza A virus) 1996 New variant Creutzfelt-Jacob disease; Australian bat lyssavirus 1995 Human herpesvirus 8 (Kaposi’s sarcoma virus) 1994 Savia virus; Hendra virus Source: Workshop presentation by David Heymann, World Health Organization, 1999 NEWLY IDENTIFIED INFECTIOUS DISEASES AND PATHOGENS (2) Year Disease or Pathogen 2012 MERS-CoV 2009 H1N1 2004 Avian influenza (human cases) 2003 SARS 1999 Nipah virus 1997 H5N1 (avian influenza A virus) 1996 New variant Creutzfelt-Jacob disease; Australian bat lyssavirus 1995 Human herpesvirus 8 (Kaposi’s sarcoma virus) 1994 Savia virus; Hendra virus Source: Workshop presentation by David Heymann, World Health Organization, 1999 Emerging and Re-emerging Infectious Diseases • Emerging infectious diseases: Infectious diseases that have newly appeared in a population. • Global : • Regional: • Re-emerging Diseases: Diseases’ incidence in human has increased during the last 20 years or threatens to increase in the near future. • Global: • Regional: GLOBAL EXAMPLES OF EMERGING AND RE-EMERGING INFECTIOUS DISEASES AS Fauci Factors responsible for emerging -
Alkhurma Hemorrhagic Fever in Humans, Najran, Saudi Arabia Abdullah G
RESEARCH Alkhurma Hemorrhagic Fever in Humans, Najran, Saudi Arabia Abdullah G. Alzahrani, Hassan M. Al Shaiban, Mohammad A. Al Mazroa, Osama Al-Hayani, Adam MacNeil, Pierre E. Rollin, and Ziad A. Memish Alkhurma virus is a fl avivirus, discovered in 1994 in a district, south of Jeddah (3). Among the 20 patients with person who died of hemorrhagic fever after slaughtering a confi rmed cases, 11 had hemorrhagic manifestations and sheep from the city of Alkhurma, Saudi Arabia. Since then, 5 died. several cases of Alkhurma hemorrhagic fever (ALKHF), Full genome sequencing has indicated that ALKV is with fatality rates up to 25%, have been documented. From a distinct variant of Kyasanur Forest disease virus, a vi- January 1, 2006, through April 1, 2009, active disease sur- rus endemic to the state of Karnataka, India (4). Recently, veillance and serologic testing of household contacts identi- fi ed ALKHF in 28 persons in Najran, Saudi Arabia. For epi- ALKV was found by reverse transcription–PCR in Orni- demiologic comparison, serologic testing of household and thodoros savignyi ticks collected from camels and camel neighborhood controls identifi ed 65 serologically negative resting places in 3 locations in western Saudi Arabia (5). persons. Among ALKHF patients, 11 were hospitalized and ALKHF is thought to be a zoonotic disease, and reservoir 17 had subclinical infection. Univariate analysis indicated hosts may include camels and sheep. Suggested routes of that the following were associated with Alkhurma virus in- transmission are contamination of a skin wound with blood fection: contact with domestic animals, feeding and slaugh- of an infected vertebrate, bite of an infected tick, or drink- tering animals, handling raw meat products, drinking unpas- ing of unpasteurized, contaminated milk (6). -
Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris Spelaea)
viruses Article Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris spelaea) Ian H Mendenhall 1,* , Dolyce Low Hong Wen 1,2, Jayanthi Jayakumar 1, Vithiagaran Gunalan 3, Linfa Wang 1 , Sebastian Mauer-Stroh 3,4 , Yvonne C.F. Su 1 and Gavin J.D. Smith 1,5,6 1 Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; [email protected] (D.L.H.W.); [email protected] (J.J.); [email protected] (L.W.); [email protected] (Y.C.F.S.) [email protected] (G.J.D.S.) 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore 3 Bioinformatics Institute, Agency for Science, Technology and Research, Singapore 138671, Singapore; [email protected] (V.G.); [email protected] (S.M.-S.) 4 Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore 5 SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore 6 Duke Global Health Institute, Duke University, Durham, NC 27710, USA * Correspondence: [email protected] Received: 30 January 2019; Accepted: 7 March 2019; Published: 12 March 2019 Abstract: Bats are unique mammals, exhibit distinctive life history traits and have unique immunological approaches to suppression of viral diseases upon infection. High-throughput next-generation sequencing has been used in characterizing the virome of different bat species. The cave nectar bat, Eonycteris spelaea, has a broad geographical range across Southeast Asia, India and southern China, however, little is known about their involvement in virus transmission.