Data Stream Algorithms Lecture Notes
Data Stream Algorithms Lecture Notes Amit Chakrabarti Dartmouth College Latest Update: July 2, 2020 DRAFT Preface This book grew out of lecture notes for offerings of a course on data stream algorithms at Dartmouth, beginning with a first offering in Fall 2009. It’s primary goal is to be a resource for students and other teachers of this material. The choice of topics reflects this: the focus is on foundational algorithms for space-efficient processing of massive data streams. I have emphasized algorithms that are simple enough to permit a clean and fairly complete presentation in a classroom, assuming not much more background than an advanced undergraduate student would have. Where appropriate, I have provided pointers to more advanced research results that achieve improved bounds using heavier technical machinery. I would like to thank the many Dartmouth students who took various editions of my course, as well as researchers around the world who told me that they had found my course notes useful. Their feedback inspired me to make a book out of this material. I thank Suman Kalyan Bera, Sagar Kale, and Jelani Nelson for numerous comments and contributions. Of special note are the 2009 students whose scribing efforts got this book started: Radhika Bhasin, Andrew Cherne, Robin Chhetri, Joe Cooley, Jon Denning, Alina Djamankulova, Ryan Kingston, Ranganath Kondapally, Adrian Kostrubiak, Konstantin Kutzkow, Aarathi Prasad, Priya Natarajan, and Zhenghui Wang. Amit Chakrabarti April 2020 DRAFT Contents 0 Preliminaries: The Data Stream Model6 0.1
[Show full text]