Treatment of Localized Gingival Recessions Using Enamel Matrix Derivative As an Adjunct to Laterally Sliding Flap: 2 Case Reports Bahar Eren Kuru, Prof Dr, Phd, DDS1

Total Page:16

File Type:pdf, Size:1020Kb

Treatment of Localized Gingival Recessions Using Enamel Matrix Derivative As an Adjunct to Laterally Sliding Flap: 2 Case Reports Bahar Eren Kuru, Prof Dr, Phd, DDS1 QUINTESSENCE INTERNATIONAL Treatment of localized gingival recessions using enamel matrix derivative as an adjunct to laterally sliding flap: 2 case reports Bahar Eren Kuru, Prof Dr, PhD, DDS1 Predictable and optimal coverage of exposed root surfaces is an important goal in periodontal plastic surgery. In this report, recession coverage was performed as laterally sliding flap technique with the adjunctive use of enamel matrix derivative (EMD). The cases of 2 female patients with gingival recession on the maxillary canines are presented with 1-year follow-up observation. Initial vertical gingival recessions were 4.0 mm each, with a probing depth of 1.0 mm. The surgical procedure immediately produced a marked reduction in gingival recessions. In the course of healing, the soft tissue margin on the operated teeth showed some shrinkage in the first months. After 1 year, complete root coverage (100%) was observed, with a probing depth of 0.5 mm and 5.0-mm gain of clini- cal attachment in both cases, and there was 0.5-mm creeping tissue above the cemento- enamel junction. Within the limits of these cases, the results demonstrated the possibility of treating human buccal recessions with EMD plus laterally sliding flap, with predictable root coverage and clinical attachment gain. (Quintessence Int 2009;40:461–469) Key words: bioengineering, enamel matrix protein derivative, gingival recession, laterally sliding flap, mucogingival surgery, root coverage Gingival recession is the location of marginal which are involved in the formation of cemen- periodontal tissues apical to the cemento- tum during root and periodontal tissue devel- enamel junction (CEJ).1 To cover the exposed opment, have the potential to induce the root surfaces, various surgical techniques regeneration of the periodontal attachment have been proposed, including free gingi- apparatus. EMD, harvested from embryonic val/connective tissue grafting, various flap porcine teeth, has been studied extensively in designs, and guided tissue regeneration.2 animals and humans, and provided evidence Varying rates of success and predictability of tissue regeneration.10–20 Three human are obtained with these procedures.3–7 Even biopsy reports revealed that true periodontal though no single treatment can be consid- regeneration can be achieved with the topical ered superior to all others,8 regenerative application of EMD.21–23 Several clinical inves- approaches seem to be promising for obtain- tigations and case studies were undertaken ing root coverage with the formation of a to evaluate the use of EMD in the treatment of functional periodontal ligament.9 various types of periodontal defect; however, Use of enamel matrix protein derivatives the volume of published studies evaluating (EMD) is one of the tissue engineering modal- the use of EMD as an adjunct to convention- ities in regenerative periodontal treatment. It al surgical techniques in the treatment of gin- has been suggested that these proteins, gival recession is limited, and conflicting results regarding the clinical benefits have been reported.24–33 In this process, trials pre- 1Department of Periodontology, Marmara University Dental senting the efficacy of combined procedures Faculty, Istanbul,Turkey. in the treatment of gingival recessions can Correspondence: Dr Bahar Eren Kuru, Marmara University add valuable information for the clinician in Dental Faculty, Department of Periodontology, Büyükciftlik sok. No: 6 Nisantası, 80200, Istanbul, Türkiye. Email: btkuru@ considering effective and predictable treat- superonline.com ment alternatives for root-surface coverage. VOLUME 40 • NUMBER 6 • JUNE 2009 461 © 2009 BY QUINTESSENCE PUBLISHING CO, INC. PRINTING OF THIS DOCUMENT IS RESTRICTED TO PERSONAL USE ONLY. NO PART OF THIS ARTICLE MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM WITHOUT WRITTEN PERMISSION FROM THE PUBLISHER. QUINTESSENCE INTERNATIONAL Kuru Fig 1 Initial appearance of case 1. Fig 2 Initial appearance of case 2. The aim of this report is to present the 1- incision around the denuded root was made year clinical follow-up results of soft tissue to remove the adjacent epithelium and con- root coverage using EMD with the lateral slid- nective tissue. The V-shaped incision was ing flap technique. beveled out on the opposite side from the donor area to permit overlap and increase vascularity for the donor tissue in this area (Fig 3). Intrasulcular incisions extended 2 DESCRIPTION OF CASES teeth distal to the recession. Vertical releas- ing incision down to the mucosa, in corre- Two female patients, 36 and 25 years of age, spondence to the line angle of the second were treated for gingival recessions that were premolar, was performed (Fig 4). creating sensitivity and esthetic problems on A full-thickness mucoperiosteal flap at the the buccal aspects of maxillary canines (Figs coronal portion, which was more of a split- 1 and 2). The patients were systemically thickness flap by partial mucosal dissection healthy, and there were no contraindications at its more apical end, was elevated to mobi- for periodontal surgery. They had no known lize the flap, ensuring passive lateral posi- drug allergies and denied use of alcohol. tioning. Partial dissection was extended far Neither were smokers. After a thorough clini- enough apically into the mucosal tissue to cal examination, the patients received permit adequate mobility of the flap. The flap plaque-control instructions and underwent was free enough to permit movement to the professional tooth cleaning on all tooth sur- recipient site, with no tension (Fig 5). By use faces. Recession depth, keratinized gingiva, of hand instruments, the exposed portion of probing depth, and clinical attachment level the roots was then planed gently to decrease were measured with a graded manual peri- the risk of removing intact periodontal fibers odontal probe to the nearest millimeter (CP from the root surfaces. The surgical area was 15 UNC, Hu-Friedy). rinsed with sterile saline, and the exposed root surfaces of all teeth were conditioned Treatment procedure for 2 minutes with ethylenediaminete- The unilaterally pedicled lateral sliding flap traacetic acid (EDTA) gel (pH 6.7) (PrefGel, technique was used in both cases to ensure Straumann). At this point, root surfaces were primary closure with the gingiva across the dis- again thoroughly rinsed with saline. EMD tal line angle of the lateral incisor. Prior to sur- gel, as Emdogain (Straumann), was then gery, the prominent convexity of the root was placed on the root surfaces (Fig 6). reduced by using diamond burs. A V-shaped 462 VOLUME 40 • NUMBER 6 • JUNE 2009 © 2009 BY QUINTESSENCE PUBLISHING CO, INC. PRINTING OF THIS DOCUMENT IS RESTRICTED TO PERSONAL USE ONLY. NO PART OF THIS ARTICLE MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM WITHOUT WRITTEN PERMISSION FROM THE PUBLISHER. QUINTESSENCE INTERNATIONAL Kuru Fig 3 Beveling out of the V-shaped incision. Fig 4 Vertical releasing incision down to the mucosa. Fig 5 Passive lateral positioning. Fig 6 Application of EMD. The pedicle flap was then laterally reposi- The patients received systemic antibiotic tioned to meet and overlap with the external- therapy for 2 weeks postoperatively. The reg- ly beveled-out portion of the V-shaped imen consisted of oral administration of incision at the distal line angle of the lateral doxycycline 200 mg the first day and then incisor. The flap was secured by suturing. 100 mg daily afterward. In addition, the Single suturing to the papilla regions was patients were advised to avoid hard chewing performed to pull the papilla interproximally in the surgical area and to rinse twice daily and hold the tissue tightly against the necks with a 0.2% solution of chlorhexidine diglu- of the teeth (Fig 7). Following the lateral repo- conate for 4 weeks. After 4 weeks, gentle sitioning of the flap, the placement of a free tooth brushing was resumed in the surgical gingival graft onto the exposed bone was area. Recall appointments were scheduled performed (see Fig 7). No periodontal dress- every second week during the first 2 months ing was applied to the surgical area. After a following the surgical procedure, and the healing period of 2 weeks, the sutures were patients were recalled once a month for the removed. remaining observation period. During the 12- Postsurgical care was directed at mainte- month follow-up period, neither subgingival nance of wound stability and infection control. instrumentation nor probing of the operated VOLUME 40 • NUMBER 6 • JUNE 2009 463 © 2009 BY QUINTESSENCE PUBLISHING CO, INC. PRINTING OF THIS DOCUMENT IS RESTRICTED TO PERSONAL USE ONLY. NO PART OF THIS ARTICLE MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM WITHOUT WRITTEN PERMISSION FROM THE PUBLISHER. QUINTESSENCE INTERNATIONAL Kuru Fig 7 Suturing and placement of a free gingival graft. Fig 8 Twelve-month postoperative clinical appear- ance of case 1. Fig 9 Three-month postoperative clinical appear- Fig 10 Twelve-month postoperative clinical appear- ance of case 2. ance of case 2. areas was performed. At 12 months, the Immediately after surgery, only case 2 cases were reevaluated and all measure- showed any recession (1.0 mm); at 3 ments repeated (Fig 8). months, recession was 0.5 mm and 1.5 mm for cases 1 and 2, respectively. Treatment outcomes In the course of healing, the soft tissue Postoperative healing was uneventful, and margin on the treated teeth showed some no complications such as allergic reactions, shrinkage in the first months (Fig 9). At the abscesses, infection, or flap dehiscence 1-year follow-up, a complete root coverage were observed. At baseline, vertical reces- was observed in both cases (100% root cov- sion in the 2 cases was 4.0 mm each, with a erage) (Figs 8 and 10) with probing depths of probing depth of 1.0 mm. The clinical attach- 0.5 mm and a total of 5.0-mm gain of clinical ment level in each case was 5.0 mm. The attachment in each case, indicating a reduc- amount of keratinized gingiva in cases 1 and tion of 0.5 mm in probing depth and 0.5 mm 2 was 2.0 mm and 0.5 mm, respectively.
Recommended publications
  • Endodontic Recommended Reading List 2018 A. ความรู้วิทยาศาสตร์พื้นฐาน 1
    1 Endodontic Recommended Reading List 2018 A. ความรู้วิทยาศาสตร์พื้นฐาน 1. Gross, microscopic และ ultrastructural anatomy of soft and hard tissue (tooth and surrounding) 2. Embryology, histology, bone biology 3. Microbiology 4. Oral infection & immunology 5. Oral medicine, Oral pathology 6. Inflammation & healing 7. ชีวสถิติ 8. ความรู้กฎหมายวิชาชีพ เจตคติ และจรรยาบรรณแห่งวิชาชีพทันตกรรม B. วิทยาศาสตร์การแพทย์ที่เกี่ยวข้องกับสาขา 1. Embryology, histology, physiology of pulp and periapical tissue 2. Biology of dental pulp 1. Bennett CG, Kelln EE, Biddington WR. Age changes of the vascular pattern of the human dental pulp. Arch Oral Biol. 1965;10(6):995-8. 2. Bernick S. Effect of aging on the nerve supply to human teeth. J Dent Res. 1967;46(4):694- 9. 3. Bernick S. Lymphatic vessels of the human dental pulp. J Dent Res. 1977;56(1):70-7. 4. Brannstrom M. The hydrodynamic theory of dentinal pain: sensation in preparations, caries, and the dentinal crack syndrome. J Endod. 1986;12(10):453-7. 2 5. Brannstrom M, Linden LA, Johnson G. Movement of dentinal and pulpal fluid caused by clinical procedures. J Dent Res. 1968;47(5):679-82. 6. Byers MR, Neuhaus SJ, Gehrig JD. Dental sensory receptor structure in human teeth. Pain. 1982;13(3):221-35. 7. Carrigan PJ, Morse DR, Furst ML, Sinai IH. A scanning electron microscopic evaluation of human dentinal tubules according to age and location. J Endod. 1984;10(8):359-63. 8. DENTISTRY AAOP. Guideline on Pulp Therapy for Primary and Immature Permanent Teeth. Pediatr Dent. 2016;38(6):280-8. 9. Fitzgerald M, Chiego DJ, Jr., Heys DR. Autoradiographic analysis of odontoblast replacement following pulp exposure in primate teeth.
    [Show full text]
  • Straumann® Emdogain® ENAMEL MATRIX DERIVATIVE
    Product Information Biomaterials@Straumann® Because one option is not enough. Straumann® Emdogain® ENAMEL MATRIX DERIVATIVE 490.280_Emdogain-flyer-4-pager.indd 1 08/01/2018 16:49 Straumann® Emdogain® Emdogain® is a unique protein mix which influences Prof. Dr. David Cochran, a number of different cells and different processes. It Implantologist, « San Antonio/USA really helps the wound healing and wound closure in the oral cavity. « WHY USE STRAUMANN® EMDOGAIN®? Emdogain® induces true regeneration By modulating the wound healing process, Emdogain® induces the regeneration of a functional attachment in periodontal procedures (as evidenced by human histological data¹,²) Emdogain® improves wound healing By promoting angiogenesis³,⁴, modulating the production of factors in oral surgical procedures related to inflammation⁵ and thanks to its anti-microbial effect toward oral pathogens⁶, Emdogain® accelerates the wound healing process of oral surgical procedures⁷ Emdogain® increased the predictability Emdogain® leads to: of your periodontal procedures - significantly improved clinical parameters in intra-osseous defects compared to open flap debridement procedures alone⁸ - increased root coverage achieved when used in a coronally advanced flap (CAF) compared to CAF alone⁹, and leads to results comparable to CAF + Connective Tissue Graft¹⁰ Emdogain® helps you achieve patient - When used to treat intra-osseous defects, Emdogain® contributes satisfaction to improve your patients’ dental prognosis. - When used in oral surgical procedures in general, Emdogain® accelerates wound closure¹¹, and reduces post surgical pain and swelling¹². - When used in periodontal plastic procedures around teeth and implants, Emdogain® may improve the esthetics of the results thanks to improved wound healing. Emdogain® is easy to apply Because Emdogain® is a gel, it requires no trimming and is easy to apply, even in defects difficult to access.
    [Show full text]
  • Biodental Engineering V
    BIODENTAL ENGINEERING V PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON BIODENTAL ENGINEERING, PORTO, PORTUGAL, 22–23 JUNE 2018 Biodental Engineering V Editors J. Belinha Instituto Politécnico do Porto, Porto, Portugal R.M. Natal Jorge, J.C. Reis Campos, Mário A.P. Vaz & João Manuel R.S. Tavares Universidade do Porto, Porto, Portugal CRC Press/Balkema is an imprint of the Taylor & Francis Group, an informa business © 2019 Taylor & Francis Group, London, UK Typeset by V Publishing Solutions Pvt Ltd., Chennai, India All rights reserved. No part of this publication or the information contained herein may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, by photocopying, recording or otherwise, without written prior permission from the publisher. Although all care is taken to ensure integrity and the quality of this publication and the information herein, no responsibility is assumed by the publishers nor the author for any damage to the property or persons as a result of operation or use of this publication and/or the information contained herein. Library of Congress Cataloging-in-Publication Data Names: International Conference on Biodental Engineering (5th: 2018: Porto, Portugal), author. | Belinha, Jorge, editor. | Jorge, Renato M. Natal editor. | Campos, J.C. Reis, editor. | Vaz, Mario A.P., editor. | Tavares, Joao Manuel R.S., editor. Title: Biodental engineering V: proceedings of the 5th International Conference on Biodental Engineering, Porto, Portugal, 22–23 June 2018 / editors, J. Belinha, R.M. Natal Jorge, J.C. Reis Campos, Mario A.P. Vaz & Joao Manuel R.S. Tavares. Description: London, UK; Boca Raton, FL: Taylor & Francis Group, [2019] | Includes bibliographical references and index.
    [Show full text]
  • Emdogain) and Subepithelial Connective Tissue Graft for Root Coverage in Patients with Multiple Gingival Recession Defects: a Randomized Controlled Clinical Study
    QUINTESSENCE INTERNATIONAL PERIODONTOLOGY Angeliki Alexiou Comparison of enamel matrix derivative (Emdogain) and subepithelial connective tissue graft for root coverage in patients with multiple gingival recession defects: A randomized controlled clinical study Angeliki Alexiou, DDS, MSc1/Ioannis Vouros, Dr med dent2/Georgios Menexes, BMath, MA, PhD3/Antonis Konstantinidis, Prof DMD, MSc, PhD4 Objective: The purpose of the present study was to compare list. Data were analyzed within the frame of Mixed Linear the clinical efficiency of enamel matrix derivative (EMD) placed Models with the ANOVA method. Results: There were no sta- under a coronally advanced flap (CAF; test group), to a connec- tistically significantly differences observed between test and tive tissue graft (CTG) placed under a CAF (control group), in control groups in regards with the depth of buccal recession patients with multiple recession defects. Method and with a mean REC of 1.82 mm (CTG) and 1.72 mm (EMD) re- Materials: Twelve patients with multiple Miller’s Class I or II spectively. Similarly the mean PPD value was 1.3 mm for both gingival recessions in contralateral quadrants of the maxilla groups at T6, while the respective value for CAL was 1.7 mm were selected. The primary outcome variable was the change (EMD) and 1.8 mm (CTG). Statistically significant differences in depth of the buccal recession (REC), at 6 months (T6) after were observed only for the WKT, which were 3.0 mm and surgery. The secondary outcome parameters included the clin- 3.6 mm for the test and control groups respectively (P < .001) ical attachment level (CAL), the probing pocket depth (PPD), at T6.
    [Show full text]
  • Current and Future Trends in Periodontal Tissue Engineering and Bone Regeneration
    Galli et al. Plast Aesthet Res 2021;8:3 Plastic and DOI: 10.20517/2347-9264.2020.176 Aesthetic Research Review Open Access Current and future trends in periodontal tissue engineering and bone regeneration Matthew Galli1, Yao Yao1, William V. Giannobile1,2,3, Hom-Lay Wang1 1Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA. 2Biointerfaces Institute, North Campus Research Complex, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA. 3Harvard School of Dental Medicine, Boston, MA 02115, USA. Correspondence to: Prof. Hom-Lay Wang, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 North University Avenue, Ann Arbor, MI 48109, USA. E-mail: [email protected] How to cite this article: Galli M, Yao Y, Giannobile WV, Wang HL. Current and future trends in periodontal tissue engineering and bone regeneration. Plast Aesthet Res 2021;8:3. http://dx.doi.org/10.20517/2347-9264.2020.176 Received: 31 Aug 2020 First Decision: 16 Nov 2020 Revised: 28 Nov 2020 Accepted: 7 Dec 2020 Published: 8 Jan 2021 Academic Editor: Filippo Citterio, Raúl González-García Copy Editor: Cai-Hong Wang Production Editor: Jing Yu Abstract Periodontal tissue engineering involves a multi-disciplinary approach towards the regeneration of periodontal ligament, cementum and alveolar bone surrounding teeth, whereas bone regeneration specifically applies to ridge reconstruction in preparation for future implant placement, sinus floor augmentation and regeneration of peri- implant osseous defects. Successful periodontal regeneration is based on verifiable cementogenesis on the root surface, oblique insertion of periodontal ligament fibers and formation of new and vital supporting bone.
    [Show full text]
  • The Multiple Functions of Gingival and Mucoperiosteal Fibroblasts in Oral Wound Healing and Repair
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Bern Open Repository and Information System (BORIS) Chiquet et al. Review Periodontology 2000 11.10.2011 MCh, revised 27.01.2014 The multiple functions of gingival and mucoperiosteal fibroblasts in oral wound healing and repair Matthias Chiquet1, Christos Katsaros1, and Dimitris Kletsas2 Periodontol 2000. 2015 Jun;68(1):21-40. doi: 10.1111/prd.12076. Accepted Manuscript; Contributor's version The final version is available from http://onlinelibrary.wiley.com/ | downloaded: 13.3.2017 https://doi.org/10.7892/boris.76776 source: 1 Chiquet et al. Review Periodontology 2000 11.10.2011 MCh, revised 27.01.2014 The multiple functions of gingival and mucoperiosteal fibroblasts in oral wound healing and repair Matthias Chiquet1, Christos Katsaros1, and Dimitris Kletsas2 1Department of Orthodontics and Dentofacial Orthopedics, Dental School, University of Bern, Bern, Switzerland 2Laboratory of Cell Proliferation and Ageing, Institute of Biology, NCSR "Demokritos", Athens, Greece Correspondence: Professor Matthias Chiquet, Ph.D. Department of Orthodontics and Dentofacial Orthopedics School of Dental Medicine / Medical Faculty, University of Bern Freiburgstrasse 7 CH-3010 Bern, Switzerland Phone: +41-31-632-9882 Fax: +41-31-632-9869 e-Mail: [email protected] Running title: Fibroblasts in oral wound healing Monograph title: Wound healing in Periodontology and Implantology Guest Editors: Anton Sculean, Iain Chapple 2 Chiquet et al. Review Periodontology 2000 11.10.2011 MCh, revised 27.01.2014 Abstract Fibroblasts are cells of mesenchymal origin responsible for the production of most extracellular matrix in connective tissues, and are essential for wound healing and repair.
    [Show full text]
  • Effect of Aging on Homeostasis in the Soft Tissue of the Periodontium: a Narrative Review
    Journal of Personalized Medicine Review Effect of Aging on Homeostasis in the Soft Tissue of the Periodontium: A Narrative Review Yu Gyung Kim 1, Sang Min Lee 1, Sungeun Bae 1, Taejun Park 1, Hyeonjin Kim 1, Yujeong Jang 1, Keonwoo Moon 1, Hyungmin Kim 1, Kwangmin Lee 1, Joonyoung Park 1, Jin-Seok Byun 2,* and Do-Yeon Kim 3,* 1 Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea; [email protected] (Y.G.K.); [email protected] (S.M.L.); [email protected] (S.B.); [email protected] (T.P.); [email protected] (H.K.); [email protected] (Y.J.); [email protected] (K.M.); [email protected] (H.K.); [email protected] (K.L.); [email protected] (J.P.) 2 Department of Oral Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Korea 3 Department of Pharmacology, School of Dentistry, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41940, Korea * Correspondence: [email protected] (J.-S.B.); [email protected] (D.-Y.K.); Tel.: +82-53-600-7323 (J.-S.B.); +82-53-660-6880 (D.-Y.K.) Abstract: Aging is characterized by a progressive decline or loss of physiological functions, leading to increased susceptibility to disease or death. Several aging hallmarks, including genomic instability, cellular senescence, and mitochondrial dysfunction, have been suggested, which often lead to the numerous aging disorders. The periodontium, a complex structure surrounding and supporting the teeth, is composed of the gingiva, periodontal ligament, cementum, and alveolar bone. Supportive and protective roles of the periodontium are very critical to sustain life, but the periodontium undergoes morphological and physiological changes with age.
    [Show full text]
  • Acid Dentin Lysates Increase Amelotin Expression in Oral Epithelial Cells and Gingival Fibroblasts
    applied sciences Article Acid Dentin Lysates Increase Amelotin Expression in Oral Epithelial Cells and Gingival Fibroblasts Jila Nasirzade 1, Zahra Kargarpour 1, Layla Panahipour 1 and Reinhard Gruber 1,2,* 1 Department of Oral Biology, Medical University of Vienna, 1090 Vienna, Austria; [email protected] (J.N.); [email protected] (Z.K.); [email protected] (L.P.) 2 Department of Periodontology, School of Dental Medicine, University of Bern, 3012 Bern, Switzerland * Correspondence: [email protected]; Tel.: +43-1-40070-2660 Abstract: Amelotin (AMTN) is a secretory calcium-binding phosphoprotein controlling the adhesion of epithelial cells to the tooth surface, forming a protective seal against the oral cavity. It can be proposed that signals released upon dentinolysis increase AMTN expression in periodontal cells, thereby helping to preserve the protective seal. Support for this assumption comes from our RNA sequencing approach showing that gingival fibroblasts exposed to acid dentin lysates (ADL) greatly increased AMTN expression. In the present study, we confirm that acid dentin lysates significantly increase AMTN in gingival fibroblasts and extend this observation towards the epithelial cell lineage by use of the HSC2 oral squamous and TR146 buccal carcinoma cell lines. AMTN immunostaining revealed an intensive signal in the nucleus of HSC2 cells exposed to acid dentin lysates. Acid dentin lysates mediate their effect via the transforming growth factor (TGF)-β type 1 receptor kinase as the antagonist SB431542 abolished the expression of AMTN in the epithelial cells and fibroblasts. Similar Citation: Nasirzade, J.; Kargarpour, to what is known for fibroblasts, acid dentin lysate increased Smad-3 phosphorylation in HSC2 cells.
    [Show full text]
  • The Biologic Concept for the Use of Enamel Matrix Protein: True Periodontal Regeneration Hideaki Hirooka, DDS, Msc*
    Periodontics The biologic concept for the use of enamel matrix protein: True periodontal regeneration Hideaki Hirooka, DDS, MSc* Guided tissue regeneration procedures have been used successfiitly to reestablish periodontal attachment. However, this new attachment reportedly differs from the original attachment in strength and continuity. Enamel matrix proteins secreted by Hertwig 's epithelial sheath play an important role in cementogenesis on roots atid in the development of the periodontal attachment apparatus. Enamel matrix protein har- vested from developing porcine teeth, or enamel matrix derivative (Emdogaiii), i¡ reported to induce true periodontal regetieration (the attachment of new, aceltular cementum to the underlying dentin surface). The results of experimental and clinical trials ofEmdogain are reviewed, and the procedure for applica- tion of the material is described. (Quintessence Int 1998:29:621-630] Key words: cementogenesis, Etndogain. enamel matrix protein, periodontal disease, true periodontal regeneration Several studies have confirmed tbe efficacy of me- Clinical relevance chanical subgingival plaque control in periodontal ther- apy, irrespective of the approach used.-'-' Adequate An enamel mairix derivative has been used suc- supragingival plaque control by patients is prerequisite cessfully to reestablish the biologic processes of for the success of the periodontal treatrnent.^'' developing tooth roots and their supporting tissues. However, subgingival bacteria in deep pockets with complicated anatomy, in infrabony
    [Show full text]
  • Effects of the Enamel Matrix Derivative on Bioactive Glass in Rat Calvarium Defects
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PSU Knowledge Bank Effects of the Enamel Matrix Derivative on Bioactive Glass in Rat Calvarium Defects Pisanu Potijanyakul A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Oral and Maxillofacial Surgery Prince of Songkla University 2008 Copyright of Prince of Songkla University i Thesis Title Effects of the Enamel Matrix Derivative on Bioactive Glass in Rat Calvarium Defects Author Mr. Pisanu Potijanyakul Major Program Oral and Maxillofacial Surgery Advisory Committee: Examining Committee: ...……………………………………. ...…………………………..Chairperson (Assoc. Prof. Wilad Sattayasanskul) (Asst. Prof. Dr. Suwanna Jitpukdeebointra) ..…………………………………………. (Assoc. Prof. Wilad Sattayasansakul) Co-advisors : ………...…………………..……………… ..………………………………… (Asst. Prof. Settakorn Pongpanich) (Asst. Prof. Settakorn Pongpanich) ..………………………………... ………… ..…………………………... …… (Assoc. Prof. Dr. Theeralaksna suddhasthira) (Asst. Prof. Dr. Sompid Kintarak) ..…………………………............ (Dr. Narit Leepong) The Graduate School, Prince of Songkla University, has approved this thesis as partial fulfillment of the requirements for the Master of Master of Science in Oral and Maxillofacial Surgery ……………………………………………….……………….. (Assoc. Prof. Dr. Krerkchai Thongnoo) Dean of Graduate School ii ชื่อวิทยานิพนธ ศึกษาผลของสารอีนาเมลเมทริกซเดริเวทฟที ี่มีตอไบโอเอคทีฟกลาส ในรอยวิการกะโหลกศีรษะหนทดลองู ผูเขียน นายพษณิ ุ โพธิจรรยากุล สาขาวิชา ศัลยศาสตรชองปากและแม็กซิลโลเฟเชียล
    [Show full text]
  • Straumann Emdogain Brochure
    Straumann Emdogain Straumann® Emdogain® More than regeneration. Peace of mind. Tooth Preservation with Straumann Emdogain Periodontitis is associated with a loss of tooth-supporting tissues which is irreversible and the main reason for tooth loss if left untreated. Straumann® Emdogain® is the gold standard when it comes to the regeneration of lost periodontal tissues in a safe and predictable way. Long-term clinical studies have demonstrated that Emdogain can effectively help save teeth and revert gingival recessions. 11,15,16 Furthermore it initiates and promotes periodontal tissue regeneration that leads to the esthetic outcome your patient desires. 5–15% OF POPULATION SUFFERS FROM SEVERE PERIODONTITIS THAT MAY LEAD TO TOOTH LOSS1,2 Periodontitis treatment involves controlling the causative bacteria and inflammation, as well as subsequent regeneration of the lost periodontal hard and soft tissues in order to regain tooth attachment. Guided regeneration Straumann Emdogain supports the predictable regeneration of the lost periodontal hard and soft tissue caused by periodontitis, helping to save and preserve the tooth.3 Applying Straumann Emdogain to the cleaned root surface of the periodontally diseased tooth helps to regenerate the periodontium, which includes the cementum, periodontal ligament and alveolar bone.4–8 Regenerative surgery with Straumann Emdogain Pre-op Post-op after 1 year Pre-op Post-op after 3 months Emdogain with periodontal surgery. Emdogain in combination with a Coronally Advanced Flap (CAF). Courtesy of Prof. Carlos E. Nemcovsky, Tel-Aviv University Courtesy of Prof. Zucchelli, Bologna University “ Emdogain® is a really unique protein mixture. It influences a number of different cells and a number of different processes.
    [Show full text]
  • The Effect of Emdogain Periodontal Regenerative Material on Inflammation in Eriodontalp Maintenance Patients
    University of Nebraska Medical Center DigitalCommons@UNMC Theses & Dissertations Graduate Studies Spring 5-4-2019 The Effect of Emdogain Periodontal Regenerative Material on Inflammation in eriodontalP Maintenance Patients Jessica M. Gradoville University of Nebraska Medical Center Follow this and additional works at: https://digitalcommons.unmc.edu/etd Part of the Periodontics and Periodontology Commons Recommended Citation Gradoville, Jessica M., "The Effect of Emdogain Periodontal Regenerative Material on Inflammation in Periodontal Maintenance Patients" (2019). Theses & Dissertations. 367. https://digitalcommons.unmc.edu/etd/367 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It has been accepted for inclusion in Theses & Dissertations by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. THE EFFECT OF EMDOGAIN PERIODONTAL REGENERATIVE MATERIAL ON INFLAMMATION IN PERIODONTAL MAINTENANCE PATIENTS By Jessica Marie Gradoville, D.D.S. A THESIS Presented to the Faculty of the University of Nebraska Graduate College in Partial Fulfillment of Requirements for the Degree of Master of Science Medical Sciences Interdepartmental Area (Oral Biology) Under the Supervision of Professor Amy C. Killeen University of Nebraska Medical Center Omaha, Nebraska May 2019 Advisory Committee: Richard A. Reinhardt, D.D.S., Ph.D. Jeffrey B. Payne, D.D.S., M. Dent. Sc. James K. Wahl III, Ph.D. Sung K. Kim, D.D.S. i ACKNOWLEDGMENTS Research has played an integral role in my education and career for many years, so when beginning my periodontal residency the decision to continue being involved in research was a simple one. My journey in research began while pursuing my undergraduate degree and progressed through dental school; however, I was never conducting the research I was investigating.
    [Show full text]