Supplementary Materials

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Materials Supplementary materials a b c d Figure S1. Illumina sequence‐based biodiversity indices rarefaction curves: a—Chao 1 index, b—Pielou index, с—Shannon index, d—Simpson index. Geosciences 2020, 10, 67; doi:10.3390/geosciences10020067 www.mdpi.com/journal/geosciences Geosciences 2020, 10, 67 2 of 25 Table S1. Isolated strains catalogue. Strain Primers used for amplification Primers used for sequence Taxonomical affiliation KBP.AS.110 27f + Un1492r 1100r Bacillus sp. KBP.AS.112 27f + Un1492r 1100r Bacillus sp. KBP.AS.113 27f + Un1492r 1100r Ochrobactrum sp. KBP.AS.122 27f + Un1492r 1100r Arthrobacter ginsengisoli KBP.AS.1261 27f + Un1492r 1100r Ochrobactrum thiophenivorans KBP.AS.1262 27f + Un1492r 1100r Arthrobacter ginsengisoli KBP.AS.1263 Identification was carried out according to phenotypic characters. Streptomyces sp. KBP.AS.1264 27f + Un1492r 1100r Ochrobactrum thiophenivorans KBP.AS.1265 27f + Un1492r 1100r Stenotrophomonas maltophilia KBP.AS.1266 27f + Un1492r 1100r Paracoccus sp. KBP.AS.1267 27f + Un1492r 1100r Stenotrophomonas maltophilia KBP.AS.1268 27f + Un1492r 1100r Stenotrophomonas maltophilia KBP.AS.1269 341f + 805r 805r Stenotrophomonas sp. KBP.AS.1270 341f + 805r 805r Stenotrophomonas maltophilia KBP.AS.1271 341f + 805r 805r Enterobacter sp. KBP.AS.1272 341f + 805r 805r Stenotrophomonas maltophilia KBP.AS.1273 27f + Un1492r 1100r Ochrobactrum thiophenivorans KBP.AS.1275 27f + Un1492r 1100r Microbacterium paraoxydans KBP.AS.220 27f + Un1492r 1100r Stenotrophomonas sp. KBP.AS.230 341f + 805r 805r Micrococcus sp. KBP.AS.231 27f + Un1492r 1100r Bacillus pumilus KBP.AS.232 27f + Un1492r 1100r Micrococcus sp. KBP.AS.233 Identification was carried out according to phenotypic characters. Rhodococcus sp. KBP.AS.234 341f + 805r 805r Bacillus infantis KBP.AS.235 Identification was carried out according to phenotypic characters. Streptomyces sp. KBP.AS.236 27f + Un1492r 1100r Arthrobacter agilis KBP.AS.237 27f + Un1492r 1100r Paracoccus marcusii KBP.AS.238 27f + Un1492r 1100r Brevibacterium linens KBP.AS.239 341f + 805r 805r Micrococcus terreus KBP.AS.240 27f + Un1492r 1100r Brevibacterium sp. KBP.AS.241 341f + 805r 805r Streptomyces sp. KBP.AS.242 27f + Un1492r 1100r Microbacterium sp. KBP.AS.244 341f + 805r 805r Pseudomonas sp. KBP.AS.245 341f + 805r 805r Stenotrophomonas maltophilia KBP.AS.246 27f + Un1492r 1100r Corynebacterium mucifaciens KBP.AS.247 27f + Un1492r 1100r Bacillus subtilis KBP.AS.248 27f + Un1492r 1100r Corynebacterium mucifaciens KBP.AS.249 27f + Un1492r 1100r Sphingomonas sp. KBP.AS.250 341f + 805r 805r Bacillus sp. KBP.AS.251 27f + Un1492r 1100r Micrococcus sp. KBP.AS.252 27f + Un1492r 1100r Micrococcus sp. KBP.AS.253 27f + Un1492r 1100r Dietzia cinnamea KBP.AS.254 27f + Un1492r 1100r Microbacterium oxydans KBP.AS.255 341f + 805r 805r Micrococcus luteus KBP.AS.256 27f + Un1492r 1100r Microbacterium oxydans KBP.AS.257 Identification was carried out according to phenotypic characters. Streptomyces sp. KBP.AS.258 27f + Un1492r 1100r Arthrobacter crystallopoietes KBP.AS.259 Identification was carried out according to phenotypic characters. Streptomyces sp. KBP.AS.261 27f + Un1492r 1100r Streptomyces sp. KBP.AS.262 27f + 537r 537r Bacillus sp. KBP.AS.265 27f + Un1492r 1100r Pseudomonas frederiksbergensis KBP.AS.267 27f + Un1492r 1100r Glutamicibacter sp. KBP.AS.269 27f + Un1492r 1100r Rhodococcus sp. KBP.AS.270 27f + Un1492r 1100r Stenotrophomonas maltophilia KBP.AS.271 27f + Un1492r 1100r Bacillus sp. KBP.AS.272 27f + Un1492r 1100r Bacillus megaterium KBP.AS.275 27f + Un1492r 1100r Microbacterium paraoxydans KBP.AS.282 27f + Un1492r 1100r Pseudomonas sp. KBP.AS.283 27f + Un1492r 1100r Arthrobacter ginsengisoli KBP.AS.284 341f + 805r 805r Pseudarthrobacter scleromae KBP.AS.285 27f + Un1492r 1100r Brevibacterium epidermidis KBP.AS.389 27f + Un1492r 1100r Bacillus simplex KBP.AS.390 27f + Un1492r 1100r Rhodococcus sp. Geosciences 2020, 10, 67 3 of 25 KBP.AS.391 341f + 805r 805r Klebsiella sp. KBP.AS.392 27f + Un1492r 1100r Microbacterium sp. KBP.AS.393 27f + Un1492r 1100r Arthrobacter sulfonivorans KBP.AS.394 27f + Un1492r 1100r Microbacterium flavescens KBP.AS.395 27f + Un1492r 1100r Acinetobacter pittii KBP.AS.396 27f + 537r 537r Bacillus sp. KBP.AS.397 27f + Un1492r 1100r Microbacterium oxydans KBP.AS.398 27f + Un1492r 1100r Stenotrophomonas rhizophila KBP.AS.399 341f + 805r 805r Microbacterium sp. KBP.AS.400 341f + 805r 805r Pseudomonas putida KBP.AS.401 27f + Un1492r 1100r Stenotrophomonas maltophilia KBP.AS.402 27f + Un1492r 1100r Stenotrophomonas maltophilia KBP.AS.403 27f + 537r 537r Rhodococcus sp. KBP.AS.404 27f + Un1492r 1100r Micrococcus sp. KBP.AS.413 27f + Un1492r 1100r Kocuria rosea KBP.AS.414 341f + 805r 805r Bacillus sp. KBP.AS.417 27f + 537r 537r Pseudomonas frederiksbergensis KBP.AS.471 27f + Un1492r 1100r Microbacterium pumilum KBP.AS.472 27f + Un1492r 1100r Microbacterium pumilum KBP.AS.473 27f + Un1492r 1100r Bacillus sp. KBP.AS.474 341f + 805r 805r Pseudomonas frederiksbergensis KBP.AS.475 27f + Un1492r 1100r Bacillus simplex KBP.AS.476 Identification was carried out according to phenotypic characters. Pseudomonas sp. KBP.AS.477 341f + 805r 805r Micrococcus sp. KBP.AS.478 27f + Un1492r 1100r Brachybacterium sp. KBP.AS.479 341f + 805r 805r Brevibacterium aureum KBP.AS.480 27f + Un1492r 1100r Brevibacterium luteolum KBP.AS.481 27f + Un1492r 1100r Bacillus sp. KBP.AS.482 341f + 805r 805r Bacillus sp. KBP.AS.483 27f + Un1492r 1100r Brevibacillus brevis KBP.AS.484 27f + Un1492r 1100r Bacillus sp. KBP.AS.485 27f + Un1492r 1100r Bacillus sp. KBP.AS.486 341f + 805r 805r Pseudarthrobacter sp. KBP.AS.487 27f + Un1492r 1100r Pseudarthrobacter sp. KBP.AS.488 27f + Un1492r 1100r Leucobacter aridicollis KBP.AS.489 341f + 805r 805r Pseudochrobactrum sp. KBP.AS.490 27f + 537r 537r Pseudomonas sp. KBP.AS.491 27f + Un1492r 1100r Kocuria rosea KBP.AS.492 27f + Un1492r 1100r Arthrobacter ginsengisoli KBP.AS.493 27f + Un1492r 1100r Ochrobactrum thiophenivorans KBP.AS.494 27f + Un1492r 1100r Agrococcus jenensis KBP.AS.495 27f + Un1492r 1100r Dietzia cinnamea KBP.AS.496 27f + Un1492r 1100r Leucobacter aridicollis KBP.AS.497 Identification was carried out according to phenotypic characters. Micrococcus sp. KBP.AS.498 Identification was carried out according to phenotypic characters. Bacillus sp. KBP.AS.499 27f + Un1492r 1100r Paracoccus marcusii KBP.AS.500 27f + 537r 537r Staphylococcus epidermidis KBP.AS.501 341f + 805r 805r Bacillus sp. KBP.AS.502 27f + 537r 537r Staphylococcus epidermidis KBP.AS.503 27f + Un1492r 1100r Micrococcus terreus KBP.AS.505 27f + 537r 537r Dietzia cinnamea KBP.AS.506 27f + Un1492r 1100r Methylobacterium sp. KBP.AS.511 Identification was carried out according to phenotypic characters. Arthrobacter sp. KBP.AS.513 27f + Un1492r 1100r Leucobacter sp. KBP.AS.514 27f + Un1492r 1100r Brevibacterium sp. KBP.AS.516 341f + 805r 805r Pseudomonas sp. KBP.AS.519 27f + Un1492r 1100r Chryseobacterium kwangjuense KBP.AS.521 341f + 805r 805r Streptomyces sp. KBP.AS.522 341f + 805r 805r Streptomyces sp. KBP.AS.523 27f + Un1492r 1100r Microbacterium oxydans KBP.AS.525 27f + Un1492r 1100r Pseudarthrobacter siccitolerans KBP.AS.526 341f + 805r 805r Pseudomonas oryzihabitans KBP.AS.721 27f + Un1492r 1100r Planomicrobium sp. KBP.AS.722 27f + Un1492r 1100r Planomicrobium okeanokoites KBP.AS.723 27f + Un1492r 1100r Tsukamurella tyrosinosolvens KBP.AS.881 27f + Un1492r 1100r Arthrobacter sp. Geosciences 2020, 10, 67 4 of 25 KBP.AS.882 27f + Un1492r 1100r Arthrobacter ginsengisoli KBP.AS.885 341f + 805r 805r Pseudomonas sp. KBP.AS.886 341f + 805r 805r Pseudomonas sp. KBP.AS.887 27f + Un1492r 1100r Arthrobacter ginsengisoli KBP.AS.894 27f + Un1492r 1100r Arthrobacter ginsengisoli Table S2. Taxonomical affiliation of isolated bacteria. Strain— Sample‐Medium‐ GenBank Cultivation BLAST Search Results Taxonomic Affiliation Accession Temperature Number Bacillus subtilis [CP025941] 97.99% KBP.AS.110 Ice‐PYG‐25 °C Bacillus subtilis [CP002905] 97.99% Bacillus sp. MN093986 Bacillus subtilis [MK696406] 97.88% Bacillus pumilus [CP011007] 99.57% KBP.AS.112 Bacillus safensis [KT274778] 99.46% Ice‐PYG‐25 °C Bacillus sp. MN093987 Bacillus pumilus [MK696261] 99.46% Bacillus safensis [MK696252] 99.46% Ochrobactrum sp. [MG835335] 99.89% KBP.AS.113 Ice‐PYG‐25 °C Ochrobactrum sp. [MF754148] 99.89% Ochrobactrum sp. MN093988 Ochrobactrum sp. [CP022604] 99.89% Arthrobacter ginsengisoli [MH667851] 99.79% KBP.AS.122 Moraine & Ice‐PYG‐ Arthrobacter sp. [MH714681] 99.79% Arthrobacter ginsengisoli MN093989 25 °C Arthrobacter ginsengisoli [MH482302] 99.79% Stenotrophomonas sp. [MH498431] 97.20% Moraine & Ice‐PYG‐ KBP.AS.220 Stenotrophomonas maltophilia [MF381040] 96.88% Stenotrophomonas sp. 25 °C Stenotrophomonas sp. [CP037883] 96.88% Micrococcus sp. [MH734556] 100.00% KBP.AS.230 Moraine & Ice‐PYG‐ Uncultured Micrococcus sp. [MG052577] 99.75% Micrococcus sp. MN093990 25 °C Micrococcus sp. [JX239759] 99.49% Bacillus pumilus [MK696261] 100.00% KBP.AS.231 Moraine & Ice‐PYG‐ Bacillus pumilus [MK696249] 100.00% Bacillus pumilus MN093991 25 °C Bacillus pumilus [MK696242] 100% Micrococcus endophyticus [MK578827] 100.00% KBP.AS.232 Moraine & Ice‐PYG‐ Micrococcus luteus [MH778045] 100.00% Micrococcus sp. MN093992 25°C Micrococcus sp. [MH707206] 100.00% Identification was carried out according to phenotypic KBP.AS.233 Ice‐PYG‐25 °C Rhodococcus sp. characters Bacillus infantis [MK571885] 99.52% KBP.AS.234 Ice‐PYG‐25 °C Bacillus infantis [MK241868] 99.52% Bacillus infantis MN093993 Bacillus infantis [MG892784] 99.52% Identification was carried
Recommended publications
  • Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
    Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr.
    [Show full text]
  • Antibiotic Resistant Bacteria in Water Environments in Louisville, Kentucky
    University of Louisville ThinkIR: The University of Louisville's Institutional Repository College of Arts & Sciences Senior Honors Theses College of Arts & Sciences 5-2018 Antibiotic resistant bacteria in water environments in Louisville, Kentucky. Amy Priest University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/honors Part of the Environmental Microbiology and Microbial Ecology Commons Recommended Citation Priest, Amy, "Antibiotic resistant bacteria in water environments in Louisville, Kentucky." (2018). College of Arts & Sciences Senior Honors Theses. Paper 173. Retrieved from https://ir.library.louisville.edu/honors/173 This Senior Honors Thesis is brought to you for free and open access by the College of Arts & Sciences at ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in College of Arts & Sciences Senior Honors Theses by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. Antibiotic Resistant Bacteria in Water Environments in Louisville, Kentucky: An Analysis of Common Genera and Community Diversity By Amy Priest Submitted in partial fulfillment of the requirements for Graduation summa cum laude and for Graduation with Honors from the Department of Biology University of Louisville May, 2018 1 Table of Contents Abstract ..........................................................................................................................................
    [Show full text]
  • Characterization of the Dominant Bacterial Communities Associated with Terrestrial Isopod Species Based on 16S Rdna Analysis by PCR-DGGE
    Open Journal of Ecology, 2018, 8, 495-509 http://www.scirp.org/journal/oje ISSN Online: 2162-1993 ISSN Print: 2162-1985 Characterization of the Dominant Bacterial Communities Associated with Terrestrial Isopod Species Based on 16S rDNA Analysis by PCR-DGGE Delhoumi Majed, Zaabar Wahiba, Bouslama Mohamed Fadhel, Achouri Mohamed Sghaier* Laboratory of Bio-Ecology and Evolutionary Systematics, Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia How to cite this paper: Majed, D., Wahi- Abstract ba, Z., Fadhel, B.M. and Sghaier, A.M. (2018) Characterization of the Dominant Bacterial From the marine environment, woodlice gradually colonized terrestrial areas Communities Associated with Terrestrial benefiting from the symbiotic relationship with the bacterial community that Isopod Species Based on 16S rDNA Analy- they host. Indeed, they constitute the only group of Oniscidea suborder that sis by PCR-DGGE. Open Journal of Ecolo- gy, 8, 495-509. has succeed to accomplish their lives in terrestrial even desert surfaces. Here- https://doi.org/10.4236/oje.2018.89030 in they play an important role in the dynamic of ecosystems and the decom- position of litter. So to enhance our understanding of the sea-land transition Received: January 30, 2018 and other process like decomposition and digestion of detritus, we studied Accepted: September 15, 2018 Published: September 18, 2018 the bacterial community associated with 11 specimens of terrestrial isopods belonging to six species using a Culture independent approach (DGGE). Copyright © 2018 by authors and Bands sequencing showed that the cosmopolitan species Porcellionides prui- Scientific Research Publishing Inc. nosus has the most microbial diversity.
    [Show full text]
  • Ochrobactrum Rhizosphaerae Sp. Nov. and Ochrobactrum Thiophenivorans Sp
    International Journal of Systematic and Evolutionary Microbiology (2008), 58, 1426–1431 DOI 10.1099/ijs.0.65407-0 Ochrobactrum rhizosphaerae sp. nov. and Ochrobactrum thiophenivorans sp. nov., isolated from the environment Peter Ka¨mpfer,1 Angela Sessitsch,2 Michael Schloter,3 Birgit Huber,4 Hans-Ju¨rgen Busse4 and Holger C. Scholz5 Correspondence 1Institut fu¨r Angewandte Mikrobiologie, Justus-Liebig-Universita¨t Giessen, D-35392 Giessen, Peter Ka¨mpfer Germany peter.kaempfer@umwelt. 2Austrian Research Centers GmbH, Department of Bioresources, A-2444 Seibersdorf, Austria uni-giessen.de 3Helmholtz Zentrum Mu¨nchen, German Research Center for Environmental Health, Terrestrial Ecogenetics, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany 4Institut fu¨r Bakteriologie, Mykologie und Hygiene, Veterina¨rmedizinische Universita¨t Wien, A-1210 Wien, Austria 5Bundeswehr Institute of Microbiology, D-80937 Munich, Germany Two Gram-negative, rod-shaped, non-spore-forming bacteria, PR17T and DSM 7216T, isolated from the potato rhizosphere and an industrial environment, respectively, were studied for their taxonomic allocation. By rrs (16S rRNA) gene sequencing, these strains were shown to belong to the Alphaproteobacteria, most closely related to Ochrobactrum pseudogrignonense (98.4 and 99.3 % similarity to the type strain, respectively). Chemotaxonomic data (major ubiquinone Q-10; major polyamines spermidine, sym-homospermidine and putrescine; major polar lipids phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol and phosphatidylcholine and the Ochrobactrum-specific unidentified aminolipid AL2; major fatty acids C18 : 1v7c and C19 : 0 cyclo v8c) supported the genus affiliation. The results of DNA–DNA hybridization and physiological and biochemical tests allowed genotypic and phenotypic differentiation of the isolates from all hitherto-described Ochrobactrum species. Hence, both isolates represent novel species of the genus Ochrobactrum, for which the names Ochrobactrum rhizosphaerae sp.
    [Show full text]
  • Culturable Aerobic and Facultative Bacteria from the Gut of the Polyphagic Dung Beetle Thorectes Lusitanicus
    Insect Science (2015) 22, 178–190, DOI 10.1111/1744-7917.12094 ORIGINAL ARTICLE Culturable aerobic and facultative bacteria from the gut of the polyphagic dung beetle Thorectes lusitanicus Noemi Hernandez´ 1,Jose´ A. Escudero1, Alvaro´ San Millan´ 1, Bruno Gonzalez-Zorn´ 1, Jorge M. Lobo2,Jose´ R. Verdu´ 3 and Monica´ Suarez´ 1 1Department Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avenida Puerta de Hierro s/n, Madrid, CP 28040, 2Department Biogeograf´ıa y Cambio Global, Museo Nacional de Ciencias Naturales, CSIC, JoseGuti´ errez´ Abascal 2, Madrid 28006, and 3I.U.I. CIBIO (Centro Iberoamericano de la Biodiversidad), Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, Alicante 03080, Spain Abstract Unlike other dung beetles, the Iberian geotrupid, Thorectes lusitanicus, exhibits polyphagous behavior; for example, it is able to eat acorns, fungi, fruits, and carrion in addition to the dung of different mammals. This adaptation to digest a wider diet has physiological and developmental advantages and requires key changes in the composition and diversity of the beetle’s gut microbiota. In this study, we isolated aerobic, facultative anaerobic, and aerotolerant microbiota amenable to grow in culture from the gut contents of T. lusitanicus and resolved isolate identity to the species level by sequencing 16S rRNA gene fragments. Using BLAST similarity searches and maximum likelihood phylogenetic analyses, we were able to reveal that the analyzed fraction (culturable, aerobic, facultative anaerobic, and aerotolerant) of beetle gut microbiota is dominated by the phyla Pro- teobacteria, Firmicutes,andActinobacteria. Among Proteobacteria, members of the order Enterobacteriales (Gammaproteobacteria) were the most abundant.
    [Show full text]
  • Brucella Genomics: Macro and Micro Evolution
    International Journal of Molecular Sciences Review Brucella Genomics: Macro and Micro Evolution Marcela Suárez-Esquivel 1 , Esteban Chaves-Olarte 2, Edgardo Moreno 1 and Caterina Guzmán-Verri 1,2,* 1 Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 3000, Costa Rica; [email protected] (M.S.-E.); [email protected] (E.M.) 2 Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José 1180, Costa Rica; [email protected] * Correspondence: [email protected] Received: 1 September 2020; Accepted: 11 October 2020; Published: 20 October 2020 Abstract: Brucella organisms are responsible for one of the most widespread bacterial zoonoses, named brucellosis. The disease affects several species of animals, including humans. One of the most intriguing aspects of the brucellae is that the various species show a ~97% similarity at the genome level. Still, the distinct Brucella species display different host preferences, zoonotic risk, and virulence. After 133 years of research, there are many aspects of the Brucella biology that remain poorly understood, such as host adaptation and virulence mechanisms. A strategy to understand these characteristics focuses on the relationship between the genomic diversity and host preference of the various Brucella species. Pseudogenization, genome reduction, single nucleotide polymorphism variation, number of tandem repeats, and mobile genetic elements are unveiled markers for host adaptation and virulence. Understanding the mechanisms of genome variability in the Brucella genus is relevant to comprehend the emergence of pathogens. Keywords: Brucella; brucellosis; genome reduction; pseudogene; IS711; SNPs 1. Introduction The Proteobacteria phylum represents the most extensive bacteria domain known.
    [Show full text]
  • Response of Gut Microbiota to Feed-Borne Bacteria Depends on Fish
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.24.265785; this version posted August 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Response of gut microbiota to feed-borne bacteria depends on fish 2 growth rate: a snapshot survey of farmed juvenile Takifugu obscurus 3 4 Xingkun Jin1, Ziwei Chen1, Yan Shi1, Jian-Fang Gui1,2, Zhe Zhao1*. 5 6 1Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 7 210098, Jiangsu, China; 2State Key Laboratory of Freshwater Ecology and 8 Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, 9 Chinese Academy of Sciences, Wuhan, 430072, Hubei, China. 10 11 Running title: Snapshot of gut microbiota in farmed obscure puffer 12 13 Authors’ Email address: 14 Xingkun Jin, [email protected] 15 Ziwei Chen, [email protected] 16 Yan Shi, [email protected] 17 Jian-Fang Gui, [email protected] 18 *To whom correspondence should be addressed: Zhe Zhao, Fax: +86 2583787653; 19 E-mail: [email protected]. 20 21 Keywords: aquaculture, ecological process, environment, feed-borne bacteria, fish 22 growth, obscure puffer 23 24 25 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.24.265785; this version posted August 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • International Code of Nomenclature of Prokaryotes
    2019, volume 69, issue 1A, pages S1–S111 International Code of Nomenclature of Prokaryotes Prokaryotic Code (2008 Revision) Charles T. Parker1, Brian J. Tindall2 and George M. Garrity3 (Editors) 1NamesforLife, LLC (East Lansing, Michigan, United States) 2Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (Braunschweig, Germany) 3Michigan State University (East Lansing, Michigan, United States) Corresponding Author: George M. Garrity ([email protected]) Table of Contents 1. Foreword to the First Edition S1–S1 2. Preface to the First Edition S2–S2 3. Preface to the 1975 Edition S3–S4 4. Preface to the 1990 Edition S5–S6 5. Preface to the Current Edition S7–S8 6. Memorial to Professor R. E. Buchanan S9–S12 7. Chapter 1. General Considerations S13–S14 8. Chapter 2. Principles S15–S16 9. Chapter 3. Rules of Nomenclature with Recommendations S17–S40 10. Chapter 4. Advisory Notes S41–S42 11. References S43–S44 12. Appendix 1. Codes of Nomenclature S45–S48 13. Appendix 2. Approved Lists of Bacterial Names S49–S49 14. Appendix 3. Published Sources for Names of Prokaryotic, Algal, Protozoal, Fungal, and Viral Taxa S50–S51 15. Appendix 4. Conserved and Rejected Names of Prokaryotic Taxa S52–S57 16. Appendix 5. Opinions Relating to the Nomenclature of Prokaryotes S58–S77 17. Appendix 6. Published Sources for Recommended Minimal Descriptions S78–S78 18. Appendix 7. Publication of a New Name S79–S80 19. Appendix 8. Preparation of a Request for an Opinion S81–S81 20. Appendix 9. Orthography S82–S89 21. Appendix 10. Infrasubspecific Subdivisions S90–S91 22. Appendix 11. The Provisional Status of Candidatus S92–S93 23.
    [Show full text]
  • Ultramicrobacteria from Nitrate- and Radionuclide-Contaminated Groundwater
    sustainability Article Ultramicrobacteria from Nitrate- and Radionuclide-Contaminated Groundwater Tamara Nazina 1,2,* , Tamara Babich 1, Nadezhda Kostryukova 1, Diyana Sokolova 1, Ruslan Abdullin 1, Tatyana Tourova 1, Vitaly Kadnikov 3, Andrey Mardanov 3, Nikolai Ravin 3, Denis Grouzdev 3 , Andrey Poltaraus 4, Stepan Kalmykov 5, Alexey Safonov 6, Elena Zakharova 6, Alexander Novikov 2 and Kenji Kato 7 1 Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; [email protected] (T.B.); [email protected] (N.K.); [email protected] (D.S.); [email protected] (R.A.); [email protected] (T.T.) 2 V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, 119071 Moscow, Russia; [email protected] 3 Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; [email protected] (V.K.); [email protected] (A.M.); [email protected] (N.R.); [email protected] (D.G.) 4 Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119071 Moscow, Russia; [email protected] 5 Chemical Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia; [email protected] 6 Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia; [email protected] (A.S.); [email protected] (E.Z.) 7 Faculty of Science, Department of Geosciences, Shizuoka University, 422-8529 Shizuoka, Japan; [email protected]
    [Show full text]
  • Identification of Previously Unknown Bacterial Species by MALDI-TOF MS
    Identification of previously unknown bacterial species by MALDI-TOF MS 1 Isala, Zwolle, NL 2 Meander MC, Amersfoort, NL ECCMID 2017 - EV0223 3 Rijnstate, Velp, NL 1 2 3 1 [email protected] Marjan J. Bruins , Eric (H) S. Doppenberg , Niels Peterse , Maurice J.H.M. Wolfhagen Introduction Results Discussion In clinical microbiology, MALDI-TOF MS Many new bacteria were identified by MALDI-TOF MS (Table 1). Using MALDI-TOF MS results in: has become an important means of - Far easier and faster identification. bacterial identification, enabling faster Table 1. Examples of previously unknown species identified by MALDI-TOF. - Identification of more and previously reporting of culture results. unknown pathogens. Species Family Isolated from Reference - Identification of relevant micro- The database entries used in MALDI-TOF Gramnegative Achromobacter spanius organisms previously considered MS are based on 16S rRNA gene Alcaligenaceae blood, tissue, wound Int. J. Syst. Evol. Microbiol. 53:1823 Acidovorax temperans Comamonadaceae urine, oral cavity Int. J. Syst. Bacteriol. 40:396 commensal. sequencing, which makes this technique Bifidobacterium scardovii Bifidobacteriaceae blood, urine Int. J. Syst. Evol. Microbiol. 52:998 - A need for standardized antimicrobial more discriminatory than biochemical Campylobacter lanienae Campylobacteraceae stool Int. J. Syst. Evol. Microbiol. 50:870 Fusobacterium naviforme Fusobacteriaceae blood, abscess, oral cavity Int. J. Syst. Bacteriol. 30:302 susceptibility testing methods including methods. As a result, more pathogenic Haemophilus pittmaniae Pasteurellaceae sputum Int. J. Syst. Evol. Microbiol. 55:455 critical breakpoints for all relevant microorganisms are identified correctly than Kerstersia gyiorum Alcaligenaceae leg wounds, ear Int. J. Syst. Evol. Microbiol. 53:1830 Massilia timonae species.
    [Show full text]
  • Entomopathogenic Nematode-Associated Microbiota: from Monoxenic Paradigm to Pathobiome Jean-Claude Ogier†, Sylvie Pagès†, Marie Frayssinet and Sophie Gaudriault*
    Ogier et al. Microbiome (2020) 8:25 https://doi.org/10.1186/s40168-020-00800-5 RESEARCH Open Access Entomopathogenic nematode-associated microbiota: from monoxenic paradigm to pathobiome Jean-Claude Ogier†, Sylvie Pagès†, Marie Frayssinet and Sophie Gaudriault* Abstract Background: The holistic view of bacterial symbiosis, incorporating both host and microbial environment, constitutes a major conceptual shift in studies deciphering host-microbe interactions. Interactions between Steinernema entomopathogenic nematodes and their bacterial symbionts, Xenorhabdus, have long been considered monoxenic two partner associations responsible for the killing of the insects and therefore widely used in insect pest biocontrol. We investigated this “monoxenic paradigm” by profiling the microbiota of infective juveniles (IJs), the soil-dwelling form responsible for transmitting Steinernema-Xenorhabdus between insect hosts in the parasitic lifecycle. Results: Multigenic metabarcoding (16S and rpoB markers) showed that the bacterial community associated with laboratory-reared IJs from Steinernema carpocapsae, S. feltiae, S. glaseri and S. weiseri species consisted of several Proteobacteria. The association with Xenorhabdus was never monoxenic. We showed that the laboratory-reared IJs of S. carpocapsae bore a bacterial community composed of the core symbiont (Xenorhabdus nematophila) together with a frequently associated microbiota (FAM) consisting of about a dozen of Proteobacteria (Pseudomonas, Stenotrophomonas, Alcaligenes, Achromobacter, Pseudochrobactrum, Ochrobactrum, Brevundimonas, Deftia, etc.). We validated this set of bacteria by metabarcoding analysis on freshly sampled IJs from natural conditions. We isolated diverse bacterial taxa, validating the profile of the Steinernema FAM. We explored the functions of the FAM members potentially involved in the parasitic lifecycle of Steinernema. Two species, Pseudomonas protegens and P. chlororaphis, displayed entomopathogenic properties suggestive of a role in Steinernema virulence and membership of the Steinernema pathobiome.
    [Show full text]
  • Data-Mining of Antibiotic Resistance Genes Provides Insight Into the Community
    bioRxiv preprint doi: https://doi.org/10.1101/246033; this version posted January 10, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Data-mining of Antibiotic Resistance Genes Provides Insight into the Community 2 Structure of Ocean Microbiome 3 Shiguang Hao1,$, Pengshuo Yang1,$, Maozhen Han1,$, Junjie Xu1, Shaojun Yu1, Chaoyun 4 Chen1, Wei-Hua Chen1, Houjin Zhang1,*, Kang Ning1,* 5 1Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life 6 Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 7 430074, China 8 9 $ These authors contributed equally to this work. 10 * Corresponding author. E-mail: [email protected], [email protected]. 11 1 bioRxiv preprint doi: https://doi.org/10.1101/246033; this version posted January 10, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 12 Abstract 13 Background:Antibiotics have been spread widely in environments, asserting profound 14 effects on environmental microbes as well as antibiotic resistance genes (ARGs) within these 15 microbes. Therefore, investigating the associations between ARGs and bacterial communities 16 become an important issue for environment protection. Ocean microbiomes are potentially 17 large ARG reservoirs, but the marine ARG distribution and its associations with bacterial 18 communities remain unclear.
    [Show full text]