About Sleep's Role in Memory

Total Page:16

File Type:pdf, Size:1020Kb

About Sleep's Role in Memory Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2013 About sleep’s role in memory Rasch, Björn ; Born, Jan Abstract: Over more than a century of research has established the fact that sleep benefits the retention of memory. In this review we aim to comprehensively cover the field of ”sleep and memory” research by providing a historical perspective on concepts and a discussion of more recent key findings. Whereas ini- tial theories posed a passive role for sleep enhancing memories by protecting them from interfering stimuli, current theories highlight an active role for sleep in which memories undergo a process of system con- solidation during sleep. Whereas older research concentrated on the role of rapid-eye-movement (REM) sleep, recent work has revealed the importance of slow-wave sleep (SWS) for memory consolidation and also enlightened some of the underlying electrophysiological, neurochemical, and genetic mechanisms, as well as developmental aspects in these processes. Specifically, newer findings characterize sleep as abrain state optimizing memory consolidation, in opposition to the waking brain being optimized for encoding of memories. Consolidation originates from reactivation of recently encoded neuronal memory represen- tations, which occur during SWS and transform respective representations for integration into long-term memory. Ensuing REM sleep may stabilize transformed memories. While elaborated with respect to hippocampus-dependent memories, the concept of an active redistribution of memory representations from networks serving as temporary store into long-term stores might hold also for non-hippocampus- dependent memory, and even for nonneuronal, i.e., immunological memories, giving rise to the idea that the offline consolidation of memory during sleep represents a principle of long-term memory formation established in quite different physiological systems. DOI: https://doi.org/10.1152/physrev.00032.2012 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-77770 Journal Article Originally published at: Rasch, Björn; Born, Jan (2013). About sleep’s role in memory. Physiological reviews, 93(2):681-766. DOI: https://doi.org/10.1152/physrev.00032.2012 Physiol Rev 93: 681–766, 2013 doi:10.1152/physrev.00032.2012 ABOUT SLEEP’S ROLE IN MEMORY Björn Rasch and Jan Born Division of Biopsychology, Neuroscience Center Zurich and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; and Institute of Medical Psychology and Behavioral Neurobiology, and Center for Integrative Neuroscience, University of Tuebingen, Tuebingen, Germany Rasch B, Born J. About Sleep’s Role in Memory. Physiol Rev 93: 681–766, 2013; doi:10.1152/physrev.00032.2012.—Over more than a century of research has established the fact that sleep benefits the retention of memory. In this review we aim to comprehensively cover the field of “sleep and memory” research by providing a historical perspective on concepts and a discussion of more recent key findings. LWhereas initial theories posed a passive role for sleep enhancing memories by protecting them from interfering stimuli, current theories highlight an active role for sleep in which memories undergo a process of system consolidation during sleep. Whereas older research concentrated on the role of rapid-eye-movement (REM) sleep, recent work has revealed the importance of slow-wave sleep (SWS) for memory consolidation and also enlightened some of the underlying electrophysio- logical, neurochemical, and genetic mechanisms, as well as developmental aspects in these processes. Specifically, newer findings characterize sleep as a brain state optimizing memory consolidation, in opposition to the waking brain being optimized for encoding of memories. Consol- idation originates from reactivation of recently encoded neuronal memory representations, which occur during SWS and transform respective representations for integration into long-term mem- ory. Ensuing REM sleep may stabilize transformed memories. While elaborated with respect to hippocampus-dependent memories, the concept of an active redistribution of memory represen- tations from networks serving as temporary store into long-term stores might hold also for non-hippocampus-dependent memory, and even for nonneuronal, i.e., immunological memories, giving rise to the idea that the offline consolidation of memory during sleep represents a principle of long-term memory formation established in quite different physiological systems. I. INTRODUCTION 681 A. Sleep II. OVERVIEW OF APPROACHES AND... 684 III. MEMORY REACTIVATIONS DURING... 695 Sleep is defined as a natural and reversible state of reduced IV. SLEEP-SPECIFIC ELECTRICAL... 702 responsiveness to external stimuli and relative inactivity, V. NEUROCHEMICAL SIGNALING... 713 accompanied by a loss of consciousness. Sleep occurs in VI. GENETIC APPROACHES TO... 719 regular intervals and is homeostatically regulated, i.e., a loss VII. DEVELOPMENTAL ASPECTS OF... 726 or delay of sleep results in subsequently prolonged sleep VIII. SLEEP-DEPENDENT MEMORY... 733 (113). Sleep deprivation and sleep disruptions cause severe IX. CONCLUDING REMARKS 736 cognitive and emotional problems (142, 634, 1243), and animals deprived of sleep for several weeks show tempera- I. INTRODUCTION ture and weight dysregulation and ultimately die of infec- tions and tissue lesions (973). Sleep probably occurs in all The capability to form memory is critical to the strategic vertebrates, including birds, fishes, and reptiles, and adaptation of an organism to changing environmental de- sleeplike states are similarly observed in invertebrates like mands. Observations indicating that sleep benefits memory flies, bees, and cockroaches (209). date back to the beginning of experimental memory re- search, and since then have been fitted with quite different Sleep in mammals consists of two core sleep stages: slow- concepts. This review targets this field of “sleep and mem- wave sleep (SWS) and rapid-eye-movement (REM) sleep, ory” research, which has experienced a unique renaissance which alternate in a cyclic manner (FIGURE 1A). In human during the last three decades. Although we have aimed at nocturnal sleep, SWS is predominant during the early part comprehensively covering the field, we might have missed and decreases in intensity and duration across the sleep out or overlooked some aspects, owing to the vast progress period, whereas REM sleep becomes more intense and exten- achieved in the last years. Before we begin, we will briefly sive towards the end of the sleep period. SWS is hallmarked by introduce the core concepts of sleep and memory, respec- slow high-amplitude EEG oscillations (slow wave activity, tively. SWA), whereas REM sleep (also termed paradoxical sleep) is 0031-9333/13 Copyright © 2013 the American Physiological Society 681 BJÖRN RASCH AND JAN BORN Sleep stages A W REM sleep REM N1 N2 N3 Slow wave sleep Early sleep Late sleep 23.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 h B Field potential oscillations Slow oscillationSpindle Sharp wave-ripple PGO wave Theta activity up-state down-state C Neuromodulators Acetylcholine Acetylcholine Noradrenaline/ Noradrenaline/ Serotonin Serotonin Cortisol Cortisol FIGURE 1. Typical human sleep profile and sleep-related signals. A: sleep is characterized by the cyclic occurrence of rapid-eye-movement (REM) sleep and non-REM sleep. Non-REM sleep includes slow-wave sleep (SWS) corresponding to N3, and lighter sleep stages N1 and N2 (591). According to an earlier classification system by Rechtschaffen and Kales (974), SWS was divided into stage 3 and stage 4 sleep. The first part of the night (early sleep) is dominated by SWS, whereas REM sleep prevails during the second half (late sleep). B: the most prominent electrical field potential oscillations during SWS are the neocortical slow oscillations (ϳ0.8 Hz), thalamocortical spindles (waxing and waning activity between 10–15 Hz), and the hippocampal sharp wave-ripples (SW-R), i.e., fast depolarizing waves that are generated in CA3 and are superimposed by high-frequency (100–300 Hz) ripple oscillation. REM sleep, in animals, is characterized by ponto-geniculo- occipital (PGO) waves, which are associated with intense bursts of synchronized activity propagating from the pontine brain stem mainly to the lateral geniculate nucleus and visual cortex, and by hippocampal theta (4–8 Hz) activity. In humans, PGO and theta activity are less readily identified. C: sleep is accompanied by a dramatic change in activity levels of different neurotransmitters and neuromodulators. Compared with waking, cholin- ergic activity reaches a minimum during SWS, whereas levels during REM sleep are similar or even higher than those during waking. A similar pattern is observed for the stress hormone cortisol. Aminergic activity is high during waking, intermediate during SWS, and minimal during REM sleep. [Modified from Diekelmann and Born (293).] 682 Physiol Rev • VOL 93 • APRIL 2013 • www.prv.org SLEEP AND MEMORY characterized by wakelike fast and low-amplitude oscillatory integrate newly encoded memory into a long-term store. brain activity. In addition, REM sleep is characterized by pha- Encoding and consolidation might be mutually exclusive sic REMs and by muscle atonia. Almost 50% of sleep in adult processes inasmuch they draw on overlapping neuronal re- humans is marked by a lighter form of non-REM sleep (stage
Recommended publications
  • Remembering Müller and Pilzecker
    PERSPECTIVE Hilde A. Lechner,1 100 Years of Consolidation— Larry R. Squire,2 and John H. Byrne Remembering Mu¨ller and Pilzecker 1W.M. Keck Center for the Neurobiology of Learning and Memory Department of Neurobiology and Anatomy University of Texas–Houston Medical School Houston, Texas 77030 USA 2Veterans Affairs Medical Center, San Diego and Departments of Psychiatry, Neurosciences, and Psychology University of California, San Diego La Jolla, California 92093 USA Introduction The origin of the concept of memory consolidation and the introduction of the term “consolidirung” (consolidation) to the modern science of memory are generally credited to Georg Elias Mu¨ller (1850–1934), professor at the University of Göttingen, Germany, and his student Alfons Pilzecker. Their seminal monograph “Experimentelle Beitra¨ge zur Lehre vom Geda¨chtnis” (Experimental Contributions to the Science of Memory), published in 1900, proposed that learning does not induce instantaneous, permanent memories but that memory takes time to be fixed (or consolidated). Consequently, memory remains vulnerable to disruption for a period of time after learning. Georg Mu¨ller was among the founders of experimental psychology. Inspired by the work of Gustav Fechner (1801–1887), Wilhelm Wundt (1832–1920), and Herman Ebbinghaus (1859–1909),1 he was an early advocate of the view that mental function results from the action of matter, and that learning and memory should thus exhibit lawful properties. In their 300-page monograph, Mu¨ller and Pilzecker reported 40 experiments, carried out between 1892 and 1900, which were designed to identify the laws that govern memory formation and retrieval. Although Mu¨ller and Pilzecker have been frequently acknowledged for introducing the concept of memory consolidation,2 their monograph has not been translated and knowledge of their methods and experimental findings has faded with the passing of almost a century.
    [Show full text]
  • Implicit Memory in Amnesic Patients: When Is Auditory Priming Spared?
    Journal of the International Neuropsychological Society (1995), 1, 434-442. Copyright © 1995 INS. Published by Cambridge University Press. Printed in the USA. Implicit memory in amnesic patients: When is auditory priming spared? DANIEL L. SCHACTER1 AND BARBARA CHURCH2 1 Harvard University and Memory Disorders Research Center, Veterans Administration Medical Center, Cambridge, MA 02138 2 University of Illinois, Champaign, IL 61820 (RECEIVED February 16, 1995; ACCEPTED March 2, 1995) Abstract Amnesic patients often exhibit spared priming effects on implicit memory tests despite poor explicit memory. In previous research, we found normal auditory priming in amnesic patients on a task in which the magnitude of priming in control subjects was independent of whether speaker's voice was same or different at study and test, and found impaired voice-specific priming on a task in which priming in control subjects is higher when speaker's voice is the same at study and test than when it is different. The present experiments provide further evidence of spared auditory priming in amnesia, demonstrate that normal priming effects are not an artifact of low levels of baseline performance, and provide suggestive evidence that amnesic patients can exhibit voice-specific priming when experimental conditions do not require them to interactively bind together word and voice information. (JINS, 1995, 7, 434-442.) Keywords: Amnesia, Priming, Implicit memory Introduction jects heard a list of spoken words and judged either the category to which each word belongs (semantic encoding It is well known that amnesic patients can exhibit robust task) or the pitch of the speaker's voice (nonsemantic en- implicit memory despite impaired explicit memory.
    [Show full text]
  • Compare and Contrast Two Models Or Theories of One Cognitive Process with Reference to Research Studies
    ! The following sample is for the learning objective: Compare and contrast two models or theories of one cognitive process with reference to research studies. What is the question asking for? * A clear outline of two models of one cognitive process. The cognitive process may be memory, perception, decision-making, language or thinking. * Research is used to support the models as described. The research does not need to be outlined in a lot of detail, but underatanding of the role of research in supporting the models should be apparent.. * Both similarities and differences of the two models should be clearly outlined. Sample response The theory of memory is studied scientifically and several models have been developed to help The cognitive process describe and potentially explain how memory works. Two models that attempt to describe how (memory) and two models are memory works are the Multi-Store Model of Memory, developed by Atkinson & Shiffrin (1968), clearly identified. and the Working Memory Model of Memory, developed by Baddeley & Hitch (1974). The Multi-store model model explains that all memory is taken in through our senses; this is called sensory input. This information is enters our sensory memory, where if it is attended to, it will pass to short-term memory. If not attention is paid to it, it is displaced. Short-term memory Research. is limited in duration and capacity. According to Miller, STM can hold only 7 plus or minus 2 pieces of information. Short-term memory memory lasts for six to twelve seconds. When information in the short-term memory is rehearsed, it enters the long-term memory store in a process called “encoding.” When we recall information, it is retrieved from LTM and moved A satisfactory description of back into STM.
    [Show full text]
  • Episodic Memory in Transient Global Amnesia: Encoding, Storage, Or Retrieval Deficit?
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.66.2.148 on 1 February 1999. Downloaded from 148 J Neurol Neurosurg Psychiatry 1999;66:148–154 Episodic memory in transient global amnesia: encoding, storage, or retrieval deficit? Francis Eustache, Béatrice Desgranges, Peggy Laville, Bérengère Guillery, Catherine Lalevée, Stéphane SchaeVer, Vincent de la Sayette, Serge Iglesias, Jean-Claude Baron, Fausto Viader Abstract evertheless this division into processing stages Objectives—To assess episodic memory continues to be useful in helping understand (especially anterograde amnesia) during the working of memory systems”. These three the acute phase of transient global amne- stages may be defined in the following way: (1) sia to diVerentiate an encoding, a storage, encoding, during which perceptive information or a retrieval deficit. is transformed into more or less stable mental Methods—In three patients, whose am- representations; (2) storage (or consolidation), nestic episode fulfilled all current criteria during which mnemonic information is associ- for transient global amnesia, a neuro- ated with other representations and maintained psychological protocol was administered in long term memory; (3) retrieval, during which included a word learning task which the subject can momentarily reactivate derived from the Grober and Buschke’s mnemonic representations. These definitions procedure. will be used in the present study. Results—In one patient, the results sug- Regarding the retrograde amnesia of TGA, it gested an encoding deficit,
    [Show full text]
  • Auditory Feedback Blocks Memory Benefits of Cueing During Sleep
    ARTICLE Received 26 Feb 2015 | Accepted 25 Sep 2015 | Published 28 Oct 2015 DOI: 10.1038/ncomms9729 OPEN Auditory feedback blocks memory benefits of cueing during sleep Thomas Schreiner1,2, Mick Lehmann1,3 & Bjo¨rn Rasch1,2,4 It is now widely accepted that re-exposure to memory cues during sleep reactivates memories and can improve later recall. However, the underlying mechanisms are still unknown. As reactivation during wakefulness renders memories sensitive to updating, it remains an intriguing question whether reactivated memories during sleep also become susceptible to incorporating further information after the cue. Here we show that the memory benefits of cueing Dutch vocabulary during sleep are in fact completely blocked when memory cues are directly followed by either correct or conflicting auditory feedback, or a pure tone. In addition, immediate (but not delayed) auditory stimulation abolishes the characteristic increases in oscillatory theta and spindle activity typically associated with successful reactivation during sleep as revealed by high-density electroencephalography. We conclude that plastic processes associated with theta and spindle oscillations occurring during a sensitive period immediately after the cue are necessary for stabilizing reactivated memory traces during sleep. 1 Department of Psychology, University of Zurich, 8050 Zurich, Switzerland. 2 Department of Psychology, University of Fribourg, 1701 Fribourg, Switzerland. 3 Psychiatric University Hospital Zurich, Clinic of Affective Disorders and General Psychiatry, 8032 Zurich, Switzerland. 4 Zurich Center for Interdisciplinary Sleep Research (ZiS), 8091 Zurich, Switzerland. Correspondence and requests for materials should be addressed to B.R. (email: [email protected]). NATURE COMMUNICATIONS | 6:8729 | DOI: 10.1038/ncomms9729 | www.nature.com/naturecommunications 1 & 2015 Macmillan Publishers Limited.
    [Show full text]
  • Post-Encoding Stress Does Not Enhance Memory Consolidation: the Role of Cortisol and Testosterone Reactivity
    brain sciences Article Post-Encoding Stress Does Not Enhance Memory Consolidation: The Role of Cortisol and Testosterone Reactivity Vanesa Hidalgo 1,* , Carolina Villada 2 and Alicia Salvador 3 1 Department of Psychology and Sociology, Area of Psychobiology, University of Zaragoza, 44003 Teruel, Spain 2 Department of Psychology, Division of Health Sciences, University of Guanajuato, Leon 37670, Mexico; [email protected] 3 Department of Psychobiology and IDOCAL, University of Valencia, 46010 Valencia, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-978-645-346 Received: 11 October 2020; Accepted: 15 December 2020; Published: 16 December 2020 Abstract: In contrast to the large body of research on the effects of stress-induced cortisol on memory consolidation in young people, far less attention has been devoted to understanding the effects of stress-induced testosterone on this memory phase. This study examined the psychobiological (i.e., anxiety, cortisol, and testosterone) response to the Maastricht Acute Stress Test and its impact on free recall and recognition for emotional and neutral material. Thirty-seven healthy young men and women were exposed to a stress (MAST) or control task post-encoding, and 24 h later, they had to recall the material previously learned. Results indicated that the MAST increased anxiety and cortisol levels, but it did not significantly change the testosterone levels. Post-encoding MAST did not affect memory consolidation for emotional and neutral pictures. Interestingly, however, cortisol reactivity was negatively related to free recall for negative low-arousal pictures, whereas testosterone reactivity was positively related to free recall for negative-high arousal and total pictures.
    [Show full text]
  • Types of Memory and Models of Memory
    Inf1: Intro to Cognive Science Types of memory and models of memory Alyssa Alcorn, Helen Pain and Henry Thompson March 21, 2012 Intro to Cognitive Science 1 1. In the lecture today A review of short-term memory, and how much stuff fits in there anyway 1. Whether or not the number 7 is magic 2. Working memory 3. The Baddeley-Hitch model of memory hEp://www.cartoonstock.com/directory/s/ short_term_memory.asp March 21, 2012 Intro to Cognitive Science 2 2. Review of Short-Term Memory (STM) Short-term memory (STM) is responsible for storing small amounts of material over short periods of Nme A short Nme really means a SHORT Nme-- up to several seconds. Anything remembered for longer than this Nme is classified as long-term memory and involves different systems and processes. !!! Note that this is different that what we mean mean by short- term memory in everyday speech. If someone cannot remember what you told them five minutes ago, this is actually a problem with long-term memory. While much STM research discusses verbal or visuo-spaal informaon, the disNncNon of short vs. long-term applies to other types of sNmuli as well. 3/21/12 Intro to Cognitive Science 3 3. Memory span and magic numbers Amount of informaon varies with individual’s memory span = longest number of items (e.g. digits) that can be immediately repeated back in correct order. Classic research by George Miller (1956) described the apparent limits of short-term memory span in one of the most-cited papers in all of psychology.
    [Show full text]
  • Science Current Directions in Psychological
    Current Directions in Psychological Science http://cdp.sagepub.com/ A Theory About Why We Forget What We Once Knew John T. Wixted Current Directions in Psychological Science 2005 14: 6 DOI: 10.1111/j.0963-7214.2005.00324.x The online version of this article can be found at: http://cdp.sagepub.com/content/14/1/6 Published by: http://www.sagepublications.com On behalf of: Association for Psychological Science Additional services and information for Current Directions in Psychological Science can be found at: Email Alerts: http://cdp.sagepub.com/cgi/alerts Subscriptions: http://cdp.sagepub.com/subscriptions Reprints: http://www.sagepub.com/journalsReprints.nav Permissions: http://www.sagepub.com/journalsPermissions.nav >> Version of Record - Feb 1, 2005 What is This? Downloaded from cdp.sagepub.com at The University of Iowa Libraries on October 8, 2011 CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE A Theory About Why We Forget What We Once Knew John T. Wixted University of California, San Diego ABSTRACT—Traditional theories of forgetting assume that of your first-grade teacher, thereby proving that the information everyday forgetting is a cue-overload phenomenon, and was encoded, you may now discover that the name has slipped the primary laboratory method used for investigating that away (forever, perhaps). Why does that happen? Traditionally, phenomenon has long been the A-B, A-C paired-associates the answer has been that forgetting occurs either because procedure. A great deal of research in psychology, psy- memories naturally decay or because they succumb to the forces chopharmacology, and neuroscience suggests that this of interference. The story that most students of psychology learn approach to the study of forgetting may not be very rele- is that a classic sleep study conducted by Jenkins and Dal- vant to the kind of interference that induces most forget- lenbach (1924) tilted the balance in favor of interference theory.
    [Show full text]
  • Discovery Misattribution: When Solving Is Confused with Remembering
    Journal of Experimental Psychology: General Copyright 2007 by the American Psychological Association 2007, Vol. 136, No. 4, 577–592 0096-3445/07/$12.00 DOI: 10.1037/0096-3445.136.4.577 Discovery Misattribution: When Solving Is Confused With Remembering Sonya Dougal Jonathan W. Schooler New York University University of British Columbia This study explored the discovery misattribution hypothesis, which posits that the experience of solving an insight problem can be confused with recognition. In Experiment 1, solutions to successfully solved anagrams were more likely to be judged as old on a recognition test than were solutions to unsolved anagrams regardless of whether they had been studied. Experiment 2 demonstrated that anagram solving can increase the proportion of “old” judgments relative to words presented outright. Experiment 3 revealed that under certain conditions, solving anagrams influences the proportion of “old” judgments to unrelated items immediately following the solved item. In Experiment 4, the effect of solving was reduced by the introduction of a delay between solving the anagrams and the recognition judgments. Finally, Experiments 5 and 6 demonstrated that anagram solving leads to an illusion of recollection. Keywords: recognition, memory misattribution, recollection, insight problem There is something very similar about the experience of recol- found that increasing the perceptual fluency of items on a recog- lection and that of discovery. In both cases, a thought comes to nition test by preceding them with subliminally
    [Show full text]
  • How Trauma Impacts Four Different Types of Memory
    How Trauma Impacts Four Different Types of Memory EXPLICIT MEMORY IMPLICIT MEMORY SEMANTIC MEMORY EPISODIC MEMORY EMOTIONAL MEMORY PROCEDURAL MEMORY What It Is What It Is What It Is What It Is The memory of general knowledge and The autobiographical memory of an event The memory of the emotions you felt The memory of how to perform a facts. or experience – including the who, what, during an experience. common task without actively thinking and where. Example Example Example Example You remember what a bicycle is. You remember who was there and what When a wave of shame or anxiety grabs You can ride a bicycle automatically, with- street you were on when you fell off your you the next time you see your bicycle out having to stop and recall how it’s bicycle in front of a crowd. after the big fall. done. How Trauma Can Affect It How Trauma Can Affect It How Trauma Can Affect It How Trauma Can Affect It Trauma can prevent information (like Trauma can shutdown episodic memory After trauma, a person may get triggered Trauma can change patterns of words, images, sounds, etc.) from differ- and fragment the sequence of events. and experience painful emotions, often procedural memory. For example, a ent parts of the brain from combining to without context. person might tense up and unconsciously make a semantic memory. alter their posture, which could lead to pain or even numbness. Related Brain Area Related Brain Area Related Brain Area Related Brain Area The temporal lobe and inferior parietal The hippocampus is responsible for The amygdala plays a key role in The striatum is associated with producing cortex collect information from different creating and recalling episodic memory.
    [Show full text]
  • Explicit Memory Bias for Body-Related Stimuli in Eating Disorders
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1994 Explicit Memory Bias for Body-Related Stimuli in Eating Disorders. Shannon Buckles Sebastian Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Sebastian, Shannon Buckles, "Explicit Memory Bias for Body-Related Stimuli in Eating Disorders." (1994). LSU Historical Dissertations and Theses. 5826. https://digitalcommons.lsu.edu/gradschool_disstheses/5826 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Sleep's Role on Episodic Memory Consolidation
    SLEEP ’S ROLE ON EPISODIC MEMORY CONSOLIDATION IN ADULTS AND CHILDREN Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften der Mathematisch-Naturwissenschaftlichen Fakultät und der Medizinischen Fakultät der Eberhard-Karls-Universität Tübingen vorgelegt von Jing-Yi Wang aus Shijiazhuang, Hebei, Volksrepublik China Dezember, 2016 Tag der mündlichen Prüfung: February 22 , 2017 Dekan der Math.-Nat. Fakultät: Prof. Dr. W. Rosenstiel Dekan der Medizinischen Fakultät: Prof. Dr. I. B. Autenrieth 1. Berichterstatter: Prof. Dr. Jan Born 2. Berichterstatter: Prof. Dr. Steffen Gais Prüfungskommission: Prof. Manfred Hallschmid Prof. Dr. Steffen Gais Prof. Christoph Braun Prof. Caterina Gawrilow I Declaration: I hereby declare that I have produced the work entitled “Sleep’s Role on Episodic Memory Consolidation in Adults and Children”, submitted for the award of a doctorate, on my own (without external help), have used only the sources and aids indicated and have marked passages included from other works, whether verbatim or in content, as such. I swear upon oath that these statements are true and that I have not concealed anything. I am aware that making a false declaration under oath is punishable by a term of imprisonment of up to three years or by a fine. Tübingen, the December 5, 2016 ........................................................ Date Signature III To my beloved parents – Hui Jiao and Xuewei Wang, Grandfather – Jin Wang, and Frederik D. Weber 致我的父母:焦惠和王学伟 爷爷王金,以及 爱人王敬德 V Content Abbreviations ...................................................................................................................................................
    [Show full text]