Download?Doi=10.1.1.365.1819&Rep=Rep1&Type=Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Download?Doi=10.1.1.365.1819&Rep=Rep1&Type=Pdf Extremes, Abrupt Changes SPM6 and Managing Risks Coordinating Lead Authors Matthew Collins (UK), Michael Sutherland (Trinidad and Tobago) Lead Authors Laurens Bouwer (Netherlands), So-Min Cheong (Republic of Korea), Thomas Frölicher (Switzerland), Hélène Jacot Des Combes (Fiji), Mathew Koll Roxy (India), Iñigo Losada (Spain), Kathleen McInnes (Australia), Beate Ratter (Germany), Evelia Rivera-Arriaga (Mexico), Raden Dwi Susanto (Indonesia), Didier Swingedouw (France), Lourdes Tibig (Philippines) Contributing Authors Pepijn Bakker (Netherlands), C. Mark Eakin (USA), Kerry Emanuel (USA), Michael Grose (Australia), Mark Hemer (Australia), Laura Jackson (UK), Andreas Kääb (Norway), Jules Kajtar (UK), Thomas Knutson (USA), Charlotte Laufkötter (Switzerland), Ilan Noy (New Zealand), Mark Payne (Denmark), Roshanka Ranasinghe (Netherlands), Giovanni Sgubin (Italy), Mary-Louise Timmermans (USA) Review Editors Amjad Abdulla (Maldives), Marcelino Hernádez González (Cuba), Carol Turley (UK) Chapter Scientist Jules Kajtar (UK) This chapter should be cited as: Collins M., M. Sutherland, L. Bouwer, S.-M. Cheong, T. Frölicher, H. Jacot Des Combes, M. Koll Roxy, I. Losada, K. McInnes, B. Ratter, E. Rivera-Arriaga, R.D. Susanto, D. Swingedouw, and L. Tibig, 2019: Extremes, Abrupt Changes and Managing Risk. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. In press. 589 Chapter 6 Extremes, Abrupt Changes and Managing Risks Table of contents Executive Summary ..................................................................................... 591 6.7 Risks of Abrupt Change in Ocean Circulation and Potential Consequences ................................................... 618 6.1 Introduction ........................................................................................... 594 6.7.1 Key Processes and Feedbacks, Observations, Detection and Attribution, Projections .................. 618 6.1.1 Definitions of Principal Terms ....................................... 594 6.7.2 Impacts on Climate, Natural 6.2 Climate Change influences on Abrupt and Human Systems ......................................................... 621 Changes, Irreversibility, Tipping Points 6.7.3 Risk Management and Adaptation ........................... 623 and Extreme Events ........................................................................ 595 6.8 Compound Events and Cascading Impacts ................. 624 6.2.1 Introduction ............................................................................. 595 6.2.2 Recent Anomalous Extreme Climate 6.8.1 Concepts .................................................................................... 624 Events and their Causes ................................................... 596 6.8.2 Multiple Hazards .................................................................. 624 6.8.3 Cascading Impacts on Ecosystems .......................... 624 6.3 Changes in Tracks, Intensity, and Frequency 6.8.4 Cascading Impacts on Social Systems .................... 625 of Tropical and Extratropical Cyclones and 6.8.5 Risk Management and Adaptation, Associated Sea Surface Dynamics ..................................... 601 Sustainable and Resilient Pathways ......................... 625 6.3.1 Changes in Storms and Associated 6.8.6 Global Impact of Tipping Points .................................. 626 Sea Surface Dynamics ....................................................... 601 Box 6.1: Multiple Hazards, Compound 6.3.2 Impacts ....................................................................................... 605 Risk and Cascading Impacts .................................... 626 6.3.3 Risk Management and Adaptation ........................... 606 6.9 Governance and Policy Options, 6.4 Marine Heatwaves and their Implications .................. 606 Risk Management, Including Disaster 6.4.1 Observations and Key Processes, Risk Reduction and Enhancing Resilience .................... 629 Detection and Attribution, Projections .................. 607 6.9.1 Decision Making for Abrupt Change 6.4.2 Impacts on Natural, Physical and Extreme Events .......................................................... 629 and Human Systems ......................................................... 610 6.9.2 Transformative Governance and 6.4.3 Risk Management and Adaptation, Integrating Disaster Risk Reduction Monitoring and Early Warning Systems ................. 611 and Climate Change Adaptation ................................ 630 6.5 Extreme ENSO Events and Other Modes 6.10 Knowledge Gaps ............................................................................... 633 of Interannual Climate Variability ....................................... 612 6.5.1 Key Processes and Feedbacks, Observations, References .......................................................................................................... 634 Detection and Attribution, Projections ................... 612 6.5.2 Impacts on Human and Natural Systems .............. 614 Frequently Asked Questions ................................................................ 632 6.5.3 Risk Management and Adaptation ........................... 615 FAQ 6.1 How can risks of abrupt changes in the ocean and cryosphere related 6.6 Inter-Ocean Exchanges and Global Change ................ 616 to climate change be addressed? ........... 632 6 6.6.1 Key Processes and Feedbacks, Observations, 6 Detection and Attribution, Projections ................... 616 6.6.2 Impacts on Natural and Human Systems .............. 617 590 Extremes, Abrupt Changes and Managing Risks Chapter 6 Executive Summary Both palaeoclimate and modern observations suggest that the strongest El Niño and La Niña events since the pre-industrial This chapter assesses extremes and abrupt or irreversible changes in period have occurred during the last fifty years medium( the ocean and cryosphere in a changing climate, to identify regional confidence). There have been three occurrences of extreme El hot spots, cascading effects, their impacts on human and natural Niño events during the modern observational period (1982–1983, systems, and sustainable and resilient risk management strategies. 1997–1998, 2015–2016), all characterised by pronounced rainfall It is not comprehensive in terms of the systems assessed and some in the normally dry equatorial East Pacific. There have been two information on extremes, abrupt and irreversible changes, in particular occurrences of extreme La Niña (1988–1989, 1998–1999). El for the cryosphere, may be found in other chapters. Niño and La Niña variability during the last 50 years is unusually high compared with average variability during the last millennium. {6.5, Figure 6.5} Ongoing and Emerging Changes in the Ocean and Cryosphere, and their Impacts on Ecosystems The equatorial Pacific trade wind system experienced an and Human Societies unprecedented intensification during 2001–2014, resulting in enhanced ocean heat transport from the Pacific to the Indian Anthropogenic climate change has increased observed Ocean, influencing the rate of global temperature change precipitation (medium confidence), winds (low confidence), (medium confidence). In the last two decades, total water transport and extreme sea level events (high confidence) associated from the Pacific to the Indian Ocean by the Indonesian Throughflow (ITF), with some tropical cyclones, which has increased intensity of and the Indian Ocean to Atlantic Ocean has increased (high confidence). multiple extreme events and associated cascading impacts Increased ITF has been linked to Pacific cooling trends and basin-wide (high confidence). Anthropogenic climate change may have warming trends in the Indian Ocean. Pacific sea surface temperature contributed to a poleward migration of maximum tropical cyclone (SST) cooling trends and strengthened trade winds have been linked to intensity in the western North Pacific in recent decades related to an anomalously warm tropical Atlantic. {6.6, Figure 6.7} anthropogenically-forced tropical expansion (low confidence). There is emerging evidence for an increase in the annual global Observations, both in situ (2004–2017) and based on sea proportion of Category 4 or 5 tropical cyclones in recent decades surface temperature reconstructions, indicate that the Atlantic (low confidence). {6.3, Table 6.2, Figure 6.2, Box 6.1} Meridional Overturning Circulation (AMOC) has weakened relative to 1850–1900 (medium confidence). There is insufficient Changes in Arctic sea ice have the potential to influence data to quantify the magnitude of the weakening, or to properly mid-latitude weather (medium confidence), but there is low attribute it to anthropogenic forcing due to the limited length of the confidence in the detection of this influence for specific observational record. Although attribution is currently not possible, weather types. {6.3} CMIP5 model simulations of the period 1850–2015, on average, exhibit a weakening AMOC when driven by anthropogenic forcing. Extreme wave heights, which contribute to extreme sea level {6.7, Figure 6.8} events, coastal erosion and flooding, have increased in the Southern and North Atlantic Oceans by around 1.0 cm yr–1 and Climate change is modifying multiple types of climate-related 0.8 cm yr–1 over the period 1985–2018 (medium confidence). events or hazards in terms of occurrence, intensity
Recommended publications
  • Characteristics of Tropical Cyclonic Storm Phailin As Derived from Satellite and Atmospherics Observations 1R
    IJECT VOL . 5, ISSU E SPL - 2, JAN - MAR C H 2014 ISSN : 2230-7109 (Online) | ISSN : 2230-9543 (Print) Characteristics of Tropical Cyclonic Storm Phailin as Derived From Satellite and Atmospherics Observations 1R. Bhattacharya, 2R. Guha, 3J. Pandit, 4A. B. Bhattacharya 1,2Dept. of Environmental Science, University of Kalyani, Kalyani, West Bengal, India 3,4Dept. of Physics, University of Kalyani, Kalyani, West Bengal, India 3Dept. of Physics, JIS School of Polytechnic, Kalyani, West Bengal, India Abstract But on the very next day, Phailin became equivalent to a A summary map concerning the formation of depression and category 4 hurricane on the SSHWS before it underwent an eye cyclonic storms over the North Indian Ocean in the year 2013 wall replacement cycle and formed a new eye wall early on October is first presented pointing out their names, durations and peak 11. This new eye wall further consolidated and allowed the system intensities. The cyclone Phailin originating from North Indian to intensify and become equivalent to a category 5 hurricane on Ocean rapidly developed an eye when it was converted to a very the SSHWS later that day [1-4]. The paper summarizes some severe cyclonic storm on October 10, 2013. Maximum sustained interesting characteristics of the cyclone Phailin and finds its winds are estimated at 195 km/h, gusting to 295 km/h while association with the VLF atmospherics at 27 kHz. minimum central pressure is estimated at 936 hPa with Dvorak intensity of the storm as T6.0. The system subsequently intensified II. Seasons Summary Map and became equivalent to a category 5 hurricane.
    [Show full text]
  • The Oceans' Circulation Hasn't Been This Sluggish in 1,000 Years. That's
    The oceans’ circulation hasn’t been this sluggish in 1,000 years. That’s bad news. - The Washington Post 4/12/18, 10:45 AM The oceans’ circulation hasn’t been this sluggish in 1,000 years. That’s bad news. https://www.washingtonpost.com/news/energy-environment/wp/2018/…-sluggish-in-1000-years-thats-bad-news/?utm_term=.21f99d101bf8 Page 1 of 10 The oceans’ circulation hasn’t been this sluggish in 1,000 years. That’s bad news. - The Washington Post 4/12/18, 10:45 AM (Levke Caesar/Potsdam Institute for Climate Impact Research) https://www.washingtonpost.com/news/energy-environment/wp/2018/…-sluggish-in-1000-years-thats-bad-news/?utm_term=.21f99d101bf8 Page 2 of 10 The oceans’ circulation hasn’t been this sluggish in 1,000 years. That’s bad news. - The Washington Post 4/12/18, 10:45 AM The Atlantic Ocean circulation that carries warmth into the Northern Hemisphere’s high latitudes is slowing down because of climate change, a team of scientists asserted Wednesday, suggesting one of the most feared consequences is already coming to pass. The Atlantic meridional overturning circulation has declined in strength by 15 percent since the mid-20th century to a “new record low,” the scientists conclude in a peer-reviewed study published in the journal Nature. That’s a decrease of 3 million cubic meters of water per second, the equivalent of nearly 15 Amazon rivers. The AMOC brings warm water from the equator up toward the Atlantic’s northern reaches and cold water back down through the deep ocean.
    [Show full text]
  • Nwp Report on Cyclonic Storms Over the North Indian Ocean During 2014
    NWP REPORT ON CYCLONIC STORMS OVER THE NORTH INDIAN OCEAN DURING 2014 Prepared by: S. D. Kotal, Sumit Kumar Bhattacharya, and Y. V. Rama Rao India Meteorological Department (Numerical Weather Prediction Division) Earth System Science Organization (ESSO) Ministry of Earth Sciences (MoES) Lodi Road, New Delhi-110003 January 2015 1 NWP REPORT ON CYCLONIC STORMS OVER THE NORTH INDIAN OCEAN DURING 2014 Prepared by: S. D. Kotal, Sumit Kumar Bhattacharya, and Y. V. Rama Rao India Meteorological Department (Numerical Weather Prediction Division) Earth System Science Organization (ESSO) Ministry of Earth Sciences (MoES) Lodi Road, New Delhi-110003 January 2015 2 CONTENT 1. Introduction ----------------------------------------------------------------------- 4 2. NWP models ----------------------------------------------------------------------- 4 3. NWP based Objective Cyclone Forecast System (CPS) ------------------ 7 4. Methodology for evaluation of track forecast error ---------------------- 10 5. Cyclonic storm ‘NANAUK’ (10-14) June 2014 ---------------------------- 11 6. Very Severe Cyclonic Storm ‘HUDHUD’ (7-14) October 2014 -------- 34 7. Severe Cyclonic Storm ‘NILOFAR’ (25-31) October 2014 ------------- 78 8. Deep Depression over Bay of Bengal during (5-8) November 2014 ---102 9. Mean forecast errors for Cyclonic Storms during 2014 -----------------107 10. Acknowledgement -------------------------------------------------------------112 11. Reference ------------------------------------------------------------------------112 3 1. Introduction: India Meteorological Department (IMD) operationally runs two regional models, WRF and HWRF for short-range prediction and one Global model T574L64 for medium range prediction (7 days). The WRF-Var model is run at the horizontal resolution of 27 km, 9 km and 3 km with 38 Eta levels in the vertical and the integration is carried up to 72 hours over three domains covering the area between lat. 25 o S to 45 o N long 40 o E to 120 o E.
    [Show full text]
  • Escap/77/Inf/1
    ESCAP/77/INF/1 Distr.: General 12 March 2021 English only Economic and Social Commission for Asia and the Pacific Seventy-seventh session Bangkok and online, 26-29 April 2021 Items 4 (f) and (i) of the provisional agenda* Review of the implementation of the 2030 Agenda for Sustainable Development in Asia and the Pacific and issues pertinent to the subsidiary structure of the Commission: Committee on Environment and Development Committee on Disaster Risk Reduction Annual reports of international and intergovernmental organizations provided to the Commission** Summary The present document contains overviews of the annual reports of the following international and intergovernmental organizations: the Coordinating Committee for Geoscience Programmes in East and Southeast Asia; the Mekong River Commission; the Typhoon Committee; and the Panel on Tropical Cyclones. These organizations were established under the auspices of the Economic and Social Commission for Asia and the Pacific to work on areas under their respective competence to support economic and social development in the region. The Commission may wish to comment on the work of these organizations and take note of the present document. I. Coordinating Committee for Geoscience Programmes in East and Southeast Asia 1. The Coordinating Committee for Geoscience Programmes in East and Southeast Asia has been established under the Economic and Social Commission for Asia and the Pacific (ESCAP) since 1966. In 1991, the Coordinating Committee for Geoscience Programmes in East and Southeast Asia has become an independent intergovernmental organization. With a vision to be “a premier intergovernmental Earth Science Organization in East and Southeast Asia”, the Coordinating Committee for Geoscience Programmes in East and Southeast Asia has worked towards its mission to contribute significantly to the economic development and sustainable management of the environment and of improving the quality of life of its member countries by the application of Earth Science knowledge.
    [Show full text]
  • The Impact of Tropical Cyclone Hayan in the Philippines: Contribution of Spatial Planning to Enhance Adaptation in the City of Tacloban
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS Faculdade de Ciências Faculdade de Ciências Sociais e Humanas Faculdade de Letras Faculdade de Ciências e Tecnologia Instituto de Ciências Sociais Instituto Superior de Agronomia Instituto Superior Técnico The impact of tropical cyclone Hayan in the Philippines: Contribution of spatial planning to enhance adaptation in the city of Tacloban Doutoramento em Alterações Climáticas e Políticas de Desenvolvimento Sustentável Especialidade em Ciências do Ambiente Carlos Tito Santos Tese orientada por: Professor Doutor Filipe Duarte Santos Professor Doutor João Ferrão Documento especialmente elaborado para a obtenção do grau de Doutor 2018 UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS Faculdade de Ciências Faculdade de Ciências Sociais e Humanas Faculdade de Letras Faculdade de Ciências e Tecnologia Instituto de Ciências Sociais Instituto Superior de Agronomia Instituto Superior Técnico The impact of tropical cyclone Haiyan in the Philippines: Contribution of spatial planning to enhance adaptation in the city of Tacloban Doutoramento em Alterações Climáticas e Políticas de Desenvolvimento Sustentável Especialidade em Ciências do Ambiente Carlos Tito Santos Júri: Presidente: Doutor Rui Manuel dos Santos Malhó; Professor Catedrático Faculdade de Ciências da Universidade de Lisboa Vogais: Doutor Carlos Daniel Borges Coelho; Professor Auxiliar Departamento de Engenharia Civil da Universidade de Aveiro Doutor Vítor Manuel Marques Campos; Investigador Auxiliar Laboratório Nacional de Engenharia Civil(LNEC)
    [Show full text]
  • Coastal Sea Level Response to the Tropical Cyclonic Forcing in the North Indian Ocean’ by Mehta Et Al
    16 April 2014 To The Editor Ocean Science Sub: Reply to the comments of reviewer#2 on ’Coastal sea level response to the tropical cyclonic forcing in the north Indian Ocean’ by Mehta et al. (OSD). Sir, Kindly find the reply to the comments of reviewer#2 on the manuscript submitted by Mehra et al. (OSD) entitled "Coastal sea level response to the tropical cyclonic forcing in the north Indian Ocean". Thanks & regards Prakash Mehra NIO, Goa, India Interactive comment on “Coastal sea level response to the tropical cyclonic forcing in the north Indian Ocean” by P. Mehra et al. Anonymous Referee #2 Received and published: 22 March 2014 Reviewer's comment: This paper describes and analyses the coastal sea level response to two storm events at the end of 2011 in the north Indian Ocean. The authors use the sea level and atmospheric observations at 9 locations along the Indian coast and perform a classical but robust analysis (spectral analyses and multi-linear regression). Although there are no new findings, it gives a fair idea of the causes of the sea level variation in response to these strong atmospheric events. The Figures, Tables and References are clear and support well the present text. It is also interesting to have an analysis done at large scale and on both sides of the Indian Subcontinent (Arabian Sea and Bay of Bengal). The scientific quality of the paper is good but in my opinion the presentation of the results is poor and makes the paper hard to read and the purpose of the authors difficult to follow.
    [Show full text]
  • Pacific Study (Focusing on Fiji, Tonga and Vanuatu
    1 EXECUTIVE SUMMARY 1.1 Hazard exposure 1.1. Pacific island countries (PICs) are vulnerable to a broad range of natural disasters stemming from hydro-meteorological (such as cyclones, droughts, landslide and floods) and geo-physical hazards (volcanic eruptions, earthquakes and tsunamis). In any given year, it is likely that Fiji, Tonga and Vanuatu are either hit by, or recovering from, a major natural disaster. 1.2. The impact of natural disasters is estimated by the Pacific Catastrophe Risk Assessment and Financing Initiative as equivalent to an annualized loss of 6.6% of GDP in Vanuatu, and 4.3% in Tonga. For Fiji, the average asset losses due to tropical cyclones and floods are estimated at more than 5%. 1.3. In 2014, Tropical Cyclone (TC) Ian caused damage equivalent to 11% to Tonga's GDP. It was followed in 2018 by damage close to 38% of GDP from TC Gita. In 2015, category five TC Pam displaced 25% of Vanuatu's population and provoked damage estimated at 64% of GDP. In Fiji, Tropical Cyclone Winston affected 62% of the population and wrought damage amounting to 31% of GDP, only some three and a half years after the passage of Tropical Cyclone Evan. 1.4. Vanuatu and Tonga rank number one and two in global indices of natural disaster risk. Seismic hazard is an ever-present danger for both, together with secondary risks arising from tsunamis and landslides. Some 240 earthquakes, ranging in magnitude between 3.3 and 7.1 on the Richter Scale, struck Vanuatu and its surrounding region in the first ten months of 2018.
    [Show full text]
  • NASA Analyzes Powerful Cyclone Chapala's Rainfall Over the Arabian Sea 30 October 2015
    NASA analyzes powerful Cyclone Chapala's rainfall over the Arabian Sea 30 October 2015 UTC (10:56 a.m. EDT). GPM's rainfall data from the first pass showed that Chapala was close to hurricane intensity as the GMI instrument clearly showed the location of a developing eye. By the second pass Chapala's maximum sustained winds were estimated at 65 knots (75 mph) making it a category one on the Saffir-Simpson hurricane wind scale. Rainfall rates were derived from data collected by GPM's Microwave Imager (GMI) and Dual- Frequency Precipitation Radar (DPR) instruments. GPM's GMI instrument found precipitation around the small tropical cyclone to be only light to moderate. Rain near the center was measured falling at a rate of slightly more than 28 mm (1.1 The MODIS instrument aboard NASA's Aqua satellite inches) per hour with the first pass and 31.9 mm got a good look at the eye of Tropical Cyclone Chapala (1.3 inches) per hour in the second examination. in the Arabian Sea on Oct. 30 at 09:10 UTC (5:10 a.m. GPM is a joint mission between NASA and the EDT). Credit: NASA Goddard MODIS Rapid Response Japan Aerospace Exploration Agency. Team NASA satellites have been providing data on powerful Tropical Cyclone Chapala as it continued strengthening in the Arabian Sea. The Global Precipitation Measurement Mission or GPM core satellite provided a look at strengthening Tropical Cyclone Chapala in the Arabian Sea. Additionally, NASA's Aqua satellite got a good look at the storm's small eye.
    [Show full text]
  • Evidence of Fire in the Pliocene Arctic in Response to Elevated CO2 and Temperature
    1 Evidence of fire in the Pliocene Arctic in response to elevated CO2 and temperature 2 Tamara Fletcher1*, Lisa Warden2*, Jaap S. Sinninghe Damsté2,3, Kendrick J. Brown4,5, Natalia 3 Rybczynski6,7, John Gosse8, and Ashley P Ballantyne1 4 1 College of Forestry and Conservation, University of Montana, Missoula, 59812, USA 5 2 Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den 6 Berg, 1790, Netherlands 7 3 Department of Earth Sciences, University of Utrecht, Utrecht, 3508, Netherlands 8 4 Natural Resources Canada, Canadian Forest Service, Victoria, V8Z 1M, Canada 9 5 Department of Earth, Environmental and Geographic Science, University of British Columbia Okanagan, Kelowna, 10 V1V 1V7, Canada 11 6 Department of Palaeobiology, Canadian Museum of Nature, Ottawa, K1P 6P4, Canada 12 7 Department of Biology & Department of Earth Sciences, Carleton University, Ottawa, K1S 5B6, Canada 13 8 Department of Earth Sciences, Dalhousie University, Halifax, B3H 4R2, Canada 14 *Authors contributed equally to this work 15 Correspondence to: Tamara Fletcher ([email protected]) 16 Abstract. The mid-Pliocene is a valuable time interval for understanding the mechanisms that determine equilibrium 17 climate at current atmospheric CO2 concentrations. One intriguing, but not fully understood, feature of the early to 18 mid-Pliocene climate is the amplified arctic temperature response. Current models underestimate the degree of 19 warming in the Pliocene Arctic and validation of proposed feedbacks is limited by scarce terrestrial records of climate 20 and environment, as well as discrepancies in current CO2 proxy reconstructions. Here we reconstruct the CO2, summer 21 temperature and fire regime from a sub-fossil fen-peat deposit on west-central Ellesmere Island, Canada, that has been 22 chronologically constrained using radionuclide dating to 3.9 +1.5/-0.5 Ma.
    [Show full text]
  • Skeptical Science the Thermometer Needle and The
    11/9/2015 The thermometer needle and the damage done Look up a Term CLAM Bake Climate Science Glossary Term Lookup Enter a term in the search box to find its definition. Settings Use the controls in the far right panel to increase or decrease the number of terms automatically displayed (or to completely turn that feature off). Term Lookup Term: Define Settings Beginner Intermediate Advanced No Definitions Definition Life: 20 seconds All IPCC definitions taken from Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Annex I, Glossary, pp. 941­954. Cambridge University Press. Home Arguments Software Resources Comments The Consensus Project Translations About Donate Search... The thermometer needle and the damage done Posted on 6 November 2015 by Andy Skuce Rising temperatures may inflict much more damage on already warm countries than conventional economic models predict. In the latter part of the twenty­first Century, global warming might even reduce or reverse any earlier economic progress made by poor nations. This would increase global wealth inequality over the century. (This is a repost from Critical Angle.) A recent paper published in Nature by Marshall Burke, Solomon M. Hsiang and Edward Miguel Global non­linear effect of temperature on economic production argues that increasing Climate's changed before temperatures will cause much greater damage It's the sun to economies than previously predicted. Furthermore, this effect will be distributed very It's not bad unequally, with tropical countries getting hit very There is no consensus hard and some northern countries actually benefitting.
    [Show full text]
  • Report and Recommendations from the Atlantic Storm Exercise
    BIOSECURITY AND BIOTERRORISM: BIODEFENSE STRATEGY, PRACTICE, AND SCIENCE Volume 3, Number 3, 2005 © Mary Ann Liebert, Inc. After-Action Report Navigating the Storm: Report and Recommendations from the Atlantic Storm Exercise BRADLEY T. SMITH, THOMAS V. INGLESBY, ESTHER BRIMMER, LUCIANA BORIO, CRYSTAL FRANCO, GIGI KWIK GRONVALL, BRADLEY KRAMER, BETH MALDIN, JENNIFER B. NUZZO, ARI SCHULER, SCOTT STERN, DONALD A. HENDERSON, RANDALL J. LARSEN, DANIEL S. HAMILTON, and TARA O’TOOLE Atlantic Storm was a tabletop exercise simulating a series of bioterrorism attacks on the transatlantic community. The exercise occurred on January 14, 2005, in Washington, DC, and was organized and convened by the Center for Biosecurity of UPMC, the Center for Transatlantic Relations of Johns Hopkins University, and the Transatlantic Biosecurity Network. Atlantic Storm portrayed a summit meeting of presidents, prime ministers, and other international leaders from both sides of the At- lantic Ocean in which they responded to a campaign of bioterrorist attacks in several countries. The summit principals, who were all current or former senior government leaders, were challenged to address issues such as attaining situational awareness in the wake of a bioattack, coping with scarcity of critical medical resources such as vaccine, deciding how to manage the movement of people across borders, and communicating with their publics. Atlantic Storm illustrated that much might be done in advance to minimize the illness and death, as well as the social, economic, and political disruption, that could be caused by an international epidemic, be it natural or the result of a bioterrorist attack. These lessons are especially timely given the growing concerns over the possibility of an avian in- fluenza pandemic that would require an international response.
    [Show full text]
  • Learning About Climate Change the Pacific Way a Guide for Pacific Teachers Tuvalu Learning About Climate Change the Pacific Way
    Source: Carol Young Source: Source: SPC Learning about climate change the Pacific way A guide for Pacific teachers Tuvalu Learning about climate change the Pacific way A guide for Pacific teachers Tuvalu Compiled by Coping with Climate Change in the Pacific Island Region Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) and Secretariat of the Pacific Community Secretariat of the Pacific Community Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) 2015 © Copyright Secretariat of the Pacific Community (SPC) and Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ), 2015 All rights for commercial/for profit reproduction or translation, in any form, reserved. SPC and GIZ authorise the partial reproduction or translation of this material for scientific, educational or research purposes, provided that SPC, GIZ, and the source document are properly acknowledged. Permission to reproduce the document and/or translate in whole, in any form, whether for commercial/for profit or non-profit purposes, must be requested in writing. Original SPC/GIZ artwork may not be altered or separately published without permission. Original text: English Secretariat of the Pacific Community Cataloguing-in-publication data Learning about climate change the Pacific way: a guide for pacific teachers – Tuvalu / compiled by Coping with Climate Change in the Pacific Island Region, Deutsche Gesellschaft für Internationale Zusammenarbeit and the Secretariat of the Pacific Community 1. Climatic changes — Tuvalu. 2. Environment — Management —
    [Show full text]