Molecules 2015, 20, 17016-17040; doi:10.3390/molecules200917016 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Synthesis and Biological Activity of Isoflavone Derivatives from Chickpea as Potent Anti-Diabetic Agents Pengshou Li 1,2, Xiaojuan Shi 1,2, Ying Wei 1,2, Lingling Qin 2, Wen Sun 2, Guangyuan Xu 2, Tunhai Xu 1,2,* and Tonghua Liu 2 1 School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100029, China; E-Mails:
[email protected] (P.L.);
[email protected] (X.S.);
[email protected] (Y.W.) 2 Health Cultivation Laboratory of the Ministry of Education, Beijing University of Chinese Medicine, Beijing 100029, China; E-Mails:
[email protected] (L.Q.);
[email protected] (W.S.);
[email protected] (G.X.);
[email protected] (T.L.) * Author to whom correspondence should be addressed; E-Mail:
[email protected]; Tel./Fax: +86-10-6428-6935. Academic Editor: Derek J. McPhee Received: 20 July 2015 / Accepted: 3 September 2015 / Published: 17 September 2015 Abstract: A set of novel isoflavone derivatives from chickpea were synthesized. The structures of derivatives were identified by proton nuclear magnetic resonance (1H-NMR), carbon-13 (13C)-NMR and mass spectrometry (MS) spectral analyses. Their anti-diabetic activities were evaluated using an insulin-resistant (IR) HepG2 cell model. Additionally, the structure-activity relationships of these derivatives were briefly discussed. Compounds 1c, 2h, 3b, and 5 and genistein exhibited significant glucose consumption-enhancing effects in IR-HepG2 cells. In addition, the combinations of genistein, 2h, and 3b (combination 6) and of 3b, genistein, and 1c (combination 10) exhibited better anti-diabetic activity than the individual compounds.