Agrostology Assignment

Total Page:16

File Type:pdf, Size:1020Kb

Agrostology Assignment BIOL 461 Agrostology Name: _________________________________ Systematics & Ecology Assignment Answer the following plant identification "riddles" based on the species introduced in the course. Write the common name on the line provided and scientific names (genus, species) underneath. (1 point each) _____________________________ 01. Attractive native species in Triticeae with a curving inflorescences with several florets per spikelet and long, curving awns. _____________________________ 02. Diminutive introduced annual that has 3 spikelets per node, but only the center one is fertile. The entire inflorescence breaks up late season. _____________________________ 03. Short-statured native hermaphroditic perennial with curly leaves and an unusual one-sided inflorescence; favors dry prairies. _____________________________ 04. Non-native polyploid with very long awns. This taxon is an important grain crop, and able to hybridize with many members of its tribe. _____________________________ 05. Native perennial in the tribe Zoysieae that forms dense stands in wet areas of our region; leaves have sharp margins and may cut your skin! _____________________________ 06. A widespread native bunchgrass that has three-awned lemmas and is often red when young. Sharp-tipped florets and abrasive awns make this species unappealing to both livestock and wildlife. _____________________________ 07. Weedy non-native perennial with rhizomes, closed sheath, and a panicle of “fish scale-like” spikelets; this species is very common along roadsides and in pastures across our region. _____________________________ 08. Native grass with dorsal compression and hairy sheaths/leaves that behaves like a weed—inflorescences break off and become tumbleweeds. _____________________________ 09. Rhizomatous grass with very tall robust stems, fuzzy inflorescences, and a wide geographic distribution (including 2x, 4x, 6x, 8x populations). European varieties of this species are aggressive weeds in North America. _____________________________ 10. Introduced perennial with bulblets forming in the inflorescence as well as small bulbs at the plant base, enabling asexual propagation. Total: _____ / 10 1 Cont'd, answer plant identification "riddles" based on species introduced in the course. _____________________________ 11. A native annual, this low-growing relative of Setaria is found in sandy areas and has prickly reproductive parts that stick to fur and socks. _____________________________ 12. Short and drought tolerant grass with 30-50 short spikes that are characteristically clustered to one side of the stem. Native species that persists in dry prairies of western South Dakota. _____________________________ 13. Short grass with a characteristic dense, flattened and comb-like inflorescence. This is a common invasive in dry prairie that greens-up early in the season, and thus is sometimes desirable as livestock forage. _____________________________ 14. Dioecious and awnless grass that exhibits strong lateral compression, extensive rhizomatous growth, and tough leaves; this is a widespread species that favors saline and alkaline soils. _____________________________ 15. Tall, monoecious crop species with C4 photosynthesis that was domesticated from wild ancestors in Mexico >9,000 years ago. _____________________________ 16. Native grass that grows in tufts and resides in open, sandy places; it has diffuse panicles with one floret per spikelet and hairy lemmas. _____________________________ 17. Non-native grass with closed sheaths and panicle inflorescence with clustered spikelets, giving it a clumpy appearance. This self-incompatible taxon is comprised of diploid and tetraploid populations. _____________________________ 18. Tall-statured native perennial comprised of hexaploid and octoploid plants in our region. A keystone grass of tallgrass prairies, this species has a rame inflorescence with a characteristic "turkey-foot" appearance. _____________________________ 19. Drought-resistant grass in the subfamily Panicoideae that was domesticated at least three times in Africa and is now a crop grown as a grain, sweetener, and biofuel; sometimes cultivated in South Dakota. _____________________________ 20. Annual, introduced grass that has a distinctive panicles of spikelet branches. This species favors damp, nutrient-rich locations; if you see this on or near a dirt road, beware—you may get stuck! _____________________________ 21. Early-flowering grass that remains green all year long; it occurs as clumps in pine forests of western South Dakota. Total: _____ / 11 2 Cont'd, answer plant identification "riddles" based on species introduced in the course. _____________________________ 22. This introduced grass has flattened culms and tan sheaths; it can be recognized from a distance by its alternating green/tan color on the stem. _____________________________ 23. Common native prairie species that is fuzzy and often reddish; the sessile spikelet is awned and the other unawned and staminate or sterile. The entire inflorescence breaks up on this species. _____________________________ 24. Member of the Andropogoneae with a fertile sessile spikelet and missing pedicellate spikelet. Although native to western South Dakota, it is more common in tallgrass prairies to the east. _____________________________ 25. Tall non-native grass with extremely fuzzy inflorescence that in our region is most often found cultivated in gardens or landscaping. In other regions can be an invasive that forms monocultures. _____________________________ 26. Grain crop that originated in Europe; now grown in temperate areas for human and livestock food. Generally not hairy, and may be awned or unawned—if awns present they are not bent or twisted. _____________________________ 27. Native perennial with a conspicuously hairy rachilla and callus; this species is generally found near water and is known to exhibit apomixis. _____________________________ 28. Stoloniferous native perennial that is dioecious, very low-growing, and has curly leaves. This species favors very dry soils and is intolerant of shade; sometimes planted as a native lawn grass. _____________________________ 29. Annual non-native grass that is extremely weedy; it dries in late summer and increases wildfire risks. This species has closed sheaths, notched lemmas, and strong lateral compression. _____________________________ 30. Native perennial with a characteristic stout awn; spikelets look like The Batman’s head. Widespread in the northern Great Plains (including w. South Dakota) and sometimes forming cleiostogamous flowers. _____________________________ Bonus. Native monecious perennial that grows in the margins of rivers and lakes and is sometimes harvested as a grain. It occurs in eastern South Dakota but is much more common in Minnesota. Total: _____ / 10 3 Answer the following identification "riddles" for grass subfamilies introduced in class. (1 point each) _____________________________ 31. Primitive grass subfamily comprised of rhizomatous perennials in tropical America. Members of this subfamily have pseudopetioles, missing glumes, four stamens, and large fruits. _____________________________ 32. This pantropical subfamily disarticulates above the glumes and contains only one tribe—and only one genus occurs in North America. _____________________________ 33. Most common in tropical and warm temperate regions, this group includes economically important crops such as sorghum and sugar cane. Both C3 and C4 photosynthesis occur in this group. _____________________________ 34. Subfamily of the BOP clade that is comprised of perennials with pseudopetioles and variable anther numbers; has a wide geographic distribution. Includes two tribes, one of which is “woody.” _____________________________ 35. Monoecious perennials from tropical America that have glumes. _____________________________ 36. Subfamily of rhizomatous perennials from tropical Africa that have pseudopetioles and glumes; contains 2 genera. _____________________________ 37. Characterized by C3 photosynthesis and allied with Bambusoideae and Pooideae. Rice is a member of this subfamily. _____________________________ 38. Characterized by C3 photosynthesis and found in the PACMAD clade. This subfamily includes some extremely tall members. _____________________________ 39. Subfamily with C3 photosynthesis that is found primarily in the southern hemisphere; one stoutly-awned resident of western South Dakota that was introduced in lecture is a member of this subfamily. _____________________________ 40. This subfamily with primarily C4 photosynthesis is most common in dry, temperate grasslands. The tribe Zoysieae is found in this group. _____________________________ Bonus. Large group of cool season, C3 grasses that are very dominant in western South Dakota (and many parts of the northern hemisphere). Member of the BOP clade. Total: _____ / 10 4 Identify the grasses shown with line art from the list of 28 species below (some species may not be used). (1 point each) Acnatherum hymenoides (Indian Ricegrass) Panicum capillare (Witchgrass) Agrostis gigantea (Redtop) Panicum virgatum (Switchgrass) Alopecurus aequalis (Shortawn Foxtail) Pascopyrum smithii (Western Wheatgrass) Bromus inermis (Smooth Brome) Phleum pratense (Timothy) Bromus japonicus (Japanese Brome) Poa pratensis (Bluegrass) Dichanthelium oligosanthes (Few-flowered Panic Grass) Pseudoroegneria spicata (Bluebunch Wheatgrass) Elymus canadensis (Canada Wildrye) Puccinellia distans (Alkaligrass) Elymus repens (Quackgrass) Schizachne
Recommended publications
  • The Plant Press
    Special Symposium Issue continues on page 14 Department of Botany & the U.S. National Herbarium The Plant Press New Series - Vol. 20 - No. 3 July-September 2017 Botany Profile Plant Expeditions: History Has Its Eyes On You By Gary A. Krupnick he 15th Smithsonian Botani- as specimens (living or dried) in centuries field explorers to continue what they are cal Symposium was held at the past. doing. National Museum of Natural The symposium began with Laurence T he morning session began with a History (NMNH) and the U.S. Botanic Dorr (Chair of Botany, NMNH) giv- th Garden (USBG) on May 19, 2017. The ing opening remarks. Since the lectures series of talks focusing on the 18 symposium, titled “Exploring the Natural were taking place in Baird Auditorium, Tcentury explorations of Canada World: Plants, People and Places,” Dorr took the opportunity to talk about and the United States. Jacques Cayouette focused on the history of plant expedi- the theater’s namesake, Spencer Baird. A (Agriculture and Agri-Food Canada) tions. Over 200 participants gathered to naturalist, ornithologist, ichthyologist, and presented the first talk, “Moravian Mis- hear stories dedicated col- sionaries as Pioneers of Botanical Explo- and learn about lector, Baird was ration in Labrador (1765-1954).” He what moti- the first curator explained that missionaries of the Mora- vated botanical to be named vian Church, one of the oldest Protestant explorers of at the Smith- denominations, established missions the Western sonian Institu- along coastal Labrador in Canada in the Hemisphere in the 18th, 19th, and 20th tion and eventually served as Secretary late 1700s.
    [Show full text]
  • GENETICS, GENOMICS and BREEDING of FORAGE CROPS Genetics, Genomics and Breeding of Crop Plants
    Genetics, Genomics and Breeding of Genetics, Genomics and Breeding of About the Series Genetics, Genomics and Breeding of AboutAbout the the Series Series SeriesSeries on on BasicBasic and and advanced advanced concepts, concepts, strategies, strategies, tools tools and and achievements achievements of of Series on Basicgenetics, and advanced genomics concepts, and breeding strategies, of crops tools haveand beenachievements comprehensively of Genetics,Genetics, Genomics Genomics and and Breeding Breeding of of Crop Crop Plants Plants genetics,genetics, genomics genomics and and breeding breeding of ofcrops crops have have been been comprehensively comprehensively Genetics, Genomics and Breeding of Crop Plants deliberateddeliberated in in30 30volumes volumes each each dedicated dedicated to toan an individual individual crop crop or orcrop crop Series Editor deliberatedgroup. in 30 volumes each dedicated to an individual crop or crop Series Series Editor Editor group.group. Chittaranjan Chittaranjan Kole, Kole, Vice-Chancellor, Vice-Chancellor, BC BC Agricultural Agricultural University, University, India India The series editor and one of the editors of this volume, Prof. Chittaranjan Chittaranjan Kole, Vice-Chancellor, BC Agricultural University, India TheThe series series editor editor and and one one of theof the editors editors of thisof this volume, volume, Prof. Prof. Chittaranjan Chittaranjan Kole,Kole, is globallyis globally renowned renowned for for his his pioneering pioneering contributions contributions in inteaching teaching and and Kole,research is globally for renowned nearly three for decades his pioneering on plant contributions genetics, genomics, in teaching breeding and and researchresearch for for nearly nearly three three decades decades on onplant plant genetics, genetics, genomics, genomics, breeding breeding and and biotechnology.biotechnology.
    [Show full text]
  • A Phylogeny of the Hubbardochloinae Including Tetrachaete (Poaceae: Chloridoideae: Cynodonteae)
    Peterson, P.M., K. Romaschenko, and Y. Herrera Arrieta. 2020. A phylogeny of the Hubbardochloinae including Tetrachaete (Poaceae: Chloridoideae: Cynodonteae). Phytoneuron 2020-81: 1–13. Published 18 November 2020. ISSN 2153 733 A PHYLOGENY OF THE HUBBARDOCHLOINAE INCLUDING TETRACHAETE (CYNODONTEAE: CHLORIDOIDEAE: POACEAE) PAUL M. PETERSON AND KONSTANTIN ROMASCHENKO Department of Botany National Museum of Natural History Smithsonian Institution Washington, D.C. 20013-7012 [email protected]; [email protected] YOLANDA HERRERA ARRIETA Instituto Politécnico Nacional CIIDIR Unidad Durango-COFAA Durango, C.P. 34220, México [email protected] ABSTRACT The phylogeny of subtribe Hubbardochloinae is revisited, here with the inclusion of the monotypic genus Tetrachaete, based on a molecular DNA analysis using ndhA intron, rpl32-trnL, rps16 intron, rps16- trnK, and ITS markers. Tetrachaete elionuroides is aligned within the Hubbardochloinae and is sister to Dignathia. The biogeography of the Hubbardochloinae is discussed, its origin likely in Africa or temperate Asia. In a previous molecular DNA phylogeny (Peterson et al. 2016), the subtribe Hubbardochloinae Auquier [Bewsia Gooss., Dignathia Stapf, Gymnopogon P. Beauv., Hubbardochloa Auquier, Leptocarydion Hochst. ex Stapf, Leptothrium Kunth, and Lophacme Stapf] was found in a clade with moderate support (BS = 75, PP = 1.00) sister to the Farragininae P.M. Peterson et al. In the present study, Tetrachaete elionuroides Chiov. is included in a phylogenetic analysis (using ndhA intron, rpl32- trnL, rps16 intron, rps16-trnK, and ITS DNA markers) in order to test its relationships within the Cynodonteae with heavy sampling of species in the supersubtribe Gouiniodinae P.M. Peterson & Romasch. Chiovenda (1903) described Tetrachaete Chiov. with a with single species, T.
    [Show full text]
  • Invasive Weeds of the Appalachian Region
    $10 $10 PB1785 PB1785 Invasive Weeds Invasive Weeds of the of the Appalachian Appalachian Region Region i TABLE OF CONTENTS Acknowledgments……………………………………...i How to use this guide…………………………………ii IPM decision aid………………………………………..1 Invasive weeds Grasses …………………………………………..5 Broadleaves…………………………………….18 Vines………………………………………………35 Shrubs/trees……………………………………48 Parasitic plants………………………………..70 Herbicide chart………………………………………….72 Bibliography……………………………………………..73 Index………………………………………………………..76 AUTHORS Rebecca M. Koepke-Hill, Extension Assistant, The University of Tennessee Gregory R. Armel, Assistant Professor, Extension Specialist for Invasive Weeds, The University of Tennessee Robert J. Richardson, Assistant Professor and Extension Weed Specialist, North Caro- lina State University G. Neil Rhodes, Jr., Professor and Extension Weed Specialist, The University of Ten- nessee ACKNOWLEDGEMENTS The authors would like to thank all the individuals and organizations who have contributed their time, advice, financial support, and photos to the crea- tion of this guide. We would like to specifically thank the USDA, CSREES, and The Southern Region IPM Center for their extensive support of this pro- ject. COVER PHOTO CREDITS ii 1. Wavyleaf basketgrass - Geoffery Mason 2. Bamboo - Shawn Askew 3. Giant hogweed - Antonio DiTommaso 4. Japanese barberry - Leslie Merhoff 5. Mimosa - Becky Koepke-Hill 6. Periwinkle - Dan Tenaglia 7. Porcelainberry - Randy Prostak 8. Cogongrass - James Miller 9. Kudzu - Shawn Askew Photo credit note: Numbers in parenthesis following photo captions refer to the num- bered photographer list on the back cover. HOW TO USE THIS GUIDE Tabs: Blank tabs can be found at the top of each page. These can be custom- ized with pen or marker to best suit your method of organization. Examples: Infestation present On bordering land No concern Uncontrolled Treatment initiated Controlled Large infestation Medium infestation Small infestation Control Methods: Each mechanical control method is represented by an icon.
    [Show full text]
  • CATALOGUE of the GRASSES of CUBA by A. S. Hitchcock
    CATALOGUE OF THE GRASSES OF CUBA By A. S. Hitchcock. INTRODUCTION. The following list of Cuban grasses is based primarily upon the collections at the Estaci6n Central Agron6mica de Cuba, situated at Santiago de las Vegas, a suburb of Habana. The herbarium includes the collections made by the members of the staff, particularly Mr. C. F. Baker, formerly head of the department of botany, and also the Sauvalle Herbarium deposited by the Habana Academy of Sciences, These specimens were examined by the writer during a short stay upon the island in the spring of 1906, and were later kindly loaned by the station authorities for a more critical study at Washington. The Sauvalle Herbarium contains a fairly complete set of the grasses col- lected by Charles Wright, the most important collection thus far obtained from Cuba. In addition to the collections at the Cuba Experiment Station, the National Herbarium furnished important material for study, including collections made by A. H. Curtiss, W. Palmer and J. H. Riley, A. Taylor (from the Isle of Pines), S. M. Tracy, Brother Leon (De la Salle College, Habana), and the writer. The earlier collections of Wright were sent to Grisebach for study. These were reported upon by Grisebach in his work entitled "Cata- logus Plant arum Cubensium," published in 1866, though preliminary reports appeared earlier in the two parts of Plantae Wrightianae. * During the spring of 1907 I had the opportunity of examining the grasses in the herbarium of Grisebach in Gottingen.6 In the present article I have, with few exceptions, accounted for the grasses listed by Grisebach in his catalogue of Cuban plants, and have appended a list of these with references to the pages in the body of this article upon which the species are considered.
    [Show full text]
  • Triticeae Biodiversity and Conservation, a “Genebanker” View
    Czech J. Genet. Plant Breed., 41, 2005 (Special Issue) Triticeae Biodiversity and Conservation, a “Genebanker” View V. H������ Department of Gene Bank, Research Institute of Crop Production, 161 06 Prague-Ruzyně, Czech Republic, e-mail: [email protected] Abstract: Wild Triticeae are important genetic resources for cultivated cereals. While wild and primitive wheats are well preserved, other genera are rather neglected. Most of Triticeae have a large area of distribution, many occupy secondary habitats, or are weedy. However, there are also species with a limited distribution and those need primary attention in conservation. Annuals can be easily stored ex situ as easily as cultivated cereals; peren- nials have their longevity shortened. For successful conservation of genetic diversity one sample of a species is not enough. It is necessary to collect samples from the whole distribution area. Geographically distant popula- tions differ not only morphologically, but can have different spectra of genes. Even within a population there are large differences. For species scattered in distribution or restricted to a certain small area, it is reasonable to consider their in situ conservation. The basic requirement is to protect the locality/ies and to ensure that they are managed for sustainable reproduction of the Triticeae. Basically, this requires maintaining acceptable levels of use by man (grazing and disturbance), acceptable levels of plant competition from other species, and controlling allochtonous invasive species. Localities with in situ conservation require instant monitoring. A detailed docu- mentation (so called passport data) is prerequisite for both ex situ and in situ conservation. The taxonomic system must be conservative, without frequent nomenclatoral changes.
    [Show full text]
  • Grasses of Oklahoma
    osu p.llaotten Technical Bulletin No. 3 October, 1938 OKLABOJIA AGRICULTURAL AND MECHANICAL COLLEGE AGRICULTURAL ExPERIMENT STATION Lippert S. Ellis, Acting Director GRASSES OF OKLAHOMA By B. I. FEATHERLY Professor of Botany and Plant Pathology Stillwater, Oklahoma Technical Bulletin No. 3 October, 1938 OKLAHOMA AGRICULTURAL AND MECHANICAL COLLEGE AGRICULTURAL EXPERIMENT STATION Lippert S. Ellis. Acting Director GRASSES OF OI(LAHO~lA By H. I. FEATHERLY Professor of Botany and Plant Pathology Stillwater, Oklahoma ERRATA Page 6, No. 6: For "Leptochlea" read "Leptochloa." Page 10, No. 3 (second line): For "E. colona" read "E. colonum." Page 11, in "Distribution" of Phalaris caroliniana (Walt.): For "Ste-.vens" read "Stevens." Page 23, No. 2b: J:o"'or "Elymus canadensis ar. brachystachys" read "Elymus canadensis var. brachystachys." Page 28: For "Cynodon Dactylon ... etc." read "Cynodon dactylon (I,.) Pers. (Capriola dactylon Kuntz.) Bermuda G1·ass." Page 41, No. 13: For "Aristida divaricata Humb. and Bonnl." read "Aristida divaricata Humb. and Bonpl." Page 65, No. 3: For "Triodia clongata" read "Triodia elongata." Page 67. No. 11 (thud linel: For "ekels" read "keels." Page 71, No. 9 and Fig 81: For "Eragrostis sessilispicata" read "EragTostis sessilispica." Page 84, first line at top of page: For Melica nitens (Nutt.)'' re~d '?tE:cH~·a nH:ens CSc-;:itn.) !-Iutt." Page 106, No. 12, third line of description: For "within white margins" read "with white margins." Page 117. No. 2: l',or "Erianthus ... etc." read "Erianthus alopecuroides (L.) Ell. (E. divaricatus (L.) Hitchc.) Silver Plume-grass." Fage 123, No. 8: For "(A. torreanus Steud.)" read "A. tor­ rey:Jnus Steuc1.)" PREFACE The grass family needs no introduction.
    [Show full text]
  • Registration of the Triticeae-CAP Spring Wheat Nested Association Mapping Population
    Published February 28, 2019 JOURNAL OF PLANT REGISTRATIONS MAPPING POPULATION Registration of the Triticeae-CAP Spring Wheat Nested Association Mapping Population N. K. Blake, M. Pumphrey, K. Glover, S. Chao, K. Jordan, J.-L. Jannick, E. A. Akhunov, J. Dubcovsky, H. Bockelman, and L. E. Talbert* Abstract andrace accessions of wheat (Triticum aestivum The Triticeae-CAP spring wheat nested association mapping L.) are a potentially important resource for superior population (Reg. No. MP-10, NSL 527060 MAP) consisting of genes to improve modern wheat cultivars. The landrace recombinant inbred line (RIL) populations derived from 32 Laccessions themselves are typically inferior to modern cultivars spring wheat (Triticum aestivum L.) accessions each crossed to for both agronomic and quality characteristics. This is particu- a common spring wheat parent, ‘Berkut’, has been released. larly true when landraces from one region are grown in a differ- The spring wheat accessions consisted of 29 landraces and ent locale in that important alleles for adaptation to biotic and three cultivars. Each population consists of approximately 75 abiotic factors are lacking. A challenge for breeders is that supe- lines for a total of 2325 RILs (Reg. Nos. GSTR No. 14701–GSTR 17133). The RILs have all been genotyped with the Illumina rior alleles are difficult to detect in a background of undesir- wheat iSelect 90K single nucleotide polymorphism array able alleles that typify the landraces. The increased efficiency of using the Infinium assay method and through genotype-by- modern genotyping capabilities has provided an opportunity to sequencing. This nested association mapping population identify superior alleles from nonadapted germplasm for incor- provides a genotyped germplasm resource for the wheat poration into elite breeding material.
    [Show full text]
  • 150 Years of Research at the United States Department of Agriculture
    United States Department of Agriculture Agricultural Research Service 150 Years of Research at June 2013 the United States Department of Agriculture: Plant Introduction and Breeding I Cover photo: The stately building that once housed the U.S. Department of Agriculture in Washington, D.C., ca. 1890. (This photo is preserved in the USDA History Collection, Special Collections, National Agricultural Library.) II United States Department of Agriculture Agricultural Research Service 150 Years of Research at June 2013 the United States Department of Agriculture: Plant Introduction and Breeding R.J. Griesbach Griesbach is Deputy Assistant Administrator, Office of Technology Transfer, USDA, Agricultural Research Service, Beltsville, MD. i Abstract Griesbach, R.J. 2013. 150 Years of Research at the While supplies last, single copies of this publication United States Department of Agriculture: can be obtained at no cost from Robert J. Griesbach, Plant Introduction and Breeding. U.S. Department USDA-ARS, Office of Technology Transfer, 5601 of Agriculture, Agricultural Research Service, Sunnyside Avenue, Room 4-1159, Beltsville, MD Washington, DC. 20705; or by email at [email protected]. The U.S. Department of Agriculture celebrated its Copies of this publication may be purchased in various 150th anniversary in 2012. One of the primary formats (microfiche, photocopy, CD, print on demand) functions of the USDA when it was established in 1862 from the National Technical Information Service, 5285 was “to procure, propagate, and distribute among the people new Port Royal Road, Springfield, VA 22161, (800) 553- and valuable seeds and plants.” The U.S. Government first 6847, www.ntis.gov. became involved in new plant introductions in 1825 when President John Quincy Adams directed U.S.
    [Show full text]
  • Oregon City Nuisance Plant List
    Nuisance Plant List City of Oregon City 320 Warner Milne Road , P.O. Box 3040, Oregon City, OR 97045 Phone: (503) 657-0891, Fax: (503) 657-7892 Scientific Name Common Name Acer platanoides Norway Maple Acroptilon repens Russian knapweed Aegopodium podagraria and variegated varieties Goutweed Agropyron repens Quack grass Ailanthus altissima Tree-of-heaven Alliaria officinalis Garlic Mustard Alopecuris pratensis Meadow foxtail Anthoxanthum odoratum Sweet vernalgrass Arctium minus Common burdock Arrhenatherum elatius Tall oatgrass Bambusa sp. Bamboo Betula pendula lacinata Cutleaf birch Brachypodium sylvaticum False brome Bromus diandrus Ripgut Bromus hordeaceus Soft brome Bromus inermis Smooth brome-grasses Bromus japonicus Japanese brome-grass Bromus sterilis Poverty grass Bromus tectorum Cheatgrass Buddleia davidii (except cultivars and varieties) Butterfly bush Callitriche stagnalis Pond water starwort Cardaria draba Hoary cress Carduus acanthoides Plumeless thistle Carduus nutans Musk thistle Carduus pycnocephalus Italian thistle Carduus tenufolius Slender flowered thistle Centaurea biebersteinii Spotted knapweed Centaurea diffusa Diffuse knapweed Centaurea jacea Brown knapweed Centaurea pratensis Meadow knapweed Chelidonium majou Lesser Celandine Chicorum intybus Chicory Chondrilla juncea Rush skeletonweed Cirsium arvense Canada Thistle Cirsium vulgare Common Thistle Clematis ligusticifolia Western Clematis Clematis vitalba Traveler’s Joy Conium maculatum Poison-hemlock Convolvulus arvensis Field Morning-glory 1 Nuisance Plant List
    [Show full text]
  • A Glossary of Botanic Terms, with Their Derivation and Accent
    A GLOSSARY OF BOTANIC TERMS WITH THEIR DERIVATION AND ACCENT BY BENJAMIN DAYDON JACKSON LONDON DUCKWORTH & CO. PHILADELPHIA: J. B. LIPPINCOTT COMPANY 1900 CONTENTS Pages PREFACE v-xi Plan of the Work ... xii GLOSSARY .... 1-294 Additions during Printing . 295-319 APPENDIX— A. Signs and Abbreviations ..... 322 B. The Pronunciation of Latin and Latinized Words . 322 C. The Use of the Terms "Right" and "Left" . 323 D. Bibliography . .... 324-326 ERRATA ... ... 327 " Every other authout may aspire to praise, the lexicographer can only hope to escape reproach." De Samuel Johnson. PEEFACE Nearly thirty-nine years ago Dr M. C. Cooke published his " Manual,'' which reached a second edition nine years afterwards. Since then no botanic dictionary has been published in Britain, while during the period which has passed since then botany has undergone a momentous change. While systematic botany has been actively prosecuted, the other departments of morphology, physiology and minute anatomy have been energetically pursued by the help of improved appliances and methods of investigation. One result has been a large increase of technical terms, which are only partially accounted for in the various text-books. The time seemed therefore ripe for a new Glossary which should include these terms, and, encouraged by the help of many botanic friends, I have drawn up the present volume. After the work had been partly written, and announced for publication, Mr Crozier's " Dictionary " first came under my notice. I have consequently compared it with my manuscript, and inserted many words which had not come within my knowledge, or had been rejected by me, as will be seen by the acknowledgment in each case.
    [Show full text]
  • Do Weeds Hinder the Establishment of Native Plants on a Reclaimed North American Boreal Mine Site?
    diversity Article Do Weeds Hinder the Establishment of Native Plants on a Reclaimed North American Boreal Mine Site? Kaitlyn E. Trepanier *, Brea Burton and Bradley D. Pinno * Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada; [email protected] * Correspondence: [email protected] (K.E.T.); [email protected] (B.D.P.) Abstract: The majority of plant diversity in the boreal forest of northern Alberta, Canada is comprised of native understory plant species that are continuously facing competition from other species, including both undesirable native and weedy species. In oil sands mine reclamation, cover soils rich in organic matter are used to cap overburden materials. The aim of this study is to understand the role of weeds on different reclamation cover soils (forest floor-mineral mix and peat-mineral mix) and determine if they hinder the establishment of the native plant community. This study was conducted four growing seasons after site establishment in June 2019. At that time, both soil types had approximately 45% total cover, had 21 species per plot, and were composed of mainly native vegetation. Competition from non-native forbs (11% average cover, mainly Sonchus arvensis and Melilotus alba) did not seem to impact the development of the native vegetation community on either soil type given the high cover and richness of native forbs. However, native graminoids (predominantly Calamagrostis canadensis) were associated with reduced native forb cover and richness at graminoid cover greater than 17%. Overall, non-native forbs appeared to have little impact on the native forb community on either soil type while native graminoids had a negative influence.
    [Show full text]