Wader Disturbance: a Theoretical Overview

Total Page:16

File Type:pdf, Size:1020Kb

Wader Disturbance: a Theoretical Overview Cayford: Wader disturbance:a theoretical overview Wader disturbance: a theoretical overview John Cayford Cayford, J. T. 1993. Wader disturbance:a theoreticaloverview. Wader Study Group Bull. 68' 3-5. This paper briefly reviews some work on foraging efficiency,competition and dispersion,which may help predictthe effects of disturbanceto winteringwaders. John Cayford, Royal Society for the Protection of Birds, The Lodge, Sandy, Bedfordshire SG19 2DL, UK. (Present address: British Trust for Ornithology,The Nunnery, Thetford, Norfolk IP24 2PU, UK.) INTRODUCTION on disturbance,with the aim of encouragingresearchers Each year hundreds of thousandsof waterfowl to consider disturbance in the context of some current ovenNinteron, or migrate through, the estuaries of theory. north-westEurope (Prater 1981). These estuaries are dynamichabitats subject to intenseanthropogenic This paper deals with disturbanceto waders on their pressureswhich pose increasingthreats to winter feeding grounds. It should be borne in mind that ovenNinteringpopulations of waders. Barrages (to disturbancecan also affect waders duringtheir breeding generate electricity,control tidal surges or provide season and duringtheir migrations,and that the overall leisure facilities) and marina developmentsare impacton populationdynamics of breedingseason proposedfor a number of estuariesand representone disturbanceand/or disturbanceon migrationstaging type of potential threat to many wader species through areas could greatly compoundthat duringthe non- habitat loss and reduced feeding opportunities.Other breedingseason. threats include pollution,climatic change and risingsea levels which erode or inundate estuarine habitat (e.g. Burd 1992). Disturbance,particularly that caused by DEFINING DISTURBANCE recreationalactivities, is increasinglyperceived as a threat, especiallysince many recreationalactivities In any field of inquirythere is need for unambiguous appearto be increasingin intensity,coverage or period definitions. Disturbance is, however, a rather nebulous of the year in which they take place. Direct evidence concept which loosely describescausal relationships linkingdisturbance with populationchanges in waders between a wide range of (usually)anthropogenic stimul• is, however, generally lacking. and the responsesthey elicit in animals. Disturbance can be defined operationallyas any relatively discrete Recent research has predicted the effects of event in time that disrupts ecosystems, communities or developmentsand associatedloss of feeding habitat populations,where disruptionrefers to a change in on wader populations(Goss-Custard & Moser 1988; behaviour,physiology, numbers or survival.Disturbance Goss-Custardet al. 1991). Thiswork has provideda varies in its magnitude,frequency, predictability, spatial theoreticalframework for interpretingthe distributionand duration. Moreover, species (and consequencesof loss of feeding habitat on individuals individualswithin species) vary greatly in their and populations.Brief disturbance can resultin birds susceptibilityto disturbanceand this susceptibilityis beingtemporarily deprived of feedinghabitat (see Smit likelyto vary with age, season, weather and the degree & Visser 1993). Sustaineddisturbance can also result of previousexposure (habituation). in long-termloss of feedinghabitat and a reductionin feeding opportunity.In theory,the only difference As a general rule, disturbanceto waders is highly between disturbance and development is that its Iocalised in time and space. For example, recreational effects are usually more Iocalised, temporary and disturbanceis concentratedusually in the upper shore reversible. zones of estuaries and is restrictedmainly to daylight hours, especiallyweekends in summer. It has been In this paper I discussand brieflyreview some of the suggestedthat birds, being highlymobile, are less work on wader dispersion,competition, feeding susceptible to the effects of disturbance than many efficiencyand prey depletionthat is relevant to research other groups of organisms. Cayford: Wader disturbance:a theoretical overview EFFECTS OF DISTURBANCE ON THE INDIVIDUAL contributesto the disproportionatelyhigh mortalityof young birds, especiallyduring cold weather. One of the consequencesof sustained,Iocalised disturbanceis that waders shift to alternative feeding Sustained levels of disturbance can force birds to sites. A wading bird must feed to meet its immediate change feeding sites and may reduce intake rates. energy requirementsand if disturbancereduces intake However,waders have a phenomenalcapacity to vary rate below a criticalthreshold, it must emigrate or their intake rate in responseto changingenvironmental starve. Dispersionof the populationis simplythe sum of and physiologicaldemands. For example, Swennen the foragingdecisions of all individualswhere natural et aL (1989) have shownexperimentally that captive selection has shaped individualsto maximise the rate at OystercatchersHaematopus ostralegus increase their which they gather energy from food. Understandingthe feeding rates as the time availablefor feeding is factorsthat determinedispersion and limitfeeding reduced. Many wader species are knownto increase densities is key to an understandingof the possible their daily food intake by feeding in fieldsadjacent to consequencesof disturbanceat the level of the estuariesduring high water and feedingat night(Dugan individual. 1981). Such behaviourmight buffer the worst effectsof disturbance. Optimalforaging theory (OFT) is the theoretical framework,which has proved extremelyvaluable in generatingtestable hypothesesabout prey selectionand EFFECTS OF DISTURBANCE ON THE POPULATION dispersionin relationto food supply in waders. Waders must choose what prey species to feed on, whichsize- The maximumnumber of birdsan area can support classes to select and which food patches to exploit. (carryingcapa. city) will be determinedby the densityand availabilityof preferredprey, ratesof preydepletion and Numerousstudies have shown that waders forage the levelof competitionbetween individuals (interference). efficientlyby feeding in the best areas and selectingthe Only where populationsare limited,or are close to most profitablesize-classes of prey (e.g. Cayford & limitation,by the qualityand availabilityof winteringhabitat Goss-Custard1990). The result is that waders generally can disturbanceimpact negatively in such placeson concentratewhere prey density, prey availabilityand waderpopulations by increasingmortality or decreasing intake rates are relativelyhigh and where energy recruitment.A key questionis whetherwader populations expenditure is relatively low (Goss-Custard & Charman are limitedby the availabilityof prey, butthis is a difficult 1976). As overall numbers increase, dens•ies tend to questionto answer. It is relativelyeasy to measurethe reach a maximum on the most preferred feeding areas behaviouralresponses of birdsto disturbance,but it is (Goss-Custard et aL 1982). This pattern of dispersion much more difficultto quantifythe effectthat these approximatesto the 'ideal-free distribution'(Fretwell & changesin behaviourhave on populationdynamics. Lucas 1970) where differences in prey density are Goss-Custard& Moser(1988) have shownfor Dunlin cancelled out by differentialinterference (the immediate Calidrisalpina at least,that the decline in the overall and reversible reductionin intake rate as bird density winteringpopulation in Britainbetween 1983-1986 was a increases)and feeding rates are similarfor all sites. functionof habitatloss resulting from spread of cord-grass Spartina,supporting the view that feedinghabitat is a A more useful constructfor interpretingwader majorlimiting factor for thisspecies and that carrying dispersionis the 'ideal despotic model' (Fretwell & capacityhad been reached.Clearly, more researchis Lucas 1970) which recognisesindividual differences in needed on the carryingcapacity of estuariesand the competitiveability and assumes that individuals extent to whichwaders are limitedby food supplybefore compete for the best sites in an attempt to maximise we can predictthe effectsof disturbanceon populations. intake rates. If disturbance forces birds to move (temporarilyor permanently)the question arises as to whetheralternative feeding areas can accommodate MEASURING DISTURBANCE displacedindividuals and what effect increasedbird densitywill have on intake rates, body conditionand, Most studies have attempted to establishcausality ultimately,the fitnessof those individualswhich move. between disturbanceand dispersionby measuringthe Evidencesuggests that as bird densityincreases, behaviouralresponses of waders to disturbingstimuli. average intake rates decline in some species as a result This approach providesdata on relative levels of of increasedcompetition, increased prey depletionand disturbanceat differentsites and comparative data on a greater proportionof the populationfeeding in the susceptibilityof species to different stimuli.The rate, sub-optimalareas (Goss-Custard1980). However, not predictabilityand severityof disturbingstimuli are, all individualsare affected to the same degree. however, highlyvariable and the effects of disturbance Juveniles and sub-dominant adults are most susceptible are likelyto be additive,so frequencydata are limitedin to the effects of interferenceand this probably their usefulness. Cayford: Wader disturbance:a theoretical overview As we have seen, quantifyingthe effects of disturbance REFERENCES on populationsis problematicbecause of
Recommended publications
  • Studies of the Foods and Feeding Ecology of Wading Birds
    STUDIES OF THE FOODS AND FEEDING ECOLOGY OF WADING BIRDS Thesis submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy of the Council for National Academic Awards .. by Malcolm E. Greenhalgh, B. A. Department of Biology Liverpool Polytechnic October 1975 s ABSTRACT In this thesis are described the populations of waders (Aves: Charadrii) occurring on the Ribble Estuary, Lancashire, special reference being made to the eleven species comprising the bulk of the shore wader population. The daily routine of these birds is described including the time spent in feeding. The feeding areas are described together with the foods taken from gut and pellet analysis and direct observation. The distributions of invertebrates, and especially those of major importance as wader food, are described as well as the factors affecting these distributions. Variations in density of prey in relation to O. D., general geography of the estuary, and time of year are included. Depth distribution and variations in prey size are outlined for the main species. Food intake was studied in the eight main waders. Daily intake through the year is described. in relation to energy requirements. Variations of feeding rates with several factors are included. All data are combined to enable calculation of the total biomasses of the main prey taken by waders in the course of a year. These are compared with total minimum annual production of the prey. Future work, including a computer study based on these and extra data, is outlined. Frontispiece a. The author counting a flock of 45,000 Knot 25 August, 1972 b.
    [Show full text]
  • <I>Actitis Hypoleucos</I>
    Partial primary moult in first-spring/summer Common Sandpipers Actitis hypoleucos M. NICOLL 1 & P. KEMP 2 •c/o DundeeMuseum, Dundee, Tayside, UK 243 LochinverCrescent, Dundee, Tayside, UK Citation: Nicoll, M. & Kemp, P. 1983. Partial primary moult in first-spring/summer Common Sandpipers Actitis hypoleucos. Wader Study Group Bull. 37: 37-38. This note is intended to draw the attention of wader catch- and the old inner feathersare often retained (Pearson 1974). ers to the needfor carefulexamination of the primariesof Similarly, in Zimbabwe, first-year Common Sandpipers CommonSandpipers Actiris hypoleucos,and other waders, replacethe outerfive to sevenprimaries between December for partial primarywing moult. This is thoughtto be a diag- andApril (Tree 1974). It thusseems normal for first-spring/ nosticfeature of wadersin their first spring and summer summerCommon Sandpipers wintering in eastand southern (Tree 1974). Africa to show a contrast between new outer and old inner While membersof the Tay Ringing Group were mist- primaries.There is no informationfor birdswintering further nettingin Angus,Scotland, during early May 1980,a Com- north.However, there may be differencesin moult strategy mon Sandpiperdied accidentally.This bird was examined betweenwintering areas,since 3 of 23 juvenile Common and measured, noted as an adult, and then stored frozen un- Sandpiperscaught during autumn in Morocco had well- til it was skinned,'sexed', andthe gut contentsremoved for advancedprimary moult (Pienkowski et al. 1976). These analysis.Only duringskinning did we noticethat the outer birdswere moultingnormally, and so may have completed primarieswere fresh and unworn in comparisonto the faded a full primary moult during their first winter (M.W. Pien- and abradedinner primaries.The moult on both wingswas kowski, pers.comm.).
    [Show full text]
  • Migration Route for Greater and Lesser Sand Plovers Spending the Non-Breeding Season in Kenya
    Biodiversity Observations http://bo.adu.org.za An electronic journal published by the Animal Demography Unit at the University of Cape Town The scope of Biodiversity Observations consists of papers describing observations about biodiversity in general, including animals, plants, algae and fungi. This includes observations of behaviour, breeding and flowering patterns, distributions and range extensions, foraging, food, movement, measurements, habitat and colouration/plumage variations. Biotic interactions such as pollination, fruit dispersal, herbivory and predation fall within the scope, as well as the use of indigenous and exotic species by humans. Observations of naturalised plants and animals will also be considered. Biodiversity Observations will also publish a variety of other interesting or relevant biodiversity material: reports of projects and conferences, annotated checklists for a site or region, specialist bibliographies, book reviews and any other appropriate material. Further details and guidelines to authors are on this website. Lead Editor: Arnold van der Westhuizen – Paper Editor: Les G Underhill CLUES TOWARDS THE MIGRATION ROUTE FOR GREATER AND LESSER SAND PLOVERS SPENDING THE NON-BREEDING SEASON IN KENYA Colin H.W. Jackson Recommended citation format: Jackson CHW 2016. Clues towards the migration route for Greater and Lesser Sand Plovers spending the non-breeding season in Kenya. Biodiversity Observations 7.36: 1–8. URL: http://bo.adu.org.za/content.php?id=229 Published online: 5 July 2016 – ISSN 2219-0341 – Biodiversity Observations 7.36: 1–8 1 MIGRATION breeds in north-western China (Hirschfield et al. 2000, Delany et al. 2009). CLUES TOWARDS THE MIGRATION ROUTE FOR In both species the adults return to their breeding grounds annually.
    [Show full text]
  • Mapping Farmland Wader Distributions and Population Change to Identify Wader Priority Areas for Conservation and Management Action
    Mapping farmland wader distributions and population change to identify wader priority areas for conservation and management action Scott Newey1*, Debbie Fielding1, and Mark Wilson2 1. The James Hutton Institute, Aberdeen, AB15 8QH 2. The British Trust for Ornithology Scotland, Stirling, FK9 4NF * [email protected] Introduction Many birds have declined across Scotland and the UK as a whole (Balmer et al. 2013, Eaton et al. 2015, Foster et al. 2013, Harris et al. 2017). These include five species of farmland wader; oystercatcher, lapwing, curlew, redshank and snipe. All of these have all been listed as either red or amber species on the UK list of birds of conservation concern (Harris et al. 2017, Eaton et al. 2015). Between 1995 and 2016 both lapwing and curlew declined by more than 40% in the UK (Harris et al. 2017). The UK harbours an estimated 19-27% of the curlew’s global breeding population, and the curlew is arguably the most pressing bird conservation challenge in the UK (Brown et al. 2015). However, the causes of wader declines likely include habitat loss, alteration and homogenisation (associated strongly with agricultural intensification), and predation by generalist predators (Brown et al. 2015, van der Wal & Palmer 2008, Ainsworth et al. 2016). There has been a concerted effort to reverse wader declines through habitat management, wader sensitive farming practices and predator control, all of which are likely to benefit waders at the local scale. However, the extent and severity of wader population declines means that large scale, landscape level, collaborative actions are needed if these trends are to be halted or reversed across much of these species’ current (and former) ranges.
    [Show full text]
  • Download PDF Version
    Establishing The Link: The ROK & USA Alaskan Bar-tailed Godwit, Geum Estuary, ROK, April 2006, Jan van de Kam / Birds Korea Nial Moores, Birds Korea, November 19th 2012 An introduction prepared for the US Embassy, Seoul, and USA-based conservation organisations Number of Shared Species l 149+ species out of total 189 listed in USA-Japan migratory bird protection convention * (1972) recorded in the Republic of Korea (ROK) l 119 of these 149 are regularly-occurring in the ROK l Probably ~19 species actually migrate regularly between ROK and Alaska l These 19 species provide the best focus for discussion and future collaborative conservation work * CONVENTION BETWEEN THE GOVERNMENT OF JAPAN AND THE GOVERNMENT OF THE UNITED STATES OF AMERICA FOR THE PROTECTION OF MIGRATORY BIRDS AND BIRDS IN DANGER OF EXTINCTION, AND THEIR ENVIRONMENT (1972) East Asian-Australasian Flyway: Bird Migration Linking Nations Alaska: supports breeding loons, ducks and shorebirds Heart of the Flyway: the Yellow Sea. Yellow Sea Supports staging shorebirds during migration and wintering loons and Dunlin Australia and New Zealand: during boreal winter support many shorebird species Figure used by Birds Korea with permission; from van de Kam et al. (2008) USA-ROK Shared Bird Species Some freshwater ducks –however, majority of c.19 main shared migratory bird species are Seabirds and Shorebirds In ROK ecologically dependent on: 1.Inshore and Marine waters 2.Intertidal wetlands Inshore and Marine Species GInavciildaeude and Alcidae -species include: Red-throated Loon Gavia stellata YRelledow-btillhedroa Loonted G avLoonia ada mGsaii via Stellata Yellow-billed Loon Gavia adamsii Yellow-billed Loon, Gangwon, T.
    [Show full text]
  • Infection, Genetics and Evolution 53 (2017) 135–145
    Infection, Genetics and Evolution 53 (2017) 135–145 Contents lists available at ScienceDirect Infection, Genetics and Evolution journal homepage: www.elsevier.com/locate/meegid Research paper Purifying selection and concerted evolution of RNA-sensing toll-like receptors in migratory waders Nynke Raven a, Simeon Lisovski a, Marcel Klaassen a,NathanLob,ThomasMadsena, Simon Y.W. Ho b, Beata Ujvari a,⁎ a Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia b School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia article info abstract Article history: Migratory birds encounter a broad range of pathogens during their journeys, making them ideal models for study- Received 10 December 2016 ingimmunegeneevolution.Despitethepotentialvalueof these species to immunoecology and disease epidemi- Received in revised form 15 May 2017 ology, previous studies have typically focused on their adaptive immune gene repertoires. In this study, we Accepted 17 May 2017 examined the evolution of innate immune genes in three long-distance migratory waders (order Charadriiformes). Available online 18 May 2017 We analysed two parts of the extracellular domains of two Toll-like receptors (TLR3 and TLR7) involved in virus recognition in the Sanderling (Calidris alba), Red-necked Stint (Calidris ruficollis), and Ruddy Turnstone (Arenaria Keywords: Migratory birds interpres). Our analysis was extended to 50 avian species for which whole-genome sequences were available, in- Toll-like receptor cluding two additional waders. We found that the inferred relationships among avian TLR3 and TLR7 do not match Concerted evolution the whole-genome phylogeny of birds. Further analyses showed that although both loci are predominantly under Avian influenza virus purifying selection, the evolution of the extracellular domain of avian TLR3 has also been driven by episodic diver- Purifying selection sifying selection.
    [Show full text]
  • Conservation Advice Charadrius Mongolus Lesser Sand Plover
    THREATENED SPECIES SCIENTIFIC COMMITTEE Established under the Environment Protection and Biodiversity Conservation Act 1999 The Minister approved this conservation advice and included this species in the Endangered category, effective from 5 May 2016 Conservation Advice Charadrius mongolus Lesser sand plover Taxonomy Conventionally accepted as Charadrius mongolus Pallas, 1776. Charadriidae. Other common names include Mongolian plover, dotterel, sand-plover or sand-dotterel; lesser dotterel or sand-dotterel; short-nosed sand plover (Marchant & Higgins 1993). Two subspecies occur in Australia, Charadrius mongolus mongolus lesser sand plover (Mongolian) and C. m. stegmanni lesser sand plover (Kamchatkan). Taxonomic uniqueness: medium (11 genera/family, 35 species/genus, 5 subspecies/species; Garnett et al., 2011). Summary of assessment Conservation status Endangered: Criterion 1 A2 (a) The highest category for which Charadrius mongolus is eligible to be listed is Endangered. Charadrius mongolus has been found to be eligible for listing under the following listing categories: Criterion 1: A2 (a): Endangered Criterion 2: Not eligible Criterion 3: Not eligible Criterion 4: Not eligible Criterion 5: Not eligible Species can be listed as threatened under state and territory legislation. For information on the listing status of this species under relevant state or territory legislation, see http://www.environment.gov.au/cgi-bin/sprat/public/sprat.pl Reason for conservation assessment by the Threatened Species Scientific Committee This advice follows assessment of new information provided to the Committee to list Charadrius mongolus. Public Consultation Notice of the proposed amendment and a consultation document was made available for public comment for 47 business days between 1 October and 4 December 2015.
    [Show full text]
  • A WADER MIGRATION at TLELL, QUEEN CHARLOTTE ISLANDS, BRITISH COLUMBIA with THREE ILLUSTRATIONS by J
    230 Vol. XXXVIII A WADER MIGRATION AT TLELL, QUEEN CHARLOTTE ISLANDS, BRITISH COLUMBIA WITH THREE ILLUSTRATIONS By J. A. MUNRO While at Tlell, on the east coast of Graham Island, during the period April 29 to May 30, 1935, I had an opportunity to conduct daily observations on a wader migration. The flight probably had been under way for some days prior to my arrival, and it reached the peak shortly afterward. It terminated so far as most species were concerned on May 11, after which only Sanderlings (Crocettiu a&z) were abundant. The chief feeding ground for waders was an expanse of boulder-strewn sea- bottom interspersed with areas of clear sand or of shingle, part of which was always available except at extreme high tide when the reef was completely submerged. Some of these boulders were encrusted with barnacles, others with gastropods, chiefly Littorina scutzdata. Limpets clung to their sides and the spaces between harbored various other species of molluscs. The overturning of a stone usually dis- lodged little crabs, isopods or other small animals, and a high-water mark deposit of drifted eel-grass held still others including amphipods in abundance-in short, it was a rich feeding ground not only for waders but also for gulls, bald eagles, crows and ravens. Here on the evening of April 29, with all save several small parts of the reef covered by the rising tide, a large company of waders, chiefly Black Turnstones (Arena& mdunocepkah) , but including also Aleutian Sandpipers (Arquatella ptilocds cmesi), Western Sandpipers (Ereunetes mawi), Sanderlings, Dowitchers (Limnodrom&cs griseus) and Red-backed Sandpipers (Pelidnu dpina sakkuhz) was assembled.
    [Show full text]
  • British Birds |
    VOL. LU JULY No. 7 1959 BRITISH BIRDS WADER MIGRATION IN NORTH AMERICA AND ITS RELATION TO TRANSATLANTIC CROSSINGS By I. C. T. NISBET IT IS NOW generally accepted that the American waders which occur each autumn in western Europe have crossed the Atlantic unaided, in many (if not most) cases without stopping on the way. Yet we are far from being able to answer all the questions which are posed by these remarkable long-distance flights. Why, for example, do some species cross the Atlantic much more frequently than others? Why are a few birds recorded each year, and not many more, or many less? What factors determine the dates on which they cross? Why are most of the occurrences in the autumn? Why, despite the great advantage given to them by the prevail­ ing winds, are American waders only a little more numerous in Europe than European waders in North America? To dismiss the birds as "accidental vagrants", or to relate their occurrence to weather patterns, as have been attempted in the past, may answer some of these questions, but render the others still more acute. One fruitful approach to these problems is to compare the frequency of the various species in Europe with their abundance, migratory behaviour and ecology in North America. If the likelihood of occurrence in Europe should prove to be correlated with some particular type of migration pattern in North America this would offer an important clue as to the causes of trans­ atlantic vagrancy. In this paper some aspects of wader migration in North America will be discussed from this viewpoint.
    [Show full text]
  • Investigating Wader Breeding Productivity in the East Cairngorms Moorland Partnership Area Using Collaborative Methods
    BTO RESEARCH REPORT 715 Investigating wader breeding productivity in the East Cairngorms Moorland Partnership Area using collaborative methods David Jarrett, John Calladine, Jos Milner, Chris Wernham & Mark Wilson ACKNOWLEDGEMENTS: This work was funded by the Cairngorms National Park Authority. We are grateful for the efforts of staff at the following estates who carried out fieldwork for the project: Balmoral Estate, Glenavon Estate, Glenlivet Estate, Invercauld Estate, Mar Estate, Mar Lodge Estate and Rhiedorrach Estate. Members of the Tomintoul and Glenlivet Wildlife Group also contributed to fieldwork and data collation. Investigating wader breeding productivity in the East Cairngorms Moorland Partnership Area using collaborative methods A report to the East Cairngorms Moorland Partnership David Jarrett¹, John Calladine¹, Jos Milner², Chris Wernham¹ & Mark Wilson¹ BTO Research Report 715 1BTO Scotland, University of Stirling Innovation Park, Stirling, FK9 4NF 2East Cairngorms Moorland Partnership, Cairngorms National Park Authority, Albert Memorial Hall, Station Square, Ballater, AB35 5QB © British Trust for Ornithology 2019 BTO Scotland, University of Stirling Innovation Park, Stirling, FK9 4NF BTO, The Nunnery, Thetford, Norfolk IP24 2PU Tel: +44 (0)1842 750050 Email: [email protected] Registered Charity Number 216652 (England & Wales), SC039193 (Scotland). ISBN 978–1–912642–01–4 Executive summary ......................................................................................................................................................................5
    [Show full text]
  • An Australian Sight Record of the White-Rumped Sandpiper by FRED
    Dec. SMITH: Australian Record of White-rumped 317 1976 ] Sandpiper Corvus coronoides, Australian Raven. Common. Two nests in 1973 and four in 1974. Birds observed outside the period December 1, 1972 to February 1, 1975. Cracticus torquatus, Grey Butcher-bird. Podargus strigoides, Tawny Frogmouth. Dacelo gigas, Laughing Kookaburra. Seisura inquieta, Restless Flycatcher. Colluricincla harmonica, Grey Shrike-thrush. An Australian Sight Record of the White-rumped Sandpiper By FRED. T. H. SMITH, Kew, Victoria. SUMMARY An account of the first sighting for Australia of the White­ rumped Sandpiper, Calidris fuscicollis, is given with a photograph. The bird was seen at Lake Murdeduke, Victoria, many times by various observers over a period of approximately eleven weeks. FINDING THE WHITE-RUMPED SANDPIPER While watching waders along the shoreline of the west side of Lake Murdeduke, a large, salty to brackish, open lake with no above-surface vegetation, about 125 km west of Melbourne, Vic­ toria, on November 25, 1973, with R. T . Sympson, and R. J. Swindley the latter sighted a small sandpiper that was a stranger to us all. It was feeding on a short-grassed flat near the shore and moved to the muddy edge near the waterline on being dis­ turbed by us. It then commenced to feed near two Red-necked Stints, Calidris ruficollis, and some Red-capped Dotterels, Chara­ drius alexandrinus. It was dusky in general appearance, particularly on the upper­ parts but somewhat paler below, with medium-length bill and dark legs. It was a little, but noticeably, larger than the Red­ necked Stints and its bill and legs were longer than theirs.
    [Show full text]
  • Egg Hatchability in High Arctic Breeding Wader Species
    University of Groningen Egg hatchability in high Arctic breeding wader species Charadriiformes is not affected by determining incubation stage using the egg flotation technique Hansen, Jannik; Schmidt, Niels Martin; Reneerkens, Jeroen Published in: Bird Study DOI: 10.1080/00063657.2011.601411 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2011 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Hansen, J., Schmidt, N. M., & Reneerkens, J. (2011). Egg hatchability in high Arctic breeding wader species Charadriiformes is not affected by determining incubation stage using the egg flotation technique. Bird Study, 58(4), 522-525. https://doi.org/10.1080/00063657.2011.601411 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is
    [Show full text]