Therapeutic and Pharmaceutical Potential of Cinnamomum Tamala
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Potential Control of Postharvest Gray Mold of Pomegranate Fruits Caused by Botrytis Cinerea
11 Env. Biodiv. Soil Security Vol.1, pp. 145- 156 (2017) Potential Control of Postharvest Gray Mold of Pomegranate Fruits Caused by Botrytis Cinerea Samar A. Allam1, Gabr A. Elkot2, Abdelnaser A. Elzaawely1* and Hassan M. El-Zahaby1 1*Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta, and 2Department of Agricultural Botany, Faculty of Agriculture, Kafr Elsheikh University, Kafr El Sheikh, Egypt . RAY mold rot, caused by Botrytis cinerea, is one of the most economically significant Gpostharvest diseases in pomegranate fruits. The aim of the current study is to evaluate Mangifera indica, Thymus vulgaris, Origanum majorana, Salix mucronata, Cinnamomum cassia and Zingiber officinale extracts and biocontrol agents for controlling gray mold disease on pomegranate. In vitro results showed that T. vulgaris (T.v), C. cassia (C.c) and Z. officinale (Z.o) extracts possessed highly significant antifungal activities as they completely inhibited the radial growth of B. cinerea at the concentrations of 30000, 20000 and 30000 ppm, respectively. The combination of the aforementioned plant extracts and fungicide Flusilazole (Flu) overcomes the potency of Flu or the plant extracts alone specially C.c+Flu at the rate of (2:1; v/v) since it inhibited the radial growth of B. cinerea with 89.6% inhibition compared to the control. The study also proved that using the aforementioned plant extracts alone or in combination with Flu as well as the bacterial antagonists (Bacillus subtilis or Pseudomonas fluorescens) significantly reduced the loss in fruit weight. Furthermore, they also prolonged the storage period of pomegranate fruits and maintained high-quality parameters including soluble solids content and titratable acidity after cold storage at 5±1°C and 90% RH. -
IJPSR (2009), Issue 1
Ehiabhi and Modupeoluwa, IJP, 2020; Vol. 7(10): 248-256. E- ISSN: 2348-3962, P-ISSN: 2394-5583 IJP (2019), Vol. 7, Issue 10 (Research Article) Received on 06 May 2020; received in revised form, 22 September 2020; accepted, 24 September 2020; published 01 October 2020 COMPARATIVE ESSENTIAL OIL COMPOSITION OF LAURUS NOBILIS, SYZYGIUM GUINEENSE AND SYZYGIUM EUCALYPTOIDES IN SEARCH FOR NIGERIAN BAY LEAF - PART I Okhale Samuel Ehiabhi * 1 and Ogunfowokan Ifeoluwapo Modupeoluwa 2 Department of Medicinal Plant Research and Traditional Medicine 1, National Institute for Pharmaceutical Research and Development (NIPRD), P. M. B. 21, Garki, Abuja, Nigeria. Department of Biochemistry 2, Bingham University, P. M. B 005, KM 26 Abuja-Keffi Expressway Kodope, Karu, Nasarawa State, Nigeria. Keywords: ABSTRACT: Bay leaf is an aromatic leaf commonly used in cooking for its Nigerian bay leaf, distinctive flavor and fragrance. The bay leaf sold in Nigerian markets being Laurus nobilis, Syzygium guineense, Laurus nobilis (L. nobilis) is imported. The leaf of Syzygium guineense (S. Syzygium eucalyptoides, Essential oil guineense) and Syzygium eucalyptoides (S. eucalyptoides) have a long Correspondence to Author: history of use as vegetables and spices in Nigeria. In this study, leaf of S. Dr. Okhale Samuel Ehiabhi guineense, S. eucalyptoides, and a commercial sample of L. nobilis being the Department of Medicinal Plant gold standard for bay leaf, were evaluated for comparative essential oil Research and Traditional Medicine, composition in search of Nigerian bay leaf. The essential oil was obtained by National Institute for Pharmaceutical hydrodistillation using a Clevenger-type apparatus. The essential oils were Research and Development (NIPRD), analyzed by gas chromatography-mass spectrometry (GC-MS). -
Ceylon Cinnamon • Pure Cinnamon • Mexican Cinnamon • Sri Lanka Cinnamon • Canela (Spanish for Cinnamon)
Cinnamon The 4th most valuable spice in the world http://www.trueceylonspices.com/ceylon-cinnamon/ www.truecylonspices.com 1. About Cinnamon is a first traded and most popular spice from the ancient time. It extracts from the bark of the cinnamon tree have also been used traditionally as medicine throughout the world. www.truecylonspices.com 2. Products of Cinnamon • Cinnamon Quills (Full tubes) • Cinnamon Quillings (broken tubes) • Cinnamon Featherings • Cinnamon Chips • Ground Cinnamon (Cinnamon powder) • Cinnamon Leaf Oil • Cinnamon Bark Oil www.truecylonspices.com 3. Varieties 1. Cassia Cinnamon 1. Cinnamomum loureiroi 2. Cinnamomum aromaticum 3. Cinnamomum burmannii 2. True Cinnamon 1. Cinnamomum verum www.truecylonspices.com 3.1.1 Cinnamomum loureiroi • Other names: • Saigon Cinnamon • Vietnamese cinnamon • Vietnamese cassia • Origin: • Vietnam • Pros: • Strong spicy cinnamon taste • high levels of oil content Image credit: Wikipedia • Cons: • High Coumarin Levels www.truecylonspices.com 3.1.2 Cinnamomum aromaticum • Other names: • Cinnamomum cassia (old Latin name) • Cassia • Chinese cinnamon • Chinese cassia • Tung Hing • Origin: • China • Pros: • Cheap Image credit: Wikipedia • Cons: • High Coumarin Levels www.truecylonspices.com 3.1.3 Cinnamomum burmannii • Other names: • Korintje cassia • Padang cassia • Batavia cassia • Indonesian cinnamon • Origin: • Indonesia • Pros: • Cheap • Spicy Cinnamon flavor Image credit: Wikipedia • Cons: • High Coumarin Levels www.truecylonspices.com 3.2.1 b. Cinnamomum verum • Other names: • Cinnamomum zeylanicum (old Latin name) • True Cinnamon • Ceylon Cinnamon • Pure cinnamon • Mexican cinnamon • Sri Lanka cinnamon • Canela (Spanish for cinnamon) • Origin: • Sri Lanka (90%), • India, Madagascar, Brazil, Caribbean • Pros: • Ultra Low Coumarin levels • Softer and subtle taste • crumbly • Cons: • Expensive www.truecylonspices.com 4. Usage of Cinnamon • Usage of Cinnamon bark • As a spice. -
WIAD CONSERVATION a Handbook of Traditional Knowledge and Biodiversity
WIAD CONSERVATION A Handbook of Traditional Knowledge and Biodiversity WIAD CONSERVATION A Handbook of Traditional Knowledge and Biodiversity Table of Contents Acknowledgements ...................................................................................................................... 2 Ohu Map ...................................................................................................................................... 3 History of WIAD Conservation ...................................................................................................... 4 WIAD Legends .............................................................................................................................. 7 The Story of Julug and Tabalib ............................................................................................................... 7 Mou the Snake of A’at ........................................................................................................................... 8 The Place of Thunder ........................................................................................................................... 10 The Stone Mirror ................................................................................................................................. 11 The Weather Bird ................................................................................................................................ 12 The Story of Jelamanu Waterfall ......................................................................................................... -
Ethnoveterinary Plants of Uttaranchal — a Review
Indian Journal of Traditional Knowledge Vol. 6(3), July 2007, pp. 444-458 Ethnoveterinary plants of Uttaranchal — A review PC Pande1*, Lalit Tiwari1 & HC Pande2 1Department of Botany, Kumaon University, SSJ Campus, Almora 263 601, Uttaranchal 2Botanical Survey of India (NC), Dehradun, Uttaranchal E-mail: [email protected] Received 21 December 2004; revised 7 February 2007 The study reveals that the people of the Uttaranchal state use 364 plants species in ethnoveterinary practices. Bhotiyas, Boxas, Tharus, Jaunsaris and Rhajis are the tribal groups inhabiting in Uttaranchal. Analysis of data indicates that information on 163 plants is significant as it provides some new information of the ethnoveterinary uses. The study is expected to provide basic data for further studies aimed at conservation of traditional medicine and economic welfare of rural people at the study area. Keywords: Ethnoveterinary practices, Medicinal plants, Uttaranchal, Review IPC Int. Cl.8: A61K36/00, A61P1/00, A61P1/02, A61P1/04, A61P1/10, A61P1/16, A61P17/00, A61P19/00, A61P25/00, A61P27/00, A61P39/02 Uttaranchal state lies between 28°42′ to 31°28′N; medicinal knowledge of the state. Keeping this in 77°35′ to 81°05′E and comprise of 13 districts of the view, an attempt has been made to explore and Central Himalayas. The major part of this region is compile the exhaustive knowledge of plants used in mountainous. The region covers about 38,000 sq km veterinary practices. In all, 364 plant species were and comprises of 3 border districts, namely recorded from the Uttaranchal, which are used by the Pithoragarh, Chamoli and Uttarkashi; 7 inner districts: people for various veterinary diseases and disorders. -
(Tejpat) Essential
Natural Product Radiance, Vol. 8(2), 2009, pp.106-116 Research Paper Chemistry, antimicrobial and antioxidant potentials of Cinnamomum tamala Nees & Eberm. (Tejpat) essential oil and oleoresins† I P S Kapoor1, Bandana Singh1, Gurdip Singh1*, Valery Isidorov2 and Lech Szczepaniak2 1Chemistry Department, DDU Gorakhpur University, Gorakhpur- 273 009, Uttar Pradesh, India 2Institute of Chemistry, Bialystok University, UI. Hurtowa 1, 15-399, Bialystok, Poland *Correspondent author, E-mail: [email protected]; Phone: +91-551-2200745 (R), 2202856 (O); Fax: +91-551-2340459 Received 6 November 2007; Accepted 26 November 2008 †Part 63 Abstract Gas chromatography-mass spectrometery (GC-MS) analysis of essential oil and oleoresins of Cinnamomum tamala Nees & Eberm. (Tejpat) revealed eugenol as major component of essential oil and oleoresins. The antioxidant activity of essential oil and oleoresins were evaluated against mustard oil by peroxide, p-anisidine, thiobarbituric acid and total carbonyl value method. In addition, their inhibitory action by FTC method, scavenging capacity by DPPH (2, 2′-diphenyl- 1-picrylhydrazyl radical) method was also studied. The antimicrobial potentials of essential oil and oleoresins were tested against various food born fungi and bacteria. Results showed that both the volatile oil and oleoresins have effective antioxidant and antimicrobial activities. Thus, they could be evaluated as natural food preservatives, however, essential oil is better than oleoresins. Keywords: Antimicrobial activity, Antioxidant activity, Cinnamomum tamala, Essential oil, Indian Cassia lignea, Oleoresins, Tejpat. IPC code; Int. cl.8 — A61K 36/54, A61P 31/00, A61P 39/06 Introduction of spices have been reported by few Antioxidants are being workers4-6. commonly used to prevent the fat rancidity Indian Cassia lignea, because these are substances that when Cinnamomum tamala Nees & Tejpat leaves added to food products, especially lipids Eberm. -
A Review on Chemistry and Biological Activities of Laurus Nobilis L
Journal of Pharmacognosy and Phytochemistry 2017; 6(4): 1153-1161 E-ISSN: 2278-4136 P-ISSN: 2349-8234 A review on chemistry and biological activities of Laurus JPP 2017; 6(4): 1153-1161 Received: 18-05-2017 nobilis L. essential oil Accepted: 19-06-2017 KK Chahal KK Chahal, Mandeep Kaur, Urvashi Bhardwaj, Nancy Singla and Department of Chemistry, Punjab Agricultural University, Amandeep Kaur Ludhiana, Punjab, India Abstract Dhirendra Kumar Singh Laurus nobilis L. commonly known as bay belonging to the family Lauraceae is one of the most useful Department of Chemistry, essential oil and is an industrial plant used in foods, drugs and cosmetics. Bay is cultivated throughout Punjab Agricultural University, Ludhiana, Punjab, India the world mainly in tropical and sub-tropical Asia, Australia, Pacific region and South Asia. Bay essential oil can be extracted from various parts of plant and chiefly consisted of 1, 8 Cineole, sabinene, Ankit Panchbhaiya α-pinene and p-Cymene. Due to presence of various chemical constituents in bay, various biological and Department of Chemistry, pharmacological properties have been reported such as antibacterial, antifungal, antioxidant, insecticidal Punjab Agricultural University, and nematicidal activities. This review highlighted chemical composition and biological activities of Ludhiana, Punjab, India Laurus nobilis which will be useful to the researcher for further study. Neeraj Singh Keywords: Laurus nobilis (L.), essential oil, chemical composition, biological activity Department of Chemistry, Punjab Agricultural University, 1. Introduction Ludhiana, Punjab, India The natural plant products are chemical compounds extracted from plants which are synthesized by following pathways of primary or secondary metabolism. The study of natural products involves isolation of these compounds in a pure form by hydro-distillation, soxhlet extraction and chromatographic methods and analysis of their structure, formation, use, purpose, etc. -
Camphor Laurels' Ecological Management & Restoration
emr_399.fm Page 88 Wednesday, July 9, 2008 8:54 AM FEATURE doi: 10.1111/j.1442-8903.2008.00399.x PotentialBlackwell Publishing Asia value of weedy regrowth for rainforest restoration By John Kanowski, Carla P. Catterall and Wendy Neilan Weeds are (usually justifiably) considered ‘bad’! But what about when weedy regrowth supports native species and facilitates the conversion of retired pasture back to functioning rainforest? Figure 1. The Topknot Pigeon (Lopholaimus antarcticus), a rainforest pigeon which feeds on the fruit of Camphor Laurel (Cinnamomum camphora) in north-east New South Wales, Australia. The Topknot Pigeon forages in large flocks and can travel tens of kilometres daily. For these reasons, it is an important long-distance disperser of rainforest plants to stands of Camphor Laurel (as well as being a disperser of Camphor Laurel to other forest types). (Photo: Terry M. Reis.) Introduction and subtropical Australia, many small restoration plantings have been estab- ustralian rainforests have been the lished, mostly utilizing a diverse range Afocus of much conservation and of locally occurring species, planted at restoration effort in the past few high densities (Kooyman 1996; Free- decades. Governments, community body 2007). Research has shown that John Kanowski is a Research Fellow and groups and individuals have invested these restoration plantings can develop Carla Catterall is an Associate Professor in the tens of millions of dollars to rehabi- a rainforest-like structure and support School of Environment, Griffith University (Nathan, litate degraded remnants and replant a moderate diversity of rainforest fauna Qld 4111, Australia; Tel. +61 (0) 7 3735 3823; rainforest trees in tropical and subtropical (Fig. -
Himalayan Aromatic Medicinal Plants: a Review of Their Ethnopharmacology, Volatile Phytochemistry, and Biological Activities
medicines Review Himalayan Aromatic Medicinal Plants: A Review of their Ethnopharmacology, Volatile Phytochemistry, and Biological Activities Rakesh K. Joshi 1, Prabodh Satyal 2 and Wiliam N. Setzer 2,* 1 Department of Education, Government of Uttrakhand, Nainital 263001, India; [email protected] 2 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-256-824-6519; Fax: +1-256-824-6349 Academic Editor: Lutfun Nahar Received: 24 December 2015; Accepted: 3 February 2016; Published: 19 February 2016 Abstract: Aromatic plants have played key roles in the lives of tribal peoples living in the Himalaya by providing products for both food and medicine. This review presents a summary of aromatic medicinal plants from the Indian Himalaya, Nepal, and Bhutan, focusing on plant species for which volatile compositions have been described. The review summarizes 116 aromatic plant species distributed over 26 families. Keywords: Jammu and Kashmir; Himachal Pradesh; Uttarakhand; Nepal; Sikkim; Bhutan; essential oils 1. Introduction The Himalya Center of Plant Diversity [1] is a narrow band of biodiversity lying on the southern margin of the Himalayas, the world’s highest mountain range with elevations exceeding 8000 m. The plant diversity of this region is defined by the monsoonal rains, up to 10,000 mm rainfall, concentrated in the summer, altitudinal zonation, consisting of tropical lowland rainforests, 100–1200 m asl, up to alpine meadows, 4800–5500 m asl. Hara and co-workers have estimated there to be around 6000 species of higher plants in Nepal, including 303 species endemic to Nepal and 1957 species restricted to the Himalayan range [2–4]. -
(Cinnamomum Zeylanicum Blume.) & Naluka/Cassia
International Journal of Research in Pharmacy and Biosciences Volume 2, Issue 2, February 2015, PP 1-4 ISSN 2394-5885 (Print) & ISSN 2394-5893 (Online) Identification of Adulterants by Pharmacognostical Evaluation: Tvak (Cinnamomum Zeylanicum Blume.) & Naluka/Cassia [Cinnamomum Cassia (Nees & T.Nees.) J.Presl] Nanda Amalesh1, Paul Nirankush1, Gupta Amartya Kumar1, Ganguly Partha*1, Banerjee Dipankar1, Singh Rahul1, Katiyar Chandrakant1 1R&D Healthcare Division, Emami Ltd., 13 B.T. Road, Belghoria, Kolkata-700 056, India ABSTRACT Traditional medical systems remain important resources of healthcare worldwide that are reported to be safe and produce minimum side effects compared to synthetic medicines. At present deforestation and extinction of many species and incorrect identification of many plants has resulted in adulteration of raw drugs which results in lesser efficacy of the finished formulations? This article throws light on the concepts of adulteration of Naluka/Cassia (Cinnamomum cassia) with Tvak (Cinnamomum zeylanicum). Morphologically near about same, and Tvak is typically more expensive than the Naluka, so it is easy to adulterate Tvak with inferior variety of Naluka to reduce the cost. But there is no instantaneous ready method available to distinguish between Tvak and Naluka. A rough distinction can be made between Tvak and Naluka depending upon the Coumarin content [1] which requires sophisticated analytical technique which involves both time and cost. In the present study, an easy attempt has been made to distinguish between Tvak and Naluka using simple pharmacognostical evaluation.These simple microscopic and macroscopic characters can be used as an effective tool for the identification of true Tvak sample which will help to maintain the quality of herbal drugs by avoiding adulteration of Naluka. -
Phylogeny and Historical Biogeography of Lauraceae
PHYLOGENY Andre'S. Chanderbali,2'3Henk van der AND HISTORICAL Werff,3 and Susanne S. Renner3 BIOGEOGRAPHY OF LAURACEAE: EVIDENCE FROM THE CHLOROPLAST AND NUCLEAR GENOMES1 ABSTRACT Phylogenetic relationships among 122 species of Lauraceae representing 44 of the 55 currentlyrecognized genera are inferredfrom sequence variation in the chloroplast and nuclear genomes. The trnL-trnF,trnT-trnL, psbA-trnH, and rpll6 regions of cpDNA, and the 5' end of 26S rDNA resolved major lineages, while the ITS/5.8S region of rDNA resolved a large terminal lade. The phylogenetic estimate is used to assess morphology-based views of relationships and, with a temporal dimension added, to reconstructthe biogeographic historyof the family.Results suggest Lauraceae radiated when trans-Tethyeanmigration was relatively easy, and basal lineages are established on either Gondwanan or Laurasian terrains by the Late Cretaceous. Most genera with Gondwanan histories place in Cryptocaryeae, but a small group of South American genera, the Chlorocardium-Mezilauruls lade, represent a separate Gondwanan lineage. Caryodaphnopsis and Neocinnamomum may be the only extant representatives of the ancient Lauraceae flora docu- mented in Mid- to Late Cretaceous Laurasian strata. Remaining genera place in a terminal Perseeae-Laureae lade that radiated in Early Eocene Laurasia. Therein, non-cupulate genera associate as the Persea group, and cupuliferous genera sort to Laureae of most classifications or Cinnamomeae sensu Kostermans. Laureae are Laurasian relicts in Asia. The Persea group -
View Essential Oils Product List
Essential Oils Common Name Botanical Name AMYRIS OIL PURE & NATURAL Amyris balsamifera L. ANGELICA ROOT OIL PURE & NATURAL Angelica archangelica L. ANISE OIL SPANISH PURE & NATURAL Pimpinella anisum L ANISE STAR OIL PURE & NATURAL Illicium verum Hook, F. ARMOISE OIL PURE & NATURAL Artemisia herba-alba Asso BASIL OIL SWEET LINALOOL TYPE ARTIFICIAL BASIL OIL SWEET LINALOOL TYPE PURE & NATURAL Ocimum basilicum L. BASIL OIL SWEET LINALOOL TYPE WONF BASIL OIL SWEET METHYL CHAVICOL TYPE ARTIFICIAL BASIL OIL SWEET METHYL CHAVICOL TYPE PURE & NATURAL Ocimum basilicum L. BASIL OIL SWEET METHYL CHAVICOL TYPE WONF BAY OIL PURE & NATURAL Pimenta racemosa (Mill.) J.W. Moore BAY OIL TERPENELESS Pimenta racemosa (Mill.) J.W. Moore BAY OIL WONF BERGAMOT OIL ARTIFICIAL BERGAMOT OIL BERGAPTENE FREE PURE & NATURAL Citrus aurantium bergamia BERGAMOT OIL COLD-PRESSED PURE & NATURAL Citrus aurantium bergamia BERGAMOT OIL COLD-PRESSED WONF BERGAMOT OIL FUROCOUMARIN-FREE PURE & NATURAL Citrus bergamia BERGAMOT OIL FUROCOUMARIN-FREE WONF BERGAMOT OIL ORGANIC Citrus bergamia BERGAMOT OIL RECTIFIED PURE & NATURAL Citrus aurantium bergamia BERGAMOT RECTIFIED WONF BOIS DE ROSE OIL ARTIFICIAL BOIS DE ROSE OIL PURE & NATURAL Aniba rosaeodora (Ducke) var amazonica BOIS DE ROSE OIL WONF CABREUVA OIL PURE & NATURAL Myrocarpus frondosus CADE OIL Juniperus oxycedrus L. CAMPHOR OIL WHITE ARTIFICIAL CAMPHOR OIL WHITE PURE & NATURAL (Cinnamomum camphora (L.) Nees et Eberm.) CAMPHOR OIL WHITE WONF CANANGA OIL PURE & NATURAL Cananga odorata (Lam.) Hook. f. & Thomson CARAWAY OIL PURE & NATURAL Carum carvi L. (Umbelliferae) CARDAMOM OIL PURE & NATURAL Elettaria cardamomum (L.) Maton CARDAMOM OIL WONF CARROT HEART OIL PURE & NATURAL Daucus carota L. CARROT SEED OIL PURE & NATURAL Daucus carota L.