Physics of the Moon

Total Page:16

File Type:pdf, Size:1020Kb

Physics of the Moon NASA TECHNICAL NOTE -cNASA TN D-2944 e. / PHYSICS OF THE MOON SELECTED TOPICS CONCERNING LUNAR EXPLORATION Edited by George C. ‘Bucker and Henry E. Siern George C. Marsball Space Flight Center Hzmtsville, A Za: NATIONAL AERONAUTICSAND SPACEADMINISTRATION - WASHINGTON;D. C. TECH LIBRARY KAFB. NM llL5475b NASA TN D-2944 PHYSICS OF THE MOON SELECTED TOPICS CONCERNING LUNAR EXPLORATION Edited by George C. Bucher and Henry E. Stern George C. Marshall Space Flight Center Huntsville, Ala. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sole by the Clearinghouse for Federal Scientific and Technical information Springfield, Virginia 22151 - Price 56.00 I - TABLE OF CONTENTS Page SUMMA=. 1 INTRODUCTION. i SECTION I. CHARACTERISTICS OF THE MOON. i . 3 Chapter 1. The Moon’s .History, by Ernst Stuhlinger. 5 Chapter 2. Physical Characteristics of the Lunar Surface, by John Bensko . 39 Chapter 3. The’ Lunar Atmosphere, by Spencer G. Frary . , 55 Chapter 4. Energetic Radiation Environment of the Moon, by Martin 0. Burrell . 65 Chapter 5. The Lunar Thermal Environment , . 9i The Thermal Model of the Moon, by Gerhard B. Heller . 91 p Thermal Properties of the Moon as a Conductor of Heat,byBillyP. Jones.. 121 Infrared Methods of Measuring the Moon’s Temperature, by Charles D. Cochran. 135 SECTION II. EXPLORATION OF THE MOON . .I59 Chapter I. A Lunar Scientific Mission, by Daniel Payne Hale. 161 Chapter 2. Some Suggested Landing Sites for Exploration of the Moon, by Daniel Payne Hale. 177 Chapter 3. Environmental Control for Early Lunar Missions, by ‘Herman P. Gierow and James A. Downey, III . , . .2i I Chapter 4. Advanced Life Support Techniques, by Jerry L. Johnson . .235 Chapter 5. Thermal Control Analysis of Objects on the Lunar Surface, by James M. Zwiener . .265 . 111 PHYSICS OF THE MOON SUMMARY This volume consists of thirteen papers dealing with lunar physics, and is based upon a series of symposia conducted at Marshall Space Flight Center in the fall of 1963. The writers are members of the Research Projects Labora- tory of the Center. Topics include The Moon’s History, Physical Characteristics of the Lunar Surface, The Lunar Atmosphere, Energetic Radiation Environment of the Moon, The Lunar Thermal Environment, A Lunar Scientific Mission, Some Suggested Landing Sites for Exploration of the Moon, Environmental Control ‘for Early Lunar Missions, and Advanced Life Support Techniques. INTRODUCTION In the fall of 1963, the Research Projects Laboratory of the George C. Marshall Space Flight Center conducted a series of symposia in which members of the laboratory presented lectures on selected topics related to lunar physics. The symposia were held at MSFC, primarily for the purpose of better acquainting Center personnel with known information about the moon and the planned ex- ploration of the moon. This volume consists of a number of papers on most of the subjects covered in the symposia. The volume is divided into two sections: Section I de- scribes some of the characteristics of the moon and its environment; Section II describes some aspects of a scientific lunar exploration program. Man’s knowledge of the moon is quite fragmentary, as the contents of this volume will readily show. Unmanned lunar payloads, such as the phenomenally successful Rangers VII, VIII, and M, will provide much additional valuable knowledge. However, only when man finally sets foot on the moon and conducts a comprehensive scientific exploration program will his knowledge become fairly complete. SECTIONI CHARACTERISTICSOFTHEMOON 3 - * Chapter 1 THEMOON’S H I STORY BY Ernst Stuhlinger ” The early history of the moon is as dark as the early history of the earth. Roth came into existence about 4. 5 billion years ago. Unlike the earth, the moon completed the decisive phases of its evolution during the first few hundred million years of its life. Since then, it must have remained almost unchanged. When the first living beings that were capable of seeing appeared on earth one 01’ two billion years ago, they probably saw the moon much the same as we see it today. A number of theories were offered on the origin of the moon. Sir George Darwin [ I] , in 1898, developed the idea that the moon was pulled out of the earth by solar gravitational forces at a time .when the earth was still in a molten stage. However, even long before Darwin’s theory, in 1850, Roche [ 21 had shoivn that ‘the moon could never have been in the very close vicinity of the earth ivithout breaking up. In fact, when a celestial body moves around another one, a differen- tial force between the gravitational and the centrifugal forces develops within the body which tends to break it up. As long as this difference force is small, the breakup tendency is counteracted by internal gravity forces. Roche showed that for each two-body system, a critical distance exists below which breakup occurs. This critical distance, the Roche limit, is equal to 18,500 km in the earth-moon system (Fig. I). In this derivation of the Roche limit, cohesive forces \\ere neglected, and only internal gravitational forces were considered. Another school of thought assumes that the moon, and also the planets, originated in clouds of hot gas. Condensation of the gas at discrete places led i&J the formation of planets and moons. It seems, though, that severe difficulties arise when condensation of a tenuous gas is considered as the initial step in the formation of a planet or a moon. A very interesting modification of the gas cloud theory was developed by Alfv& in 1954 [ 3,4] . It starts with a central body, such as a newly formed star or planet, possessing a magnetic field and surrounded by a plasma. Neutral gas atoms fall from great distances towards this central body under the action of gravity forces. Alfv& assumed that the atoms become ionized by interaction with the plasma in the vicinity of the central body as soon as their kinetic energy has become equal to their ionization energy, as expressed by equation I : ::: Director, Research Projects Laboratory 3 EARTH- MOON R,d=l8,500 IJRI RROCHE 3. q 2.44 pf q 2.89 RE Jr-P M RR=ROCHE LIMIT RE=RADIUS OF CARTH PE q DENSlTYOF EARTH PM q DENSlTYOf MOON FIGURE 1. DIAGRAM OF THE EARTH-MOON SYSTEM, ILLUSTRATING THE ROCHE LIMIT I - rnvi = e V, 2 i where vc = critical veloci@;V=ionization potential; m = atomic mass; and e = ion charge. As soon as the atom is ionized, it is forced by the magnetic field into t i a trajectory which, in essence, follows a helical path around the field lines. At t ; the same time, centrifugal forces become noticeable and keep the ions from i falling into the central body, provided that they were not formed too close to one 1 of the poles. This magnetic stopping of the falling particles occurs at a critical i, distance R, where the potential energy equals the critical kinetic energy: (2) , or, with equation 1, R ==m (3) C V e where y = gravitational constant, and M = mass of central body. Hence, we should expect that matter will be accumulated as a plasma around a central body at about the distance R,. Electromagnetic forces will transfer angular momentum from the central body into the plasma. Planets or moons will later develop out of the plasma at about the distance Rc. Figure 2 shows that the critical velocities of a number of elements are indeed of the correct order to account for planets and moons of our solar system. It need not be expected that each of the newly ’ formed planets and moons consists only of that element whose ionization energy i corresponds to its distance from the central body; actually, a mixing of different i elements will occur over wide regions around the central body because of dif- ;I ferences in condensation temperature, gas density, ionization cross section, and %other parameters influencing the ionization and capture of falling atoms. A more ! serious criticism of Alfv&‘s theory arises from the fact that the ionization cross sections of atoms, if they are to be ionized by collisions with ions, are almost t a vanishingly small at the velocities in question. Transfer of the kinetic energy ’ of the falling atoms to electrons, which are more efficient ionizing particles, \ would be required . I It appears that the most widely accepted theory for the formation of planets k and moons is the accretion theory. Fragments of matter, orbiting in loose clouds I d, or rings around a central body, accumulated slowly under the action of gravita- ,I tional forces. Scooping up more and more solid particles, the newly formed 7 cn SOLAR JUPITER SATURN URANUS M( MOONS 1o18 _ PLANETS MOONS NS r OBERON 0 PLUTO t NEPTUNE TITAN ARIEL 0 URANUS CALLISTO 5 Hx 0 SATURN GANYMEDE l 0 JUPITER EUROPA 20 . MIMAS c IO = 0 ti 0 MARS 3o Ho > E t EARTH 40 I 0 VENUS 50 N MERCURY 60 5 80 f FIGURE 2. DIAGRAM OF SOLAR PLANETS, AND OF SOME PLANETARY MOONS Left ordinate: potential of central force fields; right ordinate: free fall velocity in central force fields. Elements are shown at places where free fall kinetic energies of atoms are equal to their ionization energies (Alfvb, 3). bodies gradually swept all orbiting fragments from the regions around the central body. This theory, which is supported by Kuiper, [ 51 , Urey [ 6, 71 , and others, seems to present fewer difficulties than the gas cloud theory. A body formed by accretion would not be hot during its formation. It has been speculated that it may heat up, and even melt, at later times under the action of radioactive heating; however, Urey [ 81 , and later MacDonald [ 91 , have shown that our moon could not reach melting temperatures from radioactive heating alone.
Recommended publications
  • Silica-Rich Deposits and Hydrated Minerals at Gusev Crater, Mars: Vis-NIR Spectral Characterization and Regional Mapping
    Icarus 205 (2010) 375–395 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Silica-rich deposits and hydrated minerals at Gusev Crater, Mars: Vis-NIR spectral characterization and regional mapping M.S. Rice a,*, J.F. Bell III a, E.A. Cloutis b, A. Wang c, S.W. Ruff d, M.A. Craig e, D.T. Bailey b, J.R. Johnson f, P.A. de Souza Jr. g, W.H. Farrand h a Department of Astronomy, Cornell University, Ithaca, NY 14853, USA b Department of Geography, University of Winnipeg, 515 Portage Ave., Winnipeg, Man., Canada R3B 2E9 c Department of Earth and Planetary Science and McDonnell Center for Space Science, Washington University, St. Louis, MO 63130, USA d School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA e Department of Earth Sciences, University of Western Ontario, 1151 Richmond St. Louis, Ont., Canada N6A 5B7 f Astrogeology Team, United States Geological Survey, Flagstaff, AZ 86001, USA g Tasmanian ICT Center, CSIRO, Hobart, Tasmania 7000, Australia h Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301, USA article info abstract Article history: The Mars Exploration Rover (MER) Spirit has discovered surprisingly high concentrations of amorphous Received 7 January 2009 silica in soil and nodular outcrops in the Inner Basin of the Columbia Hills. In Pancam multispectral obser- Revised 24 March 2009 vations, we find that an absorption feature at the longest Pancam wavelength (1009 nm) appears to be Accepted 31 March 2009 characteristic of these silica-rich materials; however, spectral analyses of amorphous silica suggest that Available online 8 May 2009 the 1009 nm spectral feature is not a direct reflection of their silica-rich nature.
    [Show full text]
  • LUNAR INTERACTIONS ABSTRACTS of PAPERS PRESENTED at the CONFERENCE on INTERACTIONS of the INTERPLANETARY PLASMA with the MODERN and ANCIENT MOON
    LUNAR INTERACTIONS ABSTRACTS OF PAPERS PRESENTED AT THE CONFERENCE ON INTERACTIONS OF THE INTERPLANETARY PLASMA with the MODERN AND ANCIENT MOON ORGANIZED BY THE I. N 3 LUNAR SCIENCE INSTITUTE m I 3 AND THE I- 2 SPACE PHYSICS DEPARTMENT RICE UNIVERSITY sponsored by the NATIONAL AERONAUTICS m m AND 0 .. I-( OIW mrl SPACE ADMINISTRATION ZX CV OH IOI H WclU AND THE uux- V&H 0 NATIONAL SCIENCE FOUNDATION g,,,, wm. WWO@W u u ? ZZLOX€e HW5H vlOHU ffiMHrnfC 4 ffi H 2.~4~4a Edited by 3 dz ,.aV)ffiuJO ffiwcstn WPt.4" DAVID R. CRISWELL ,!a !a Pl r 4 W Pa4 %- rn ZW. and Or=4OcC+J fO Hi4 r WWF I rnU2.M ffiBZ* JOHN W. FREEMAN UUW4aJ I amor 0 alffiwffi E REPRODUCTION RESTRICTIONS OVERRIDDEN 2Z~OZ E 2 2 .: u Bmscientific ma Technical Information FaciLitX -eu $4 to) Copyright O 1974 by the Lunar Science Institute Conference held at George Williams College Lake Geneva Campus Williams Bay, Wisconsin 30 September - 4 October 1974 Compiled by and available from The Lunar Science Institute 3303 Nasa Road 1 Houston, Texas 77058 PREFACE The field of lunar science has essentially completed a period of exponential growth promoted by the national efforts of the 1960's to land on the moon. As normally happens in a diverse scientific community, the interpretations of specialized lunar data have reflected the precepts in the various specialized fields. Constant promotion of the broadest overviews between these diverse fields is appropriate to identify processes or phenomenon recog- nized in one avenue of investigation which may have great importance in explaining the data of other specialities.
    [Show full text]
  • Saving the Information Commons a New Public Intere S T Agenda in Digital Media
    Saving the Information Commons A New Public Intere s t Agenda in Digital Media By David Bollier and Tim Watts NEW AMERICA FOUNDA T I O N PUBLIC KNOWLEDGE Saving the Information Commons A Public Intere s t Agenda in Digital Media By David Bollier and Tim Watts Washington, DC Ack n owl e d g m e n t s This report required the support and collaboration of many people. It is our pleasure to acknowledge their generous advice, encouragement, financial support and friendship. Recognizing the value of the “information commons” as a new paradigm in public policy, the Ford Foundation generously supported New America Foundation’s Public Assets Program, which was the incubator for this report. We are grateful to Gigi Sohn for helping us develop this new line of analysis and advocacy. We also wish to thank The Open Society Institute for its important support of this work at the New America Foundation, and the Center for the Public Domain for its valuable role in helping Public Knowledge in this area. Within the New America Foundation, Michael Calabrese was an attentive, helpful colleague, pointing us to useful literature and knowledgeable experts. A special thanks to him for improv- ing the rigor of this report. We are also grateful to Steve Clemons and Ted Halstead of the New America Foundation for their role in launching the Information Commons Project. Our research and writing of this report owes a great deal to a network of friends and allies in diverse realms. For their expert advice, we would like to thank Yochai Benkler, Jeff Chester, Rob Courtney, Henry Geller, Lawrence Grossman, Reed Hundt, Benn Kobb, David Lange, Jessica Litman, Eben Moglen, John Morris, Laurie Racine and Carrie Russell.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University M crct. rrs it'terrjt onai A Be" 4 Howe1 ir”?r'"a! Cor"ear-, J00 Norte CeeD Road App Artjor mi 4 6 ‘Og ' 346 USA 3 13 761-4’00 600 sC -0600 Order Number 9238197 Selected literary letters of Sophia Peabody Hawthorne, 1842-1853 Hurst, Nancy Luanne Jenkins, Ph.D.
    [Show full text]
  • Charles Darwin: a Companion
    CHARLES DARWIN: A COMPANION Charles Darwin aged 59. Reproduction of a photograph by Julia Margaret Cameron, original 13 x 10 inches, taken at Dumbola Lodge, Freshwater, Isle of Wight in July 1869. The original print is signed and authenticated by Mrs Cameron and also signed by Darwin. It bears Colnaghi's blind embossed registration. [page 3] CHARLES DARWIN A Companion by R. B. FREEMAN Department of Zoology University College London DAWSON [page 4] First published in 1978 © R. B. Freeman 1978 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the permission of the publisher: Wm Dawson & Sons Ltd, Cannon House Folkestone, Kent, England Archon Books, The Shoe String Press, Inc 995 Sherman Avenue, Hamden, Connecticut 06514 USA British Library Cataloguing in Publication Data Freeman, Richard Broke. Charles Darwin. 1. Darwin, Charles – Dictionaries, indexes, etc. 575′. 0092′4 QH31. D2 ISBN 0–7129–0901–X Archon ISBN 0–208–01739–9 LC 78–40928 Filmset in 11/12 pt Bembo Printed and bound in Great Britain by W & J Mackay Limited, Chatham [page 5] CONTENTS List of Illustrations 6 Introduction 7 Acknowledgements 10 Abbreviations 11 Text 17–309 [page 6] LIST OF ILLUSTRATIONS Charles Darwin aged 59 Frontispiece From a photograph by Julia Margaret Cameron Skeleton Pedigree of Charles Robert Darwin 66 Pedigree to show Charles Robert Darwin's Relationship to his Wife Emma 67 Wedgwood Pedigree of Robert Darwin's Children and Grandchildren 68 Arms and Crest of Robert Waring Darwin 69 Research Notes on Insectivorous Plants 1860 90 Charles Darwin's Full Signature 91 [page 7] INTRODUCTION THIS Companion is about Charles Darwin the man: it is not about evolution by natural selection, nor is it about any other of his theoretical or experimental work.
    [Show full text]
  • No. 40. the System of Lunar Craters, Quadrant Ii Alice P
    NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Tazewell County Warren County Westmoreland~CO~Tt~~'~Dfla
    If you have issues viewing or accessing this file, please contact us at NCJRS.gov. Tazewell County Warren County Westmoreland~CO~tt~~'~dfla Bedford Bristol Buena Vista Charl~esville ~ake clnr(~ F:Org I Heights Covington Danville Emporia Fairfax Falls ~.~tur.~~l~).~ ~urg Galax Hampton HarrisonburgHopj~ll~l Lexingtor~ynchburgl~'~assa ~ anassas Martinsville Newport News Norfolk Norton PetersbutrgPoque~o~ .Portsmouth Radford Richmond Roano~l~~ Salem ~th Bostor~t~nto SuffoLk Virginia Beach Waynesboro Williamsburg Winchester ~a~:~ingham Ceuul~ Carroll County Charlotte County Cra~ Col~ty Roar~ County~cco~Lac= Albemarle County Alleghany County Amelia County#~rlb~ ~NJ~/Ly,~ll~iatt~ County Arlington CountyAugula County Bath i~nty BerJ~rd Cd~t B.I.... ~1 County Botetourt County Brunswick County Buchanal~C~ut~ ~~wrtty Caroline County Charles City C~nty Ch~erfield~bunty C~rrke Co~t CT~-~eperCounty Dickenson County Dinwiddie County~ ~~~ r-'luvanneCounty Frederick County C~ucester (~unty C~yson (j~nty Gre~=~ County Greensville County Halifax County Hanover County ~ .(D~I~ I~liry Cottnty Highland County Isle of *~.P-.o.~t~l~me~y C~ ~county King George County King William County~r .(~,t~ ~ (~'~ Loudoun County Louisa County M~ Mat~s Cot]1~l~~ qt... ~ Montgomery County New Kent County North~ur~d County N~y County Page County Pittsylvania CouniY--Powhatan]~.~unty Princ~eorg, oC'6-~ty Prince William County Rappahannock County Richmol~l 0~)1~1=I~Woo~ Gi0ochtandCounty Lunenburg County Mecklenburl~nty Nelson Count Northampton CountyOrange County Patrick CountyPdn¢~
    [Show full text]
  • TRANSIENT LUNAR PHENOMENA: REGULARITY and REALITY Arlin P
    The Astrophysical Journal, 697:1–15, 2009 May 20 doi:10.1088/0004-637X/697/1/1 C 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. TRANSIENT LUNAR PHENOMENA: REGULARITY AND REALITY Arlin P. S. Crotts Department of Astronomy, Columbia University, Columbia Astrophysics Laboratory, 550 West 120th Street, New York, NY 10027, USA Received 2007 June 27; accepted 2009 February 20; published 2009 April 30 ABSTRACT Transient lunar phenomena (TLPs) have been reported for centuries, but their nature is largely unsettled, and even their existence as a coherent phenomenon is controversial. Nonetheless, TLP data show regularities in the observations; a key question is whether this structure is imposed by processes tied to the lunar surface, or by terrestrial atmospheric or human observer effects. I interrogate an extensive catalog of TLPs to gauge how human factors determine the distribution of TLP reports. The sample is grouped according to variables which should produce differing results if determining factors involve humans, and not reflecting phenomena tied to the lunar surface. Features dependent on human factors can then be excluded. Regardless of how the sample is split, the results are similar: ∼50% of reports originate from near Aristarchus, ∼16% from Plato, ∼6% from recent, major impacts (Copernicus, Kepler, Tycho, and Aristarchus), plus several at Grimaldi. Mare Crisium produces a robust signal in some cases (however, Crisium is too large for a “feature” as defined). TLP count consistency for these features indicates that ∼80% of these may be real. Some commonly reported sites disappear from the robust averages, including Alphonsus, Ross D, and Gassendi.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • Why NASA Consistently Fails at Congress
    W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 6-2013 The Wrong Right Stuff: Why NASA Consistently Fails at Congress Andrew Follett College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Political Science Commons Recommended Citation Follett, Andrew, "The Wrong Right Stuff: Why NASA Consistently Fails at Congress" (2013). Undergraduate Honors Theses. Paper 584. https://scholarworks.wm.edu/honorstheses/584 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. The Wrong Right Stuff: Why NASA Consistently Fails at Congress A thesis submitted in partial fulfillment of the requirement for the degree of Bachelors of Arts in Government from The College of William and Mary by Andrew Follett Accepted for . John Gilmour, Director . Sophia Hart . Rowan Lockwood Williamsburg, VA May 3, 2013 1 Table of Contents: Acknowledgements 3 Part 1: Introduction and Background 4 Pre Soviet Collapse: Early American Failures in Space 13 Pre Soviet Collapse: The Successful Mercury, Gemini, and Apollo Programs 17 Pre Soviet Collapse: The Quasi-Successful Shuttle Program 22 Part 2: The Thin Years, Repeated Failure in NASA in the Post-Soviet Era 27 The Failure of the Space Exploration Initiative 28 The Failed Vision for Space Exploration 30 The Success of Unmanned Space Flight 32 Part 3: Why NASA Fails 37 Part 4: Putting this to the Test 87 Part 5: Changing the Method.
    [Show full text]
  • COURT of CLAIMS of THE
    REPORTS OF Cases Argued and Determined IN THE COURT of CLAIMS OF THE STATE OF ILLINOIS VOLUME 39 Containing cases in which opinions were filed and orders of dismissal entered, without opinion for: Fiscal Year 1987 - July 1, 1986-June 30, 1987 SPRINGFIELD, ILLINOIS 1988 (Printed by authority of the State of Illinois) (65655--300-7/88) PREFACE The opinions of the Court of Claims reported herein are published by authority of the provisions of Section 18 of the Court of Claims Act, Ill. Rev. Stat. 1987, ch. 37, par. 439.1 et seq. The Court of Claims has exclusive jurisdiction to hear and determine the following matters: (a) all claims against the State of Illinois founded upon any law of the State, or upon an regulation thereunder by an executive or administrative ofgcer or agency, other than claims arising under the Workers’ Compensation Act or the Workers’ Occupational Diseases Act, or claims for certain expenses in civil litigation, (b) all claims against the State founded upon any contract entered into with the State, (c) all claims against the State for time unjustly served in prisons of this State where the persons imprisoned shall receive a pardon from the Governor stating that such pardon is issued on the grounds of innocence of the crime for which they were imprisoned, (d) all claims against the State in cases sounding in tort, (e) all claims for recoupment made by the State against any Claimant, (f) certain claims to compel replacement of a lost or destroyed State warrant, (g) certain claims based on torts by escaped inmates of State institutions, (h) certain representation and indemnification cases, (i) all claims pursuant to the Law Enforcement Officers, Civil Defense Workers, Civil Air Patrol Members, Paramedics and Firemen Compensation Act, (j) all claims pursuant to the Illinois National Guardsman’s and Naval Militiaman’s Compensation Act, and (k) all claims pursuant to the Crime Victims Compensation Act.
    [Show full text]