Dynamic Variations in Salinity and Potassium Grade of a Potassium

Total Page:16

File Type:pdf, Size:1020Kb

Dynamic Variations in Salinity and Potassium Grade of a Potassium www.nature.com/scientificreports OPEN Dynamic variations in salinity and potassium grade of a potassium‑rich brine deposit in Lop Nor basin, China Lichun Ma1*, Kai Wang1,2, Yu Zhang1, Qingfeng Tang3 & Hui Yan4 The Quaternary Lop Nor playa is the largest production base of potassium sulfate in the world. It has a mining history of more than 10 years, and its share in the Chinese potassium sulfate market is about 50% to‑date. In this basin, the high‑salinity potassium‑rich brines are mainly contained in Middle Pleistocene–Holocene glauberite strata. Based on the monitoring of the underground brine table and geochemical analysis, this study reveals variations in the underground brine table and potassium‑ bearing grade before and after large‑scale mining in the Lop Nor potash deposit. The results showed that the underground brine table and potassium sulfate grade decreased by varying degrees over sub‑mineral areas after large‑scale mining. The underground brine table declined by 8.5 m, on average, in the Luobei depression, by 6.4 m in the Tenglong platform and by 1.9 m in the Xinqing platform. However, the potassium‑bearing grade showed the diferent trend. The Tenglong platform had the largest decline with average decreases in layers W1, W2 and W3 of 18.2%, 13.0% and 24.8%, respectively. In the Xinqing platform, the average decrease in layersW2 and W3 were 17.4% and 16.0% respectively. The Luobei depression decreases were relatively small (W1, W2 and W3 decreased 4.3%, 4.2% and 3.1%, respectively). This research provides a theoretical basis for the rational development and sustainable use of the potassium‑rich brines in the Lop Nor basin. Te Lop Nor playa is located in the eastern Tarim Basin (Xinjiang, China) and is a famous Quaternary inland salt lake that is also the largest single liquid deposit of potassium sulfate in the world. Te high-salinity potassium- rich brine is mainly contained in Middle Pleistocene–Holocene glauberite strata. Te SDIC Xinjiang Lop Nor Potash Co., Ltd. (abbreviate: SLNP), founded in 2000, has the exploration and mining rights for the potash deposit. In 2003, SLNP carried out mining tests in the hinterland of Lop Nor basin. At the end of 2005, it reached an annual production capacity of 100,000 tons of potassium sulfate and in 2012, it achieved an annual output of 1.37 million tons. In 2017, it reached 1.5 million tons of production capacity. At present, its share in the Chinese potassium sulfate market is about 50%. Since the discovery of potassium-rich brine deposits in the Lop Nor basin, there has been a lot of research in the area. In the past 30 years, researchers have made great progress in metallogenic conditions and sedi- mentary environment analysis 1–6, ore deposit characteristic and genesis 2,7,8, geochemical characteristics of the potassium-rich brine reservoir body 2,9 and mining process and technology 10–13. However, there are few studies on the dynamic variations in the geochemistry of potassium-rich brine deposits in Lop Nor basin14. In 2006, 2009 and 2010, general exploration of all three sub-mineral areas (Luobei depression, and Tenglong and Xinqing platforms) in Lop Nor basin was carried out. Exploration obtained a large amount of drilling and brine chemistry data, which laid the foundation for this research. Based on the geochemical analysis of diferent ore horizons from the early general exploration reports15–17 and the brine samples and chemical data collected in the mining area in 2017, this study conducted a comprehensive comparison. It revealed the temporal and spatial variations of the brine mineralization and potassium grade in diferent ore horizons before and afer large-scale mining in Lop Nor basin. Our results provide a theoretical basis for the rational development and sustainable use of potassium-rich brines in Lop Nor basin. 1MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Science, Beijing 100037, China. 2China University of Geosciences(Beijing), Beijing 100083, China. 3Beijing Centre for Physical and Chemical Analysis, Beijing 100089, China. 4SDIC Xinjiang Lop Nor Potash Co., Ltd., Hami 839000, China. *email: [email protected] Scientifc Reports | (2021) 11:3351 | https://doi.org/10.1038/s41598-021-82958-y 1 Vol.:(0123456789) www.nature.com/scientificreports/ Figure 1. Simplifed geological map of the Lop Nor area in Xinjiang Province, China. Regional geological background Lop Nor is located at the intersection of the Altun and Beishan tectonic belts in the eastern part of the Tarim platform. Te northern and southern basin boundary is controlled by the Kongque River fault and the Altun fault, respectively13 (Fig. 1). Te regional tectonic environment is complex, the basement is fractured and the inheritance and neotectonic activity are strong. Te fault structure generally restricts the formation and devel- opment of Lop Nor Salt Lake2. Since the end of the Neogene, the Lop Nor area has been controlled by tectonic movement5; it began to settle and gradually developed into the lowest depression of the basin. Glacial meltwater, originating from the Tianshan, Kunlun and Altun Mountains, eventually gathered in the Lop Nor basin 13; the water area once reached 20,000 km2. Terefore, the Lop Nor Lake played an important role as a catchment center of the whole Tarim basin throughout the Quaternary by accumulating a large amount of salt in the basin13. At present, the lake has completely dried up with a salt cover spanning 10,000 km2; the salt deposit is more than 200 m thick. Potassium-rich brines are found in these Quaternary salt strata in the northern Lop Nor basin. Te potassium-rich brine deposit consists of three sub-mineral areas from west to east, including the Xin- qing platform, Luobei depression and Tenglong platform. Te boundary between the sub-mines and the brine reservoir is mainly controlled by faults. According to the fault direction, the system can be roughly divided into three groups: faults in the NNE, faults near the EW and faults in the NEE. Te faults in the NEE are the most developed and include the F4 fault, which is between the Xinqing mining area and the Luobei depression, and the F6 fault, which is the boundary of the Luobei depression and the Tenglong platform 14. Te F1 fault is a regional compression–torsion fault, which passes through the Tenglong mining area and cuts it into two parts, north and south14 (Fig. 1). Luobei depression is located in the middle of the whole mining area. It is about 60 km long from north to south, 32.5 km wide from east to west, and has an area of about 1534 km2 (Fig. 1). Te overall terrain is lower than the Tenglong and Xinqing platforms to the east and west with an average altitude of about 780 m, and the surface is covered by salt crusts. Te thickness of the salt strata ranges from about 30–200 m, and the average thickness is about 100 m. Te salt system tends to thicken from south to north and the thickness also gradually increases from west to east15. Te Tenglong platform is about 70–90 km long from north to south and about 20–25 km wide from east to west with an area of about 1623 km2 (Fig. 1). Te surface is mainly a Yadan landform and the terrain is higher than the Luobei depression, with a maximum altitude of 790 m and a minimum altitude of 780 m (aver- age = 785 m). Te thickness of the salt-bearing strata in the northern part of the Tenglong platform is generally 30–50 m (average = 36 m) with a maximum thickness of 69.6 m. Te thickness gradually increases from north Scientifc Reports | (2021) 11:3351 | https://doi.org/10.1038/s41598-021-82958-y 2 Vol:.(1234567890) www.nature.com/scientificreports/ (12 m) to south (60 m) and from east (20 m) to west (60 m). Te thickness of the salt-bearing strata is generally 5–20 m south of the F1 fault, and gradually increases from south to north (4–12 m) and decreases from east to west with a thick middle area16. Xinqing platform is about 60–80 km long (north–south) and 10–20 km wide (east–west) with an area of about 1447 km2 (Fig. 1). Te surface is mainly a Yadan landform and the terrain is relatively high (highest altitude = 795 m, lowest altitude = 780 m) with an average elevation of 789 m. Te accumulated thickness of the salt-bearing strata in the Xinqing platform is about 30–50 m. It gradually thickens from south to north, as well as west to east17. Te whole Lop Nor playa currently has no surface water system. It mainly receives bedrock fssure water and groundwater recharge from Kuluktag Mountain, Beishan Mountain and the Altun Mountains. It also receives lateral recharge from the eastern Archik Valley, as well as the western Kongque River and Tarim River dry deltas (Fig. 1). Down the regional hydrologic gradient, as groundwater moves from the outer fringes to the center of the playa, its salinity gradually increase, reaching a maximum of roughly 350 g/L. Methods Sampling and analysis. In 2003, SLNP conducted a mining test in the Lop Nor playa. Te underground brine was pumped to the surface through a shaf system, and then transported through a brine channel to the solar pond for salt drying and classifcation. Following an economic feasibility analysis, the current four-layer brine (top to bottom: W1, W2, W3 and W4) was mainly mined within 90 m. However, the amount mined early on was relatively small.
Recommended publications
  • Solution Mining and Salt Cavern Challenges- SMRI's Role And
    Solution Mining Research Institute J. Voigt, L. Van Sambeek, R. Schneider Solution Mining and Salt Cavern Challenges, SMRI’s Role and Research Focus Session: Salt production Keywords: brine cavern, cavern storage, cavern design, cavern research, energy storage, abandonment Abstract Solution Mining Research Institute, Inc., (SMRI) is a world-wide, non-profit, member-driven organization with chief role of providing specialized education, technical reference information, and current issue research to those in the solution mining and storage cavern industries. SMRI has for over 50 years been actively researching subjects of current and future interest to our members and the cavern industry. We are helping train and develop your future industry experts and managers. SMRI technical conferences are held two times each year, one each in North America and Europe, where most SMRI member organizations are based and/or have operations. Each conference has a technical class, includes about 20 technical paper presentations, and provides field trip opportunities to see first-hand various mines, brine/salt production and storage facilities, or historic sites/features to learn how they have been operated and managed. This paper will briefly describe 20 SMRI research projects completed since the 9th World Salt Symposium 2009 in Beijing, list SMRI’s currently active research projects or ongoing programs, and discusses our focus on future cavern research on subjects of value to the industry. SMRI research projects and resulting research reports (“RR”s) are funded entirely by SMRI annual membership dues. Research contractors and host research facilities frequently provide critical access and/or services contributed to the projects at zero or reduced cost.
    [Show full text]
  • Research Article High-Resolution Elevation Model of Lop Nur Playa Derived from Tandem-X
    Hindawi Journal of Sensors Volume 2019, Article ID 6839703, 12 pages https://doi.org/10.1155/2019/6839703 Research Article High-Resolution Elevation Model of Lop Nur Playa Derived from TanDEM-X Yuyang Geng ,1,2,3 Yun Shao ,1,2 Tingting Zhang ,1,3 Huaze Gong,1,3 and Lan Yang4 Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, , China University of Chinese Academy of Science, , China Laboratory of Target Microwave Properties, Deqing Academy of Satellite Applications, , China China University of Geosciences, , China Correspondence should be addressed to Tingting Zhang; [email protected] Received 15 February 2019; Revised 30 May 2019; Accepted 10 July 2019; Published 18 August 2019 Guest Editor: Hyung-Sup Jung Copyright © 2019 Yuyang Geng et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In this paper, a digital elevation model (DEM) was produced for Lop Nur playa produced with the data from TanDEM-X mission. 2 Te spatial resolution is 10 m. It covers an area of 38,000 km for orthometric height from 785 m to 900 m above sea level, which is composed of 42 interferometric synthetic aperture radar (InSAR) scenes. A least-square adjustment approach was used to reduce the systematic errors in each DEM scene. Te DEM produced was validated with data from other sensors including Ice, Cloud, and land Elevation Satellite (ICESat) Geoscience Laser Altimeter System (GLAS) and aerial Structure-from-Motion (SfM) DEM.
    [Show full text]
  • Mixing-Induced Precipitation in Brine Mining: Reactive Transport Modeling / ALEJANDRO GARCÍA-GIL (1), MAR GARCÍA-ALCARAZ (2), ENRIC VAZQUEZ (2), CARLOS AYORA (2*)
    macla nº 20. julio ‘15 revista de la sociedad española de mineralogía 59 Mixing-Induced Precipitation in Brine Mining: Reactive Transport Modeling / ALEJANDRO GARCÍA-GIL (1), MAR GARCÍA-ALCARAZ (2), ENRIC VAZQUEZ (2), CARLOS AYORA (2*) (1) Departamento de Geología. Universidad Zaragoza, Pedro Cerbuna, 12. 50009 Zaragoza (2) Grupo Hidrología Subterránea, UPC-CSIC, Instituto de Diagnóstico Ambiental y Estudios del Agua, Jordi Girona 18, 08034 Barcelona INTRODUCTION planes (probably stratification planes). It is 12 to 15 m thick and has high Continental brines have become the hydraulic conductivities. (II) A less leading raw material for lithium permeable body of 2 to 8 m thick acting production worldwide. Lithium-bearing as an aquitard which consist of halite brines are found in salt aquifers (mainly that may have gypsum levels. (III) Unit B halite) in the nucleus of salars (salt is a semi-confined aquifermade up of flats). Because of extremely high halite, 8 to 11 m thick and highly evaporation rates, the primary discharge conductive. (IV) A lowpermeability body occurs by evaporation keeping the water is at the bottom of the mined system. table below the surface. Two different brines are identified in Brines are exploited through pumping aquifers “A” and “B” with a transition wells or ditches excavated in halite brine in the aquitard separating those aquifers and evaporation of the brine in aquifers. Brine extraction is carried out solar ponds to further concentration. In via brine pumping fields, i.e. horizontal fig 2. Gypsum precipitates around in a well. this type of mining, such as that in drains (1 km length) connected with REACTIVE TRANSPORT MODELING Atacama (Chile), a fast and drastic loss vertical extraction well (Fig.
    [Show full text]
  • (WANA) WATER REGIME by MOHAMMAD ABU HAWAS
    MINING BRINE AND WATER: DESALINATION IN THE CONTEXT OF THE WEST ASIA – NORTH AFRICA (WANA) WATER REGIME By MOHAMMAD ABU HAWASH Submitted to Central European University School of Public Policy In partial fulfilment for the degree of Master of Public Administration Supervisor: Thilo Bodenstein Budapest, Hungary / Vienna, Austria 2021 CEU eTD Collection Table of Contents Statement of Authorship ............................................................................................................................ 3 Abstract ........................................................................................................................................................ 4 Acknowledgements ..................................................................................................................................... 5 List of Figures .............................................................................................................................................. 6 List of Tables ............................................................................................................................................... 6 List of Illustrations ...................................................................................................................................... 7 List of Abbreviations .................................................................................................................................. 8 Introduction ..............................................................................................................................................
    [Show full text]
  • De Paris Au Tonkin À Travers Le Tibet Inconnu, Étude D'un Voyage D
    Diplôme national de master Domaine - sciences humaines et sociales Mention - histoire civilisation patrimoine Parcours - cultures de l’écrit et de l’image De Paris au Tonkin à travers le Tibet inconnu, étude d’un voyage d’exploration en Asie centrale à la fin du XIXe siècle par l’explorateur Gabriel Bonvalot. Mémoire 2 professionnel / Août 2019 Août / professionnel 2 Mémoire Duranseaud Maxime Sous la direction de Philippe Martin Professeur d’histoire moderne – Université Lyon 2 Remerciements Merci à Mr Philippe Martin d’avoir accepté de diriger ce mémoire et de m’avoir guidé dans ma réflexion pendant ces deux années de master. Merci aussi à Mme Cristina Cramerotti et au personnel de la bibliothèque du Musée des Arts Asiatiques Guimet pour m’avoir permis de passer quatre mois de stage particulièrement agréables et instructifs, mais aussi d’avoir largement facilité mes recherches documentaires notamment grâce à un accès privilégié aux ouvrages que renferment les magasins de la bibliothèque. Sans cela, il aurait été bien plus compliqué pour moi de réaliser ce mémoire. Encore une fois merci beaucoup. 2 Résumé : Il s’agit d’une étude du voyage de l’explorateur Gabriel Bonvalot, réalisé entre 1889 et 1890 en Asie Centrale, plus précisément dans la région du Xinjiang Chinois et du Tibet, dans un périple qui le fera traverser le Continent Eurasiatique depuis le nord-est jusqu’à l’extrême sud-ouest. Le récit qui résultera de ce voyage : « De Paris au Tonkin à travers le Tibet inconnu » raconte le parcours de l’expédition et nous servira ici de source principale.
    [Show full text]
  • Synergy of the Westerly Winds and Monsoons in Lake Evolution of Glo
    Dear Editor, Many thanks for your hard work and consideration on publication of our paper. We really appreciated all comments and suggestions very much. On behalf of my co-authors, we would like to express our great appreciation to you and reviewers. In this version, we revised the References format and the font of Figures according to the guidelines, as well as made some 5 changes to the Acknowledgements. The marked-up manuscript is attached below. Best regards, Yours sincerely, Yu Li Corresponding author: 10 Name: Yu Li Address: College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China E-mail: [email protected] Synergy of the westerly winds and monsoons in lake evolution of glo bal closed basins since the Last Glacial Maximum and its implicat 15 ion for hydrological change in Central Asia Yu Li1, Yuxin Zhang1 1Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Center for Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University, Lanzhou 730000, China Correspondence to: Yu Li ([email protected]) 20 Abstract. Monsoon system and westerly circulation, to which climate change responds differently, are two important components of global atmospheric circulation, interacting with each other in the mid-to-low latitudes. Relevant researches on global millennial scale climate change in monsoon and westerlies regions are mostly devoted to multi-proxy analyses of lakes, stalagmites, ice cores, marine and eolian sediments. Different responses from these proxies to long-term environmental change make understanding climate change pattern in monsoon and westerlies regions difficult.
    [Show full text]
  • New Tales of the Gobi Desert the Hong Kong Young Writers Awards Online Anthology - Non-Fiction, Poetry and Cover Art Sponsors
    New Tales of the Gobi Desert The Hong Kong Young Writers Awards Online Anthology - Non-Fiction, Poetry and Cover Art Sponsors Supported by Organiser Official Charity New Tales of the Gobi Desert Non-Fiction Group 1 The Gobi Desert AD & FD of Pok Oi Hospital Mrs Cheng Yam On School, Hung Tsz To, Non-Fiction: Group 1 am losing, losing, losing......in the Gobi Desert. How do I walk across it? It’s an unboundary region, all you could see are and dunes, sand......Will I lose my life in Gobi Desert? Let’s know more about the Gobi Desert. The Gobi Desert is the fifth largest desert in the world and occupies an area of 1,300,000 Ik², and it is a large desert region in Asia. The Gobi is most notable in history as part of the great Mongol Empire and as the location of several important cities along the Silk Road. The Gobi is a cold desert with frost and occasionally snow occurring on its dunes. The climate of the Gobi is one of great extremes, these can occur not only seasonally but within 24 hours. The temperature in Gobi is extremely, ranging from -40º(-46º) in winter to +50º(122º) in summer. The Gobi Desert is the source of many important fossil finds including the first dinosaur eggs. Despite the harsh conditions, these deserts and the surrounding regions sustain over 45 different species of animals and birds. But the Gobi Desert is expanding at an alarming rate, in a process known as desertification. The expansion of the Gobi is attributed mostly to human activities, notably deforestation, overgrazing, and depletion of water resources.
    [Show full text]
  • Indigenous Environmental Rights, Participation and Lithium Mining In
    Indigenous Environmental Rights, Participation and Lithium Mining in Argentina and Bolivia: A Socio-Legal Analysis Helle Abelvik-Lawson A thesis submitted for the degree of PhD School of Law and Human Rights Centre and Interdisciplinary Studies Centre University of Essex Date of submission: May 2019 For my family, on Earth and in Heaven. i ACKNOWLEDGEMENTS First and foremost, I must thank my incredible husband-to-be Dauji Thomas, truly one of the world’s most amazing individuals, and without whom absolutely none of this would have been possible. Thank you for being there for me, and your understanding, through the hard times and the good. I am in fact wholly indebted to all my family, particularly my amazing Mama for showing me how to keep going even when the going is tough, and of course my stepdad Dean. Thanks also to Guy for giving me a wonderful place to study in the stunning Essex countryside. To my brother Frase, and Dix and Cos: I am so glad to have you all in my life. I am deeply grateful for the support of my dedicated, and encouraging and insightful supervisors, Professor Karen Hulme and Dr Jane Hindley, who went beyond the call of duty to help me achieve my aims. At Essex and elsewhere, I am incredibly fortunate to count a number of academics and experts in the field as mentors and friends, who continually pique my curiosities and inspire me to continue working in human rights. Dr Damien Short, Professor Colin Samson, Dr Corinne Lennox, Dr Julian Burger – thank you for showing me how it’s done.
    [Show full text]
  • Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: a Review
    resources Review Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: A Review Laurence Kavanagh * , Jerome Keohane, Guiomar Garcia Cabellos, Andrew Lloyd and John Cleary EnviroCORE, Department of Science and Health, Institute of Technology Carlow, Kilkenny, Road, Co., R93-V960 Carlow, Ireland; [email protected] (J.K.); [email protected] (G.G.C.); [email protected] (A.L.); [email protected] (J.C.) * Correspondence: [email protected] Received: 28 July 2018; Accepted: 11 September 2018; Published: 17 September 2018 Abstract: Lithium is a key component in green energy storage technologies and is rapidly becoming a metal of crucial importance to the European Union. The different industrial uses of lithium are discussed in this review along with a compilation of the locations of the main geological sources of lithium. An emphasis is placed on lithium’s use in lithium ion batteries and their use in the electric vehicle industry. The electric vehicle market is driving new demand for lithium resources. The expected scale-up in this sector will put pressure on current lithium supplies. The European Union has a burgeoning demand for lithium and is the second largest consumer of lithium resources. Currently, only 1–2% of worldwide lithium is produced in the European Union (Portugal). There are several lithium mineralisations scattered across Europe, the majority of which are currently undergoing mining feasibility studies. The increasing cost of lithium is driving a new global mining boom and should see many of Europe’s mineralisation’s becoming economic. The information given in this paper is a source of contextual information that can be used to support the European Union’s drive towards a low carbon economy and to develop the field of research.
    [Show full text]
  • Case Studies on Copper and Lithium Mining in Chile
    TEXTE 106 /2020 KlimRess – Impacts of climate change on mining, related environmental risks and raw material supply Case studies on copper and lithium mining in Chile TEXTE 106/2020 Environmental Research of the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety Project No. (FKZ) 3716 48 324 0 Report No. FB000279/ANH,4,ENG KlimRess – Impacts of climate change on mining, related environmental risks and raw material supply Case studies on copper and lithium mining in Chile by Lukas Rüttinger, Christine Scholl, Pia van Ackern adelphi research gGmbh, Berlin and Glen Corder, Artem Golev, Thomas Baumgartl The University of Queensland, Sustainable Minerals Institute, Australia On behalf of the German Environment Agency Imprint Publisher: Umweltbundesamt Wörlitzer Platz 1 06844 Dessau-Roßlau Tel: +49 340-2103-0 Fax: +49 340-2103-2285 [email protected] Internet: www.umweltbundesamt.de /umweltbundesamt.de /umweltbundesamt Study performed by: adelphi research gGmbh Alt-Moabit 91, 10559 Berlin Study completed in: January 2018 Edited by: Section III 2.2 Resource Conservation, Material Cycles, Minerals and Metals Industry Jan Kosmol Publication as pdf: http://www.umweltbundesamt.de/publikationen ISSN 1862-4804 Dessau-Roßlau, June 2020 The responsibility for the content of this publication lies with the author(s). KlimRess – Climate change and mining in Chile: Case studies on copper and lithium Abstract The following case study is one of five country case studies carried out as part of the project ‘Impacts of climate change on the environmental criticality of Germany’s raw material demand‘ (KlimRess), commissioned by the German Federal Environment Agency (Umweltbundesamt, UBA). The project team comprised adelphi, ifeu Heidelberg and the Sustainable Minerals Institute of the University of Queensland.
    [Show full text]
  • Lake Status Records from China: Data Base Documentation
    Lake status records from China: Data Base Documentation G. Yu 1,2, S.P. Harrison 1, and B. Xue 2 1 Max Planck Institute for Biogeochemistry, Postfach 10 01 64, D-07701 Jena, Germany 2 Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences. Nanjing 210008, China MPI-BGC Tech Rep 4: Yu, Harrison and Xue, 2001 ii MPI-BGC Tech Rep 4: Yu, Harrison and Xue, 2001 Table of Contents Table of Contents ............................................................................................................ iii 1. Introduction ...............................................................................................................1 1.1. Lakes as Indicators of Past Climate Changes........................................................1 1.2. Chinese Lakes as Indicators of Asian Monsoonal Climate Changes ....................1 1.3. Previous Work on Palaeohydrological Changes in China.....................................3 1.4. Data and Methods .................................................................................................6 1.4.1. The Data Set..................................................................................................6 1.4.2. Sources of Evidence for Changes in Lake Status..........................................7 1.4.3. Standardisation: Lake Status Coding ..........................................................11 1.4.4. Chronology and Dating Control..................................................................11 1.5. Structure of this Report .......................................................................................13
    [Show full text]
  • Follow the Water – Chemical Manufacturing Recycle/Reuse Opportunities and Solutions
    Follow the Water – Chemical Manufacturing Recycle/Reuse Opportunities and Solutions Industrial Water Use and Reuse Workshop International Society for Water Solutions Gená Leathers [email protected] May 01, 2013 Today’s Agenda • Dow’s commitment and societal challenges − 2015 goals • Manufacturing Operations: Water Footprint Management − Case Histories • Dow and The Nature Conservancy Collaboration − Preliminary Results Our Water Vision Dow will be a leader in addressing the global water crisis by setting the standard for sustainable water use and management. We will develop innovative technologies and business models that lower the cost of water purification, set new levels for efficient water use at our manufacturing facilities while striving to reach zero water discharge. Dow will use creative partnerships to increase the global sense of urgency to solve this issue. 2015 Sustainability Goals* • Our goals were inspired by the UN Millennium Development Goals and are consistent with the science and technology we do best. They will drive our growth profitability, continued EH&S performance improvements, and a focus to help address some of the world’s most pressing challenges. • The seven 2015 Goal components - Local Protection of Human Health & Environment - Contributing to Community Success - Product Safety Leadership - Sustainable Chemistry - Breakthroughs to World Challenges - Energy Efficiency and Conservation - Addressing Climate Change * www.dow.com Science and Technology Company 188 production locations in 36 countries Founded in
    [Show full text]