Preliminary Circular Economy Plan for the Coal Mine Sector in Poland

Total Page:16

File Type:pdf, Size:1020Kb

Preliminary Circular Economy Plan for the Coal Mine Sector in Poland LIFE18 ENV/GR/000019 “Demonstration of an advanced technique for eliminating coal mine wastewater (brines) combined with resource recovery” Preliminary Circular Economy Plan for Deliverable A.2.: the coal mine sector in Poland ACTION A.1 Technical planning (tender documents, permits, Circular Economy Plan) Prepared by: Due date of Deliverable: March 2020 Revised Deliverable: September 2020 Project Partners: DA.2: Preliminary Circular Economy Plan for the coal mine sector in Poland Preliminary Circular Economy Plan for the Deliverable coal mine sector in Poland Action A.1: Technical planning (tender documents, Related Action permits, Circular Economy Plan) Deliverable Lead SEALEAU Dr.Dimitris Xevgenos Author(s) Kallirroi Panteleaki Tourkodimitri Lead authors: Dr Dimitris Xevgenos, Kallirroi Panteleaki- Name of researcher(s) with roles Tourkodimitri Contributions: Grzegorz Gzyl Contact [email protected] Grant Agreement Number LIFE18 ENV/GR/000019 Instrument LIFE PROGRAMME Project Start 1/9/2019 Duration 54 months Date last update 30 September 2020 Website https://brinemining.eu/en/home/ Revision No. Date Description Author 0.1 20 November 2019 1st Draft Dr. Dimitris Xevgenos 0.2 20 February 2020 2nd Draft Kallirroi Panteleaki Tourkodimitri 0.3 5 March 2020 Section 3 Dr. Dimitris Xevgenos 0.4 9 March 2020 Section 1 Kallirroi Panteleaki Tourkodimitri 0.5 17 March 2020 Section 4 Kallirroi Panteleaki Tourkodimitri 0.6 18 March 2020 Section 4 Kallirroi Panteleaki Tourkodimitri 1.0 27 March 2020 Finalization of 1st version Dr. Dimitris Xevgenos 1.1 2 April 2020 Section 4 Kallirroi Panteleaki Tourkodimitri 1.2 3 April 2020 Section 5 Dr. Dimitris Xevgenos 1.3 13 April 2020 Section 4.3 Dr. Dimitris Xevgenos 1.4 13 May 2020 Finalization of 2nd version Kallirroi Panteleaki Tourkodimitri 1.5 28 September 2020 Section 6 + Finalize Kallirroi Panteleaki Tourkodimitri deliverable 2.0 30 September 2020 Finalization of 2nd version Kallirroi Panteleaki Tourkodimitri, Dr. Dimitris Xevgenos 2 DA.2: Preliminary Circular Economy Plan for the coal mine sector in Poland Acknowledgements This report was produced under co-finance of the European financial instrument for the Environment (LIFE+) as the second Deliverable (DA.2) of the first Action (Action A1) of the Project “LIFE BRINE- MINING” (LIFE18 ENV/GR/000019) during the implementation of its second Sub-Action (Sub-Action A.1.2) on the “Setting the Circular Economy Plan for the coal mine sector in Poland”. The LIFE BRINE-MINING team would like to acknowledge the European financial instrument for the Environment (LIFE+) for financial support. Disclaimer The information included herein is legal and true to the best possible knowledge of the authors, as it is the product of the utilization and synthesis of the referenced sources, for which the authors cannot be held accountable. Abstract This report presents a preliminary circular economy plan for the coal mine sector in Poland. Firstly, an overview of the application of hard coal in both Europe and Poland is provided. Furthermore, its impacts on the environment are pointed out and the need to move towards circular economy solutions, such as LIFE BRINE-MINING project, is highlighted. Following, the methodology applied in this deliverable is presented, following the design cycle methodology. Subsequently, the case study of the Dębieńsko plant circular economy approach in Poland is thoroughly presented and assessed, as it comprises the first Zero Liquid Discharge system to treat coal mine brine effluent and recover also water and saleable salts. In addition, a comprehensive stakeholder and market analysis are performed which is divided into three parts; the implementation; the commercialization and the financing of LIFE BRINE-MINING project. Lastly, the most relevant policy documents for the development of a Circular Economy Action Plan were screened and new actions were planned for months ahead regarding the LIFE BRINE-MINING project. Keywords ▪ Brine concentration ▪ Chloride releases ▪ Circular economy plan ▪ Coal mine wastewater ▪ Desalination ▪ Energy transition ▪ Hard coal deposits ▪ Lignite deposits ▪ Polish coal mine sector ▪ Reverse Osmosis ▪ Salt crystallization ▪ Desalination ▪ ESI Fund 3 DA.2: Preliminary Circular Economy Plan for the coal mine sector in Poland Table of Contents 1 Introduction ............................................................................................................................................... 12 1.1 Coal classification .............................................................................................................................. 12 1.2 The case of Europe ............................................................................................................................ 12 1.2.1 Importance of coal for Europe .................................................................................................. 12 1.2.2 Environmental impact of coal .................................................................................................... 14 1.3 The case of Poland ............................................................................................................................. 18 1.3.1 Polish coal mine sector .............................................................................................................. 18 1.3.2 Environmental problem targeted .............................................................................................. 26 1.3.3 Towards Circular Economy - Coal mine sector in Poland .......................................................... 28 2 Methodology ............................................................................................................................................. 30 3 Dębieńsko Case Study................................................................................................................................ 32 3.1 Background ........................................................................................................................................ 32 3.2 Technical analysis .............................................................................................................................. 36 3.2.1 Mass balance & chemistry ......................................................................................................... 36 3.2.2 Processes and Technologies ...................................................................................................... 37 3.2.3 Energy requirements ................................................................................................................. 52 3.3 Uses of salt produced ........................................................................................................................ 54 3.4 Economics .......................................................................................................................................... 54 3.5 Site Visit ............................................................................................................................................. 58 3.5.1 Site visit details .......................................................................................................................... 58 3.5.2 Description of Site ..................................................................................................................... 58 3.5.3 Key learnings .............................................................................................................................. 58 4 Stakeholder & Market Analysis ................................................................................................................. 59 4.1 Implementation of LIFE BRINE-MINING project ................................................................................ 59 4.1.1 Target audience (A): Investor Community ................................................................................ 59 4.1.2 Target audience (B): Coal mine Industry ................................................................................... 61 4.1.3 Target audience (C): Other end-users/ process industries ........................................................ 69 4.1.4 Target audience (D): End-users of materials recovered ............................................................ 73 4.1.5 Target audience (E): Policy makers ............................................................................................ 75 4.1.6 Target audience (F): Waste management sector & incineration plants ................................... 76 4 DA.2: Preliminary Circular Economy Plan for the coal mine sector in Poland 4.2 Commercialization of LIFE BRINE-MINING Project ............................................................................ 80 4.2.1 LIFE-BRINE MINING system ....................................................................................................... 80 4.2.2 Commercialization Strategy....................................................................................................... 81 4.3 Financing of a BRINE-MINING project ............................................................................................... 86 4.3.1 European Structural & Investment (ESI) Fund ........................................................................... 86 4.3.2 The new Multi-annual Financial Framework (MFF) programme and the Just Transition Fund 91 5 Preliminary Circular Economy Action Plan ...............................................................................................
Recommended publications
  • Raport Z Wykonania Map Zagrożenia Powodziowego I Map Ryzyka
    Projekt: Informatyczny system osłony kraju przed nadzwyczajnymi zagrożeniami Nr Projektu: POIG.07.01.00–00–025/09 RAPORT Z WYKONANIA MAP ZAGROZ ENIA POWODZIOWEGO I MAP RYZYKA POWODZIOWEGO Projekt: Informatyczny system osłony kraju przed nadzwyczajnymi zagrożeniami Nr Projektu: POIG.07.01.00–00–025/09 SPIS TREŚCI: WYKAZ SKRÓTÓW STOSOWANYCH W DOKUMENCIE 4 DEFINICJE 5 I. WPROWADZENIE 7 II. PODSTAWA OPRACOWANIA MZP I MRP 9 III. ZAKRES OPRACOWANIA MZP I MRP 13 IV. DANE WYKORZYSTANE DO MZP I MRP 37 IV.1. NUMERYCZNY MODEL TERENU 41 IV.2. PRZEKROJE KORYTOWE RZEK 41 V. OPIS METODYKI OPRACOWANIA MZP 43 V.1. MODELOWANIE HYDRAULICZNE 43 V.2. SCENARIUSZE POWODZIOWE 70 V.3. WYZNACZANIE OBSZARÓW ZAGROŻENIA POWODZIOWEGO 73 VI. OPIS METODYKI OPRACOWANIA MRP 83 VI.1. NEGATYWNE KONSEKWENCJE DLA LUDNOŚCI 83 VI.2. RODZAJ DZIAŁALNOŚCI GOSPODARCZEJ 84 VI.3. OBIEKTY ZAGRAŻAJĄCE ŚRODOWISKU W PRZYPADKU WYSTĄPIENIA POWODZI 86 VI.4. OBSZARY CHRONIONE 87 VI.5. OBSZARY I OBIEKTY DZIEDZICTWA KULTUROWEGO 87 VI.6. OBLICZENIE WARTOŚCI POTENCJALNYCH STRAT POWODZIOWYCH 88 VII. FORMA SPORZĄDZENIA MZP i MRP 91 VII.1. BAZA DANYCH PRZESTRZENNYCH MZP I MRP 91 VII.2. WIZUALIZACJA KARTOGRAFICZNA MZP i MRP 92 VIII. PUBLIKACJA I PRZEKAZANIE ORGANOM ADMINISTRACJI MZP I MRP 101 VIII.1. PRZEKAZANIE MZP i MRP ORGANOM ADMINISTRACJI 101 VIII.2. PUBLIKACJA MZP i MRP 101 VIII.3. ZASADY UDOSTĘPNIANIA MZP i MRP 105 2 Projekt: Informatyczny system osłony kraju przed nadzwyczajnymi zagrożeniami Nr Projektu: POIG.07.01.00–00–025/09 IX. MZP i MRP W PLANOWANIU I ZAGOSPODAROWANIU PRZESTRZENNYM 107 X. PRZEGLĄD I AKTUALIZACJA MZP I MRP 114 XI.
    [Show full text]
  • Solution Mining and Salt Cavern Challenges- SMRI's Role And
    Solution Mining Research Institute J. Voigt, L. Van Sambeek, R. Schneider Solution Mining and Salt Cavern Challenges, SMRI’s Role and Research Focus Session: Salt production Keywords: brine cavern, cavern storage, cavern design, cavern research, energy storage, abandonment Abstract Solution Mining Research Institute, Inc., (SMRI) is a world-wide, non-profit, member-driven organization with chief role of providing specialized education, technical reference information, and current issue research to those in the solution mining and storage cavern industries. SMRI has for over 50 years been actively researching subjects of current and future interest to our members and the cavern industry. We are helping train and develop your future industry experts and managers. SMRI technical conferences are held two times each year, one each in North America and Europe, where most SMRI member organizations are based and/or have operations. Each conference has a technical class, includes about 20 technical paper presentations, and provides field trip opportunities to see first-hand various mines, brine/salt production and storage facilities, or historic sites/features to learn how they have been operated and managed. This paper will briefly describe 20 SMRI research projects completed since the 9th World Salt Symposium 2009 in Beijing, list SMRI’s currently active research projects or ongoing programs, and discusses our focus on future cavern research on subjects of value to the industry. SMRI research projects and resulting research reports (“RR”s) are funded entirely by SMRI annual membership dues. Research contractors and host research facilities frequently provide critical access and/or services contributed to the projects at zero or reduced cost.
    [Show full text]
  • Total Organic Carbon in the Water of Polish Dam Reservoirs
    Total Organic Carbon in the Water of Polish Dam Reservoirs Andrzej Górniak Contents 1 Introduction .................................................................................. 190 1.1 Aims of Study ......................................................................... 190 1.2 Organic Matter in Water .............................................................. 190 1.3 Water Reservoirs in Poland ........................................................... 191 2 Total Organic Carbon in Reservoirs of Poland ............................................. 197 2.1 Data Collection and Methodological Comments ..................................... 197 2.2 TOC Variability in Dam Reservoirs .................................................. 197 2.3 TOC Seasonality and Multiannual Changes .......................................... 202 2.4 Resources of Total Organic Carbon in Polish Reservoirs ............................ 204 3 Perspectives .................................................................................. 205 References ....................................................................................... 206 Abstract Total organic carbon (TOC) resources in Polish water reservoirs are presented as an important factor affecting water quality and ecosystem trophic state. The study is based on hydrochemical and biological data from 47 reservoirs from the years 2005–2017 and collected from the archives of the Polish National Monitoring Program, provided by the Chief Inspectorate of Environment Protection. The mean (by weight)
    [Show full text]
  • Denudacja Antropogeniczna Na Obszarach Górniczych : Na Przykładzie
    Title: Denudacja antropogeniczna na obszarach górniczych : na przykładzie Górnośląskiego Zagłębia Węglowego Author: Renata Dulias Citation style: Dulias Renata. (2013). Denudacja antropogeniczna na obszarach górniczych : na przykładzie Górnośląskiego Zagłębia Węglowego. Katowice : Uniwersytet Śląski Renata Dulias Denudacja antropogeniczna na obszarach górniczych zykładzie Górnośląskiego Zagłębia Węglowego Renata Dulias 4^ ' Denudacja antropogeniczna na obszarach górniczych na przykładzie Górnośląskiego Zagłębia Węglowego Uniwersytet Śląski Katowice 2013 Redaktor Prac Wydziału Nauk o Ziemi Uniwersytetu Śląskiego Andrzej T. JANKOWSKI Recenzenci Maria LANCZONT Leon KOZACKI Wydanie książki sfinansowano ze środków Uniwersytetu Śląskiego Copyright © 2013 by Uniwersytet Śląski, Katowice Wszelkie prawa zastrzeżone All Rights Reserved ISBN 978-83-62652-47-1 Projekt okładki: Renata DULIAS, Sławomir PYTEL, Autorzy zdjęć w książce: Tadeusz DULIAS - 3B, 13D, 20; Jan GRESZTA - 1F; Robert MATUSIAK - 1D; Teresa NAWROT - 3A; Marcin RECHŁOWICZ - 1B, 2F; Sabina SUCHARSKA -13B; Marek WESOŁOWSKI - 1 A. Pozostałe zdjęcia - Renata DULIAS Współpraca wydawnicza: Pracowania Komputerowa Jacka Skalmierskiego 44-100 Gliwice, ul. Pszczyńska 44 SPIS TREŚCI 1. WPROWADZENIE....................................................................................................................................... 7 1.1. Zarys problemu badawczego....................................................................................................... 7 1.2. Stan badań w świetle
    [Show full text]
  • Mixing-Induced Precipitation in Brine Mining: Reactive Transport Modeling / ALEJANDRO GARCÍA-GIL (1), MAR GARCÍA-ALCARAZ (2), ENRIC VAZQUEZ (2), CARLOS AYORA (2*)
    macla nº 20. julio ‘15 revista de la sociedad española de mineralogía 59 Mixing-Induced Precipitation in Brine Mining: Reactive Transport Modeling / ALEJANDRO GARCÍA-GIL (1), MAR GARCÍA-ALCARAZ (2), ENRIC VAZQUEZ (2), CARLOS AYORA (2*) (1) Departamento de Geología. Universidad Zaragoza, Pedro Cerbuna, 12. 50009 Zaragoza (2) Grupo Hidrología Subterránea, UPC-CSIC, Instituto de Diagnóstico Ambiental y Estudios del Agua, Jordi Girona 18, 08034 Barcelona INTRODUCTION planes (probably stratification planes). It is 12 to 15 m thick and has high Continental brines have become the hydraulic conductivities. (II) A less leading raw material for lithium permeable body of 2 to 8 m thick acting production worldwide. Lithium-bearing as an aquitard which consist of halite brines are found in salt aquifers (mainly that may have gypsum levels. (III) Unit B halite) in the nucleus of salars (salt is a semi-confined aquifermade up of flats). Because of extremely high halite, 8 to 11 m thick and highly evaporation rates, the primary discharge conductive. (IV) A lowpermeability body occurs by evaporation keeping the water is at the bottom of the mined system. table below the surface. Two different brines are identified in Brines are exploited through pumping aquifers “A” and “B” with a transition wells or ditches excavated in halite brine in the aquitard separating those aquifers and evaporation of the brine in aquifers. Brine extraction is carried out solar ponds to further concentration. In via brine pumping fields, i.e. horizontal fig 2. Gypsum precipitates around in a well. this type of mining, such as that in drains (1 km length) connected with REACTIVE TRANSPORT MODELING Atacama (Chile), a fast and drastic loss vertical extraction well (Fig.
    [Show full text]
  • (WANA) WATER REGIME by MOHAMMAD ABU HAWAS
    MINING BRINE AND WATER: DESALINATION IN THE CONTEXT OF THE WEST ASIA – NORTH AFRICA (WANA) WATER REGIME By MOHAMMAD ABU HAWASH Submitted to Central European University School of Public Policy In partial fulfilment for the degree of Master of Public Administration Supervisor: Thilo Bodenstein Budapest, Hungary / Vienna, Austria 2021 CEU eTD Collection Table of Contents Statement of Authorship ............................................................................................................................ 3 Abstract ........................................................................................................................................................ 4 Acknowledgements ..................................................................................................................................... 5 List of Figures .............................................................................................................................................. 6 List of Tables ............................................................................................................................................... 6 List of Illustrations ...................................................................................................................................... 7 List of Abbreviations .................................................................................................................................. 8 Introduction ..............................................................................................................................................
    [Show full text]
  • Indigenous Environmental Rights, Participation and Lithium Mining In
    Indigenous Environmental Rights, Participation and Lithium Mining in Argentina and Bolivia: A Socio-Legal Analysis Helle Abelvik-Lawson A thesis submitted for the degree of PhD School of Law and Human Rights Centre and Interdisciplinary Studies Centre University of Essex Date of submission: May 2019 For my family, on Earth and in Heaven. i ACKNOWLEDGEMENTS First and foremost, I must thank my incredible husband-to-be Dauji Thomas, truly one of the world’s most amazing individuals, and without whom absolutely none of this would have been possible. Thank you for being there for me, and your understanding, through the hard times and the good. I am in fact wholly indebted to all my family, particularly my amazing Mama for showing me how to keep going even when the going is tough, and of course my stepdad Dean. Thanks also to Guy for giving me a wonderful place to study in the stunning Essex countryside. To my brother Frase, and Dix and Cos: I am so glad to have you all in my life. I am deeply grateful for the support of my dedicated, and encouraging and insightful supervisors, Professor Karen Hulme and Dr Jane Hindley, who went beyond the call of duty to help me achieve my aims. At Essex and elsewhere, I am incredibly fortunate to count a number of academics and experts in the field as mentors and friends, who continually pique my curiosities and inspire me to continue working in human rights. Dr Damien Short, Professor Colin Samson, Dr Corinne Lennox, Dr Julian Burger – thank you for showing me how it’s done.
    [Show full text]
  • Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: a Review
    resources Review Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: A Review Laurence Kavanagh * , Jerome Keohane, Guiomar Garcia Cabellos, Andrew Lloyd and John Cleary EnviroCORE, Department of Science and Health, Institute of Technology Carlow, Kilkenny, Road, Co., R93-V960 Carlow, Ireland; [email protected] (J.K.); [email protected] (G.G.C.); [email protected] (A.L.); [email protected] (J.C.) * Correspondence: [email protected] Received: 28 July 2018; Accepted: 11 September 2018; Published: 17 September 2018 Abstract: Lithium is a key component in green energy storage technologies and is rapidly becoming a metal of crucial importance to the European Union. The different industrial uses of lithium are discussed in this review along with a compilation of the locations of the main geological sources of lithium. An emphasis is placed on lithium’s use in lithium ion batteries and their use in the electric vehicle industry. The electric vehicle market is driving new demand for lithium resources. The expected scale-up in this sector will put pressure on current lithium supplies. The European Union has a burgeoning demand for lithium and is the second largest consumer of lithium resources. Currently, only 1–2% of worldwide lithium is produced in the European Union (Portugal). There are several lithium mineralisations scattered across Europe, the majority of which are currently undergoing mining feasibility studies. The increasing cost of lithium is driving a new global mining boom and should see many of Europe’s mineralisation’s becoming economic. The information given in this paper is a source of contextual information that can be used to support the European Union’s drive towards a low carbon economy and to develop the field of research.
    [Show full text]
  • Case Studies on Copper and Lithium Mining in Chile
    TEXTE 106 /2020 KlimRess – Impacts of climate change on mining, related environmental risks and raw material supply Case studies on copper and lithium mining in Chile TEXTE 106/2020 Environmental Research of the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety Project No. (FKZ) 3716 48 324 0 Report No. FB000279/ANH,4,ENG KlimRess – Impacts of climate change on mining, related environmental risks and raw material supply Case studies on copper and lithium mining in Chile by Lukas Rüttinger, Christine Scholl, Pia van Ackern adelphi research gGmbh, Berlin and Glen Corder, Artem Golev, Thomas Baumgartl The University of Queensland, Sustainable Minerals Institute, Australia On behalf of the German Environment Agency Imprint Publisher: Umweltbundesamt Wörlitzer Platz 1 06844 Dessau-Roßlau Tel: +49 340-2103-0 Fax: +49 340-2103-2285 [email protected] Internet: www.umweltbundesamt.de /umweltbundesamt.de /umweltbundesamt Study performed by: adelphi research gGmbh Alt-Moabit 91, 10559 Berlin Study completed in: January 2018 Edited by: Section III 2.2 Resource Conservation, Material Cycles, Minerals and Metals Industry Jan Kosmol Publication as pdf: http://www.umweltbundesamt.de/publikationen ISSN 1862-4804 Dessau-Roßlau, June 2020 The responsibility for the content of this publication lies with the author(s). KlimRess – Climate change and mining in Chile: Case studies on copper and lithium Abstract The following case study is one of five country case studies carried out as part of the project ‘Impacts of climate change on the environmental criticality of Germany’s raw material demand‘ (KlimRess), commissioned by the German Federal Environment Agency (Umweltbundesamt, UBA). The project team comprised adelphi, ifeu Heidelberg and the Sustainable Minerals Institute of the University of Queensland.
    [Show full text]
  • Follow the Water – Chemical Manufacturing Recycle/Reuse Opportunities and Solutions
    Follow the Water – Chemical Manufacturing Recycle/Reuse Opportunities and Solutions Industrial Water Use and Reuse Workshop International Society for Water Solutions Gená Leathers [email protected] May 01, 2013 Today’s Agenda • Dow’s commitment and societal challenges − 2015 goals • Manufacturing Operations: Water Footprint Management − Case Histories • Dow and The Nature Conservancy Collaboration − Preliminary Results Our Water Vision Dow will be a leader in addressing the global water crisis by setting the standard for sustainable water use and management. We will develop innovative technologies and business models that lower the cost of water purification, set new levels for efficient water use at our manufacturing facilities while striving to reach zero water discharge. Dow will use creative partnerships to increase the global sense of urgency to solve this issue. 2015 Sustainability Goals* • Our goals were inspired by the UN Millennium Development Goals and are consistent with the science and technology we do best. They will drive our growth profitability, continued EH&S performance improvements, and a focus to help address some of the world’s most pressing challenges. • The seven 2015 Goal components - Local Protection of Human Health & Environment - Contributing to Community Success - Product Safety Leadership - Sustainable Chemistry - Breakthroughs to World Challenges - Energy Efficiency and Conservation - Addressing Climate Change * www.dow.com Science and Technology Company 188 production locations in 36 countries Founded in
    [Show full text]
  • Transformation of the Flow Regime of a Large Allochthonous River in Central Europe—An Example of the Vistula River in Poland
    water Article Transformation of the Flow Regime of a Large Allochthonous River in Central Europe—An Example of the Vistula River in Poland Dariusz Wrzesi ´nski and Leszek Sobkowiak * Department of Hydrology and Water Management, Institute of Physical Geography and Environmental Planning, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Krygowskiego str. 10, 61-712 Pozna´n,Poland; [email protected] * Correspondence: [email protected] Received: 31 December 2019; Accepted: 10 February 2020; Published: 12 February 2020 Abstract: Identification of river flow regime and its possible changes caused by natural factors or human activity is one of major issues in modern hydrology. In such studies different approaches and different indicators can be used. The aim of this study is to determine changes in flow regime of the largest river in Poland—the Vistula, using new, more objectified coefficients and indices, based on data recorded in 22 gauges on the Vistula mainstream and 38 gauges on its tributaries in the multi-year period 1971–2010. The paper consists of three main parts: in the first part, in order to recognize changes in the flow regime characteristics along the Vistula, data from gauges located on the river mainstream were analyzed with the help of the theory of entropy. In the second part gauging stations on the Vistula mainstream and its tributaries were grouped; values of the newly introduced pentadic Pardé’s coefficient of flow (discharge) (PPC) were taken as the grouping criterion. In the third part of the study a novel method of determining river regime characteristics was applied: through the recognition of the temporal structure of hydrological phenomena and their changes in the annual cycle sequences of hydrological periods (characteristic phases of the hydrological cycle) on the Vistula River mainstream and its tributaries were identified and their occurrence in the yearly cycle was discussed.
    [Show full text]
  • Troubleshooting Pickling and Fermentation Problems
    Troubleshooting Pickling and Fermentation Problems Fermented pickling involves curing in a brine solution for one or more weeks. Quick process pickles, or vinegar pickling, are easy to prepare with boiling hot vinegar and seasonings. Both variations of pickling; however, do not come without challenges. Please consider the following when troubleshooting issues with your canned product. Problem: White sediment in jar Problem: Strong, bitter taste Cause Prevention Cause Prevention Spices cooked too Follow directions for amount Bacteria cause this during No prevention. long in vinegar, or too of spices to use and the fermentation many spices used boiling time. Salt contains an anti-caking Use canning or pickling salt. Vinegar too strong Use vinegar of the proper agent or other additives strength (5% acidity). Dry weather No prevention. Bitter taste is usually in the peel or skin of Problem: Dark or discolored pickles fruits and vegetables. (If brass, copper or zinc utensils and brining Using salt substitutes Cannot be prevented due to equipment were used, DO NOT use pickles.) potassium chloride. Cause Prevention Minerals in hard water Use soft water. Problem: Shriveled Pickles Ground spices used Use whole spices. Cause Prevention Spices left in jars of Place spices loosely in pickles cheesecloth bag so they can Placing cucumbers in too Follow a reliable recipe. be removed before canning. strong brine, too heavy Use amounts of salt and syrup, or too strong sugar called for in a Brass, iron copper, or Use food-grade un-chipped vinegar recipe, and vinegar that is zinc utensils used enamelware, glass, stainless 5% acidity. steel, or stoneware utensils.
    [Show full text]