List of Monitored Pests

Total Page:16

File Type:pdf, Size:1020Kb

List of Monitored Pests List of monitored pests April 2019 REVISION HISTORY Revision Date Author Description 01 05.04.2019 Version 0.1 Disclaimer The information contained in these documents is confidential, privileged and only for the information of the intended recipient and may not be used, published or redistributed without the prior written consent of EFOS Ltd. TABLE OF CONTENTS 1 TRAPVIEW DELTA/FUNNEL ...................................................................................................................................... 4 2 TRAPVIEW AURA ...................................................................................................................................................... 7 3 TRAPVIEW FLY.......................................................................................................................................................... 7 1 TRAPVIEW DELTA/FUNNEL Adoxophyes orana - Summer fruit tortrix (polyphagous; feeds on many varieties of pome and stone fruits, and on numerous deciduous trees in hedgerows and woods; the primary hosts are in the Rosaceae family, more specifically, hosts include Prunus spp., Malus spp., and Pyrus spp. Representedn in Europe and northern Asia.) Agrotis segetum - Turnip moth (it has very wide host range; it attacks cultivated plants belonging to more than 15 families; the greatest damage is caused to cotton, tomatoes, maize, grain legumes, tobacco, sunflower, sugar beet, and winter cereals; it is capable of causing injury to soy bean, pea, pumpkin, squash, potato, vegetables, castor-oil plant, hemp, jute; the damage has been observed on grape, tea, seedlings of arborescent species. Represented in Europe, Africa and Asia.) Anarsia lineatella - Peach twig borer (main hosts are peaches, apricots, almonds and plums. Represented in north America, Europe, north Africa and some parts of southern Asia.) Archips podana - Fruit tree tortrix moth (broadly polyphagous, damaging the majority of orchard plants and forest species of deciduous forests, in particular rosaceous, maples, willows, elms, oak, linden, walnut, pomegranate, etc. Represented in northern America, it also has been recorded in few countries in Europe.) Autographa gamma - Silver Y moth (polyphagous, feeding on sugarbeet, clover, alfalfa, green peas, beans, linum, tobacco, potatoes, brassicaceous crops, paprika and other field and vegetable crops. Represented in Europe, northern Africa and Asia.) Cydia funebrana - Plum fruit moth (pest of stone fruits, including apricot, cherry, peach and plum. Represented in Europe and northern and western Asia.) Grapholitha molesta - Peach moth (cosmopolitan pest of most stone and pome fruits; primary hosts are peach and nectarine; it attack also quince, apricot, apple, plum, cherry, pear, rose and flowering cherry. Represented worldwide.) Cydia pomonella - Codling moth (oligophagous pest; primary host is apple, sometimes the entire crop will be damaged; it also attacks pear, quince, but also peach, plum, apricot and sometimes walnut. Represented worldwide with exception of extremely arid and desert parts of the world, due to lack of host plants.) Epiphyas postvittana - Light brown apple moth (polyphagous pest on pome and stone fruits and other horticultural crops; it has been recorded from more than 500 plant species in 121 families, although larvae prefer herbaceous plants over woody ones. Represented in Australia, New Zealand, northern America and few countries of Europe. ) Eupoecilia ambiguella - European grape berry moth (primarily a pest of grape, but can utilize several other horticultural and native plants as hosts. Represented in Europe, Asia and southern America.) Helicoverpa armigera - Cotton bollworm/Corn earworm (polyphagous and adaptive pest that currently attacks several crops like soy, cotton, maize, common beans, chick peas, flax, sunflower, winter grains, citrus, wheat, barley, oats and sorghum; worldwide, H. Armigera has been reported on over 180 cultivated hosts and wild species in at least 45 plant families. Represented worldwide except in north America.) Helicoverpa punctigera – Native budworm/Australian bollworm (polyphagous pest) attacks broadleaf species (e.g. cotton, chickpea, sunflower, soybean, mungbean, navy bean, lucerne, canola, peanut, faba bean, safflower, linseed and azuki bean. Represented in Australia and New Zealand.) Lobesia botrana - European grapevine moth (best known as a pest of grapes, though it is polyphagous and has a wide host range across 27 plant families; other plant hosts include carnations, black berries, cherries, currants, lilacs, nectarines and plums. Represented in Europe, notrhern Africa and Asia, it has also been recorded in southern America.) Pandemis heparana - Apple brown tortrix (polyphagous and have been recorded feeding on plants in more than 20 families - they feed on many trees, shrubs and other plants including apple, pear, plum, currant and raspberry, Acer, Alnus, Arcticum, Artemisia, Betula, Carpinus, Castanea, Cornus, Corylus, Cydonia, Erigeron, Fragaria, Juglans, Linum, Lonicera, Morus, Myrica, Phaseolus, Phellodendron, Populus, Quercus, Rosa, Rumex, Salix, Sorbus, Tilia, Trifolium and Vaccinium, also a pest in tea plantations. Represented in Europe, some parts of Asia and North America.) Plutella xylostella - Diamondback moth (attacks only plants in the family Cruciferae: broccoli, Brussels sprouts, cabbage, Chinese cabbage, cauliflower, collard, kale, kohlrabi, mustard, radish, turnip, and watercress; not all are equally preferred. Represented worldwide.) Tuta absoluta - Tomato leafminer (devastating pest of Tomato; also reported on potato, aubergine and common beans. Represented in southern America, Europe, Africa and some southern parts of Asia.) Amyelois transitella - Navel orangeworm (feeds on a variety of fruits and nuts; most damaging caterpillar in pistachio; almonds, figs, pomegranates, and walnuts are also major hosts. Represented on south of northern America.) Phthorimaea operculella - Potato tuber moth (pest of many solanaceous crops; most widely distributed potato insect in the world; it can also be a problem in tomato, eggplants and pepper. Represented worldwide.) Spodoptera frugiperda - Fall armyworm a very wide host range, with over 80 plants recorded, but clearly prefers grasses. The most frequently consumed plants are field corn and sweet corn, sorghum and Bermudagrass. Field crops are frequently injured, including alfalfa, barley, Bermuda grass, buckwheat, cotton, clover, corn, oat, millet, peanut, rice, ryegrass, sorghum, sugarbeet, sudangrass, soybean, sugarcane, timothy, tobacco, and wheat. Among vegetable crops, only sweet corn is regularly damaged, but others are attacked occasionally. Represented worldwide with exception of Australia, New Zealand and central and northern Asia. Operophtera brumata – Winter moth polyphagous pest of deciduous plants, most common hosts are oaks, maples, basswood, white elm, crab apples, apple, blueberry, and cherry. Represented in northern America, Europe and some parts of northern Asia. Genus choristoneura – Spruce budworm is serious pest of conifers, most common hosts are spruce and true fir. Represented in northern America. Choristoneura rosaceana - Oblique-banded leafroller is highly polyphagous pest which feeds on leaves or fruits of a wide variety of plants. It attacks fruit trees and also various ornamental trees, it has been recorded as a pest of 32 plant genus. Represented in northern America. Bonagota salubricola - Brazilian apple leafroller – is a pest of various plants, preferring Malus species. Represented in South America. Lygus rugulipennis - European tarnished plant bug is polyphagous pest. It attacks potatoes, cereals, alfalfa and other crops and also Trifolium, Chenopodium, Rumex, Brassicaceae, Fabaceae, Urticaceae and Asteraceae species. Represented in Europe and North America. Prays oleae - Olive moth is a pest of European olive, but it also attacks some other species like Phillyrea, jasmine and Ligustrum. Represented in Europe and southern Africa. Acrolepiopsis assectella - Leek moth is a specialist phytophagous species. It hosts only on plants belonging to the genus Allium. It is represented in Europe, North America and Asia. Spodoptera littoralis - Cotton leafworm is a highly polyphagous pest of many cultivated plants and crops. Represented in Africa and southern Europe. Spodoptera exigua - Asparagus fern, caterpillar is a highly polyphagous pest of many cultivated plants and crops. Represented worldwide with exception of South America. Plusia chalcites - Vegetable looper is highly polyphagous pest, feeding on many fruit, vegetable and ornamental crops and weeds in many plant families including Acanthaceae, Asteraceae, Bignoniaceae, Boraginaceae, Brassicaceae, Convolvulaceae, Crassulaceae, Lamiaceae, Fabaceae, Malvaceae, Orchidaceae, Rosaceae, Scrophulariaceae, Solanaceae, Verbenaceae and Violaceae . It is represented in Europe and Africa, it has been also detected in North America. Thaumatotibia leucotreta - Citrus codling moth is extremely polyphagous, it has been recorded as pests of 70 plant species. Represented in Africa. Cydalima perspectalis - Box-tree pyralid it affects Buxus species. Represented in Europe and Asia. Mythimna unipuncta - American armyworm is important pest of small grains (barley, millet, oats, rice, rye and wheat), maize and grasses. At high larval densities, they will also feed on less preferred hosts, as example lucerne and clover. It is represented worldwide. Striacosta albicosta - Western bean cutworm is a pest
Recommended publications
  • E Compatibilidade Com Inseticidas
    UNIVERSIDADE ESTADUAL PAULISTA – UNESP CÂMPUS DE JABOTICABAL VIRULÊNCIA DE MICRO-ORGANISMOS À Plutella xylostella (L.) (LEPIDOPTERA: PLUTELLIDAE) E COMPATIBILIDADE COM INSETICIDAS Rogério Teixeira Duarte Engenheiro Agrônomo 2015 UNIVERSIDADE ESTADUAL PAULISTA – UNESP CÂMPUS DE JABOTICABAL VIRULÊNCIA DE MICRO-ORGANISMOS À Plutella xylostella (L.) (LEPIDOPTERA: PLUTELLIDAE) E COMPATIBILIDADE COM INSETICIDAS Rogério Teixeira Duarte Orientador: Prof. Dr. Ricardo Antonio Polanczyk Tese apresentada à Faculdade de Ciências Agrárias e Veterinárias – Unesp, Câmpus de Jaboticabal, como parte das exigências para a obtenção do título de Doutor em Agronomia (Entomologia Agrícola) 2015 Duarte, Rogério Teixeira D812v Virulência de micro-organismos à Plutella xylostella (L.) (Lepidoptera: Plutellidae) e compatibilidade com inseticidas. / Rogério Teixeira Duarte. – – Jaboticabal, 2015 vii, 137 p. : il. ; 29 cm Tese (doutorado) - Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, 2015 Orientador: Ricardo Antonio Polanczyk Banca examinadora: Sergio Antonio De Bortoli, Arlindo Leal Boiça Junior, Italo Delalibera Júnior, Roberto Marchi Goulart Bibliografia 1. Controle biológico. 2. Traça-das-crucíferas. 3. Interação. I. Título. II. Jaboticabal-Faculdade de Ciências Agrárias e Veterinárias. CDU 595.78:632.937 Ficha catalográfica elaborada pela Seção Técnica de Aquisição e Tratamento da Informação – Serviço Técnico de Biblioteca e Documentação - UNESP, Câmpus de Jaboticabal. DADOS CURRICULARES DO AUTOR Rogério Teixeira Duarte, nascido
    [Show full text]
  • Entomopathogenic Nematology in Latin America: a Brief History, Current Re- Search and Future Prospects
    Accepted Manuscript Entomopathogenic nematology in Latin America: A brief history, current re- search and future prospects Ernesto San-Blas, Raquel Campos-Herrera, Claudia Dolinski, Caio Monteiro, Vanessa Andaló, Luis Garrigós Leite, Mayra G. Rodríguez, Patricia Morales- Montero, Adriana Sáenz-Aponte, Carolina Cedano, Juan Carlos López-Nuñez, Eleodoro Del Valle, Marcelo Doucet, Paola Lax, Patricia D. Navarro, Francisco Báez, Pablo Llumiquinga, Jaime Ruiz-Vega, Abby Guerra-Moreno, S. Patricia Stock PII: S0022-2011(18)30180-0 DOI: https://doi.org/10.1016/j.jip.2019.03.010 Reference: YJIPA 7192 To appear in: Journal of Invertebrate Pathology Received Date: 31 May 2018 Revised Date: 31 December 2018 Accepted Date: 29 March 2019 Please cite this article as: San-Blas, E., Campos-Herrera, R., Dolinski, C., Monteiro, C., Andaló, V., Garrigós Leite, L., Rodríguez, M.G., Morales-Montero, P., Sáenz-Aponte, A., Cedano, C., Carlos López-Nuñez, J., Del Valle, E., Doucet, M., Lax, P., Navarro, P.D., Báez, F., Llumiquinga, P., Ruiz-Vega, J., Guerra-Moreno, A., Patricia Stock, S., Entomopathogenic nematology in Latin America: A brief history, current research and future prospects, Journal of Invertebrate Pathology (2019), doi: https://doi.org/10.1016/j.jip.2019.03.010 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
    [Show full text]
  • Circular Técnica BOTTON Et Al., 2009)
    ISSN 1808-6810 Bioecologia, Monitoramento e Controle de Bonagota salubricola (Lepidoptera: Tortricidae) em Macieira 97 Introdução A macieira Malus domestica Borkhausen é uma das principais frutíferas de clima temperado cultivadas no Brasil, com produção localizada principalmente nos Estados do Rio Grande do Sul e Santa Catarina, que respondem por 98% da produção nacional (IBGE, 2012). Diversos fatores podem comprometer a exploração econômica da malicultura nesses Estados, merecendo destaque o ataque de insetos praga (KOVALESKI; RIBEIRO, 2003). A lagarta-enroladeira da macieira Bonagota salubricola (Meyrick, 1937) (Lepidoptera: Tortricidae) é uma das pragas chave por danificar os frutos desde o início da frutificação até a colheita (KOVALESKI, 2004; BOTTON et al., 2009). O emprego de inseticidas químicos ainda é o principal método de controle empregado pelos fruticultores. No entanto, a maioria dos inseticidas apresentam restrições quanto à toxicidade e à possibilidade de deixar resíduos tóxicos nos frutos (BOTTON et al., 2000a; THOMSON et al., 2001; KOVALESKI; RIBEIRO, 2003; KOVALESKI, 2004; Circular Técnica BOTTON et al., 2009). Além disso, o uso contínuo de uma única estratégia de controle pode selecionar populações resistentes, resultando na necessidade de Bento Gonçalves, RS Outubro, 2013 pulverizações adicionais ou no aumento da dose aplicada e/ou troca de princípio ativo, geralmente de custo mais elevado. Autores O conhecimento da bioecologia de uma espécie-praga associado ao uso de ferramentas de monitoramento e controle é fundamental para se estabelecer Marcos Botton Eng. Agrôn., Dr., Pesquisador, estratégias de manejo integrado. Esta circular técnica tem como objetivo Embrapa Uva e Vinho, Bento Gonçalves, RS disponibilizar informações sobre a bioecologia da B.
    [Show full text]
  • The National Plant Biosecurity Status Report
    The National Plant Biosecurity Status Report 2014 © Plant Health Australia 2015 Disclaimer: This publication is published by Plant Health Australia for information purposes only. Information in the document is drawn from a variety of sources outside This work is copyright. Apart from any use as Plant Health Australia. Although reasonable care was taken in its preparation, Plant Health permitted under the Copyright Act 1968, no part Australia does not warrant the accuracy, reliability, completeness or currency of the may be reproduced by any process without prior information, or its usefulness in achieving any purpose. permission from Plant Health Australia. Given that there are continuous changes in trade patterns, pest distributions, control Requests and enquiries concerning reproduction measures and agricultural practices, this report can only provide a snapshot in time. and rights should be addressed to: Therefore, all information contained in this report has been collected for the 12 month period from 1 January 2014 to 31 December 2014, and should be validated and Communications Manager confirmed with the relevant organisations/authorities before being used. A list of Plant Health Australia contact details (including websites) is provided in the Appendices. 1/1 Phipps Close DEAKIN ACT 2600 To the fullest extent permitted by law, Plant Health Australia will not be liable for any loss, damage, cost or expense incurred in or arising by reason of any person relying on the ISSN 1838-8116 information in this publication. Readers should make and rely on their own assessment An electronic version of this report is available for and enquiries to verify the accuracy of the information provided.
    [Show full text]
  • Pest Insects Infesting Carrot and Other Apiaceous Crops
    FACTSHEET 01/16 Field Vegetables Dr Rosemary Collier, University of Warwick Pest insects infesting carrot and other Apiaceous crops Carrot and related Apiaceous crops such as parsnip, celeriac and celery may be infested by a relatively small number of damaging pest insect species that can reduce both quality and yield. This factsheet focuses on the pest insects infesting carrot. However, the insects described may also be pests of related crops such as parsnip, celeriac and celery. The factsheet does not cover nematodes or slugs. Figure 1. Carrot fly damage to carrot roots Action points Carrot fly • Use suction trap records to indicate when all species of pest aphid are on the wing. • Use the carrot fly forecast to indicate when adult flies of each generation are likely to emerge and when the • Monitor crops closely. application of insecticide sprays is likely to be most effective. • Use the most effective aphicide treatments available, • Check whether an insecticide spray treatment is able taking account of their effects on natural enemies and be to kill adults or larvae or both stages. To maximise the aware of potential instances of insecticide resistance. ‘knockdown’ effect of insecticide sprays that target adults, they should be applied between 4–6pm on warm days, as Cutworms this is when most female flies are in the crop. • Use pheromone traps to indicate when turnip moths are • Where possible, isolate new crops from possible sources flying and laying eggs. of infestation (older crops), ideally using a separation distance of >1km. • Use a cutworm forecast to estimate the risk of damage to susceptible crops.
    [Show full text]
  • Reproductive Biology of Palmistichus Elaeisis (Hymenoptera: Eulophidae) with Alternative and Natural Hosts
    ZOOLOGIA 27 (6): 887–891, December, 2010 doi: 10.1590/S1984-46702010000600008 Reproductive biology of Palmistichus elaeisis (Hymenoptera: Eulophidae) with alternative and natural hosts Fabricio F. Pereira1, 4; José C. Zanuncio2; Patrik L. Pastori1; Roberto A. Chichera1; Gilberto S. Andrade2 & José E. Serrão3 1 Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados. Rodovia Dourados-Itahum, km 12, Caixa Postal 241, 79804-970 Dourados, MS, Brazil. 2 Departamento de Biologia Animal, Universidade Federal de Viçosa. 36570-000 Viçosa, MG, Brazil. 3 Departamento de Biologia Geral, Universidade Federal de Viçosa. 36570-000 Viçosa, MG, Brazil. 4 Corresponding author. E-mail: [email protected] ABSTRACT. Mass rearing of parasitoids depends on choosing appropriate alternative hosts. The objective of this study was to select alternative hosts to rear the parasitoid Palmistichus elaeisis Delvare & LaSalle, 1993 (Hymenoptera: Eulophidae). Pupae of the lepidopterans Anticarsia gemmatalis Hübner, 1818 (Lepidoptera: Noctuidae), Bombyx mori Linnaeus, 1758 (Lepidoptera: Bombycidae) and Thyrinteina arnobia (Stoll, 1782) (Lepidoptera: Geometridae) were exposed to parasit- ism by females of P. elaeisis. The duration of the life cycle of P. elaeisis was 21.60 ± 0.16 and 24.15 ± 0.65 days on pupae of A. gemmatalis and B. mori, respectively, with 100.0% parasitism of the pupae and 71.4 and 100.0% emergence of parasitoids from the first and second hosts, respectively. The offspring number of P. elaeisis was 511.00 ± 49.70 and 110.20 ± 19.37 individuals per pupa of B. mori and A. gemmatalis, respectively. The reproduction of P. elaeisis from pupae of T. arnobia after six generations was similar to the other hosts.
    [Show full text]
  • 25 Host Plant Resistance and Insect Pest Management in Chickpea
    25 Host Plant Resistance and Insect Pest Management in Chickpea H.C. SHARMA,1 C.L.L. GOWDA,1 P.C. STEVENSON,2 T.J. RIDSDILL-SMITH,3 S.L. CLEMENT,4 G.V. RANGA RAO,1 J. ROMEIS,5 M. MILES6 AND M. EL BOUHSSINI7 1Genetics Resources Divisions, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Asia Center, Hyderabad 502324, India; 2Natural Resources Institute, University of Greenwich, Chatham, ME4 4TB, UK and Royal Botanic Gardens, Kew, Surrey, TW9 3AB, UK; 3CSIRO Entomology, Private Bag No 5, Wembley, WA 6913, Australia; 4USDA-ARS, 59 Johnson Hall, Washington State University, Pullman, WA 99164-6402, USA; 5Agroscope ART Reckenholz Tänikon, Reckenholzstr, 191, 8046 Zurich, Switzerland; 6Department of Primary Industries and Fisheries, 203 Tor Street, PO Box 102, Toowoomba, Queensland 4350, Australia; 7International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria Insect Pest Problems in Chickpea Chickpea (C. arietinum L.) is the third most important legume crop in the world, after dry beans and peas (FAO, 2003). It is cultivated in 42 countries in South Asia, North and Central America, the Mediterranean region, West Asia and North and East Africa. In recent years, it has become an important crop in Australia, Canada and the USA. Nearly 60 insect species are known to feed on chickpea (Reed et al., 1987) (Table 25.1). The important insect pests damaging chickpea in different regions are: ● Wireworms: false wireworm – Gonocephalum spp.; ● Cutworm: black cutworm – A. ipsilon (Hfn.) and turnip moth – A. segetum Schiff.; ● Termite: Microtermes obesi (Holm.) and Odontotermes sp.; ● Leaf-feeding caterpillars: cabbage looper – Trichoplusia ni (Hub.), leaf caterpillar – S.
    [Show full text]
  • Phylogeny of Tortricidae (Lepidoptera): a Morphological Approach with Enhanced Whole
    Template B v3.0 (beta): Created by J. Nail 06/2015 Phylogeny of Tortricidae (Lepidoptera): A morphological approach with enhanced whole mount staining techniques By TITLE PAGE Christi M. Jaeger AThesis Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Agriculture and Life Sciences (Entomology) in the Department of Biochemistry, Molecular Biology, Entomology, & Plant Pathology Mississippi State, Mississippi August 2017 Copyright by COPYRIGHT PAGE Christi M. Jaeger 2017 Phylogeny of Tortricidae (Lepidoptera): A morphological approach with enhanced whole mount staining techniques By APPROVAL PAGE Christi M. Jaeger Approved: ___________________________________ Richard L. Brown (Major Professor) ___________________________________ Gerald T. Baker (Committee Member) ___________________________________ Diana C. Outlaw (Committee Member) ___________________________________ Jerome Goddard (Committee Member) ___________________________________ Kenneth O. Willeford (Graduate Coordinator) ___________________________________ George M. Hopper Dean College of Agriculture and Life Sciences Name: Christi M. Jaeger ABSTRACT Date of Degree: August 11, 2017 Institution: Mississippi State University Major Field: Agriculture and Life Sciences (Entomology) Major Professor: Dr. Richard L. Brown Title of Study: Phylogeny of Tortricidae (Lepidoptera): A morphological approach with enhanced whole mount staining techniques Pages in Study 117 Candidate for Degree of Master of
    [Show full text]
  • Biosecurity Risk Assessment
    An Invasive Risk Assessment Framework for New Animal and Plant-based Production Industries RIRDC Publication No. 11/141 RIRDCInnovation for rural Australia An Invasive Risk Assessment Framework for New Animal and Plant-based Production Industries by Dr Robert C Keogh February 2012 RIRDC Publication No. 11/141 RIRDC Project No. PRJ-007347 © 2012 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-320-8 ISSN 1440-6845 An Invasive Risk Assessment Framework for New Animal and Plant-based Production Industries Publication No. 11/141 Project No. PRJ-007347 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication.
    [Show full text]
  • Molecular-Assisted Pollen Grain Analysis Reveals Spatiotemporal Origin of Long-Distance Migrants of a Noctuid Moth
    International Journal of Molecular Sciences Article Molecular-Assisted Pollen Grain Analysis Reveals Spatiotemporal Origin of Long-Distance Migrants of a Noctuid Moth Hong Chang 1,2, Jianglong Guo 3, Xiaowei Fu 4, Yongqiang Liu 2, Kris A. G. Wyckhuys 2, Youming Hou 1,* and Kongming Wu 2,* ID 1 State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Fujian Province Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; [email protected] 2 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; [email protected] (Y.L.); [email protected] (K.A.G.W.) 3 College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; [email protected] 4 Department of Plant Protection, Henan Institute of Science and Technology, Xinxiang 453003, China; [email protected] * Correspondence: [email protected] (Y.H.); [email protected] (K.W.); Tel.: +86-10-8210-5551 (K.W.) Received: 18 January 2018; Accepted: 8 February 2018; Published: 13 February 2018 Abstract: Pollen grains are regularly used as markers to determine an insect’s movement patterns or host (plant) feeding behavior, yet conventional morphology-based pollen grain analysis (or palynology) encounters a number of important limitations. In the present study, we combine conventional analytical approaches with DNA meta-barcoding to identify pollen grains attached to migrating adults of the turnip moth, Agrotis segetum (Lepidoptera: Noctuidae) in Northeast China. More specifically, pollen grains were dislodged from 2566 A. segetum long-distance migrants captured on Beihuang Island (Bohai Sea) and identified to many (plant) species level.
    [Show full text]
  • Turnip Moth, Agrotis Segetum WENQI WU, SYLVIA ANTON, CHRISTER LOFSTEDT, and BILL S
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 8022-8027, July 1996 Neurobiology Discrimination among pheromone component blends by interneurons in male antennal lobes of two populations of the turnip moth, Agrotis segetum WENQI WU, SYLVIA ANTON, CHRISTER LOFSTEDT, AND BILL S. HANSSON* Department of Ecology, Lund University, S-223 62 Lund, Sweden Communicated by Wendell Roelofs, Cornell University, Geneva, NY, March 22, 1996 (received for review November 21, 1995) ABSTRACT A difference in female pheromone produc- for gaining further insight into how information concerning tion and male behavioral response has previously been found different inter- and intra-populational blends is processed and in two populations of the turnip moth, Agrotis segetum, orig- integrated in the AL. In the present comparative study, we inating from Sweden and Zimbabwe, respectively. In this examined deutocerebral neurons of the two turnip moth study, we investigated the pheromone response of antennal populations, stimulating them with four single pheromone lobe interneurons of males of the two populations by intra- components, one behavioral antagonist [(Z)-5-decenol (Z5- cellular recordings, stimulating with single pheromone com- 10:0H)], and mixtures with various combinations of the four ponents and various inter- and intra-populational pheromone components. blends. Three major physiological types of antennal lobe neurons were established in the two populations according to their responses to different stimuli. One type responded MATERIALS AND METHODS broadly to almost all the stimuli tested. The second type Preparation. The Zimbabwean turnip moth culture was responded selectively to some of the single components and established in our laboratory from pupae shipped from Zim- blends.
    [Show full text]
  • Pests of Swedes and Turnips ^ Their Management and Control
    Pests of Swedes and Turnips ^ Their management and control Technical Note Summary T551 ı Insecticide options are being reduced for pest control in swedes and turnips ISBN 1 85481 789 8 ı Adoption of mesh covers significantly aids protection against some pests July 2003 ı Cabbage root fly is the major pest of crops in Scotland Introduction The review of anti-cholinesterase pesticides (mainly organophosphate insecticides) initiated by the government in 1998 has led to the withdrawal of 17 insecticides, the majority of which were used on UK horticultural crops. A further 21 insecticides (some of which are used on UK horticultural crops) are currently under review within the EU, and are under threat of withdrawal due to human health and/or environmental reasons. Until a specific off- label approval (SOLA) was granted for the use of chlorfenvinphos on swedes and turnips until December 2003, the UK crop would have had no Fig. 2. Damage to swede by second generation cabbage root fly larvae ^ one larva in situ insecticides available for the control of cabbage root fly in 2002/2003. The pest overwinters in the soil as pupae at the site of a previous brassica crop, oilseed rape or where Consequently, management of insect pests of field brassica weeds were prevalent. The flies emerge vegetable brassicas, especially those of shopping from the pupa in early-mid May. The flies resemble swedes and turnips has changed significantly in small houseflies, are 5^7 mm long, grey-black in response to the reduction in available insecticides. colour and after emergence initially mate and feed The pests and their management have been brought on nectar from wild flowers in hedgerows before up to date in this technical note.
    [Show full text]