Received 13 February 2017; Revised 3 July 2018 (revised preprint with corrections) ; Accepted 22 August 2017 DOI: 10.1002/mma.4597 is revision 18 Sep 2017, published in Mathematical Methods in the Applied Sciences, 41(11)4088–4105, 30 July 2018, Special Issue: ENGAGE SPECIAL ISSUE PAPER Triple Conformal Geometric Algebra for Cubic Plane Curves Robert Benjamin Easter1 | Eckhard Hitzer2 1Bangkok, Thailand. Email:
[email protected] Summary 2College of Liberal Arts, International The Triple Conformal Geometric Algebra (TCGA) for the Euclidean R2-plane ex- Christian University, 3-10-2 Osawa, 181-8585 Mitaka, Tokyo, Japan. Email: tends CGA as the product of three orthogonal CGAs, and thereby the representation
[email protected] of geometric entities to general cubic plane curves and certain cyclidic (or roulette) Communicated by: Dietmar Hildenbrand MSC Primary: 15A66; quartic, quintic, and sextic plane curves. The plane curve entities are 3-vectors that MSC Secondary: 14H50; 53A30; linearize the representation of non-linear curves, and the entities are inner product Correspondence null spaces (IPNS) with respect to all points on the represented curves. Each IPNS Eckhard Hitzer, College of Liberal Arts, entity also has a dual geometric outer product null space (OPNS) form. Orthogonal or International Christian University, 3-10-2 conformal (angle-preserving) operations (as versors) are valid on all TCGA entities Osawa, 181-8585 Mitaka, Tokyo, Japan. Email:
[email protected] for inversions in circles, reflections in lines, and, by compositions thereof, isotropic dilations from a given center point, translations, and rotations around arbitrary points in the plane. A further dimensional extension of TCGA, also provides a method for anisotropic dilations.