Download This Article in PDF Format
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supplement of Geosci
Supplement of Geosci. Model Dev., 7, 2243–2259, 2014 http://www.geosci-model-dev.net/7/2243/2014/ doi:10.5194/gmd-7-2243-2014-supplement © Author(s) 2014. CC Attribution 3.0 License. Supplement of Air quality forecast of PM10 in Beijing with Community Multi-scale Air Quality Modeling (CMAQ) system: emission and improvement Q. Wu et al. Correspondence to: Q. Wu ([email protected]) and X. Zhao ([email protected]) Figure 1: The location of Baoding, Tangshan and Xianghe stations are shown as \green tringle". They are all in the Beijing's surrounding areas, where more point sources have been added in this paper. 1 The model performance on the Beijing's sur- rounding stations In the section, the PM10 hourly concentration in Baoding, Tangshan and Xi- anghe stations are collected to illustrate the model performance in Beijing's surrounding areas. The observation is from the Beijing-Tianjin-Hebei Atmo- spheric Environment Monitoring Network operated by the Institute of Atmo- spheric Physics, Chinese Academy of Sciences[1]. The location of the three stations are shown in Figure 1, Baoding and Tangshan stations are located at the urban of Baoding and Tangshan Municipality, and Xianghe station is located at one county of Langfang Municipality. As described in the left figure of Fig.2 in the manuscript, the fouth do- main(D4) in the forecast system just covers Beijing Municipality, that Baoding, Tangshan and Langfang station, is either outside or nearby the domain bound- ary. Therefore, the \New" expanded model domain is used to check if the \added" point and \updated" area sources emissions would improve the model performance on the surrounding areas. -
The Functional Structure Convergence of China's Coastal Ports
sustainability Article The Functional Structure Convergence of China’s Coastal Ports Wei Wang 1,2,3, Chengjin Wang 1,* and Fengjun Jin 1 1 Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; [email protected] (W.W.); [email protected] (F.J.) 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 School of Geography, Beijing Normal University, Beijing 100875, China * Correspondence: [email protected] Received: 6 September 2017; Accepted: 23 November 2017; Published: 28 November 2017 Abstract: Functional structure is an important part of a port system, and can reflect the resource endowments and economic development needs of the hinterland. In this study, we investigated the transportation function of coastal ports in China from the perspective of cargo structure using a similarity coefficient. Our research considered both adjacent ports and hub ports. We found that the transportation function of some adjacent ports was very similar in terms of outbound structure (e.g., Qinhuangdao and Huanghua) and inbound structure (e.g., Huanghua and Tangshan). Ports around Bohai Bay and the port group in the Yangtze River Delta were the most competitive areas in terms of outbound and inbound structure, respectively. The major contributors to port similarity in different regions varied geographically due to the different market demands and cargo supplies. For adjacent ports, the functional convergence of inbound structure was more serious than the outbound. The convergence between hub ports was more serious than between adjacent ports in terms of both outbound and inbound structure. The average similarity coefficients displayed an increasing trend over time. -
Qiaodong District Central Heating and Housing Supporting Facility
SFG1344 v4 China Hebei Clean District Heating Project Public Disclosure Authorized Qiaodong District Central Heating and Housing Supporting Facility Construction Project, Zhangjiakou City Public Disclosure Authorized Abbreviated Resettlement Action Plan Public Disclosure Authorized Public Disclosure Authorized Zhangjiakou Dongyuan Heating Co., Ltd. (ZDHCO) August 2015 ARAP of the World Bank-financed Qiaodong District Central Heating and Indemnificatory Housing Supporting Facility Construction Project, Zhangjiakou City Abbreviations AAOV - Average Annual Output Value AH - Affected Household AP - Affected Person HD - House Demolition LA - Land Acquisition M&E - Monitoring and Evaluation MLS - Minimum Living Security RAP - Resettlement Action Plan ZDHCO - Zhangjiakou Dongyuan Heating Co., Ltd. Units Currency unit = Yuan (RMB) $1.00 = CNY6.15 1 hectare = 15 mu 2 ARAP of the World Bank-financed Qiaodong District Central Heating and Indemnificatory Housing Supporting Facility Construction Project, Zhangjiakou City Contents 1. Overview ................................................................................................................................ 4 2. Background of the Subproject ............................................................................................... 8 2.1 Socioeconomic profile of the subproject area .............................................................. 8 2.2 Background and significance of the Subproject .......................................................... 9 2.3 Components ................................................................................................................ -
The Simulated Annealing Algorithm and Its Application on Resource-Saving Society Construction
620 JOURNAL OF SOFTWARE, VOL. 7, NO. 3, MARCH 2012 The Simulated Annealing Algorithm and Its Application on Resource-saving Society Construction Shaomei Yang Economics and Management Department, North China Electric Power University, Baoding City, China Email: [email protected] Qian Zhu Department of Economic and Trade, Hebei Finance University, Baoding City, China Email address:[email protected] Zhibin Liu Economics and Management Department, North China Electric Power University, Baoding City, China Email: [email protected] Abstract—Construct the resource-saving society, which not Dictionary", the concept of save is explained only help to implement the scientific development concept, comprehensively, which is the economy, cut expenditure, change the economic growth mode, but also contribute to savings, control, cost savings and live frugally; the implement the sustainable development strategy. Evaluation antonyms is waste and extravagance. The object of save index system construction is part and parcel of building a is human, financial, material and time; the main body of resource-saving society; a scientific and rational evaluation index system not only can evaluate the resource-saving save is the organizations and individuals who use human, society construction standard, but also can guide the financial, material and time resources. Resource-saving resource-saving society construction. Based on the analysis society is that scientific development ideas as a guide, the of the resource-saving society evaluation status quo, this save logos impenetrate in various fields, including paper established an evaluation index system including production, circulation, consumer and social life, through economic, social, environmental and technological, the adoption of legal, economic, administrative and other described the optimization ideas, algorithms and comprehensive measures, rely on scientific and implementation of Simulated Annealing(SA). -
ANNUAL Report CONTENTS QINHUANGDAO PORT CO., LTD
(a joint stock limited liability company incorporated in the People’s Republic of China) Stock Code : 3369 ANNUAL REPORT CONTENTS QINHUANGDAO PORT CO., LTD. ANNUAL REPORT 2018 Definitions and Glossary of Technical Terms 2 Consolidated Balance Sheet 75 Corporate Information 5 Consolidated Income Statement 77 Chairman’s Statement 7 Consolidated Statement of Changes in Equity 79 Financial Highlights 10 Consolidated Statement of Cash Flows 81 Shareholding Structure of the Group 11 Company Balance Sheet 83 Management Discussion and Analysis 12 Company Income Statement 85 Corporate Governance Report 25 Company Statement of Changes in Equity 86 Biographical Details of Directors, 41 Company Statement of Cash Flows 87 Supervisors and Senior Management Notes to Financial Statements 89 Report of the Board of Directors 48 Additional Materials Report of Supervisory Committee 66 1. Schedule of Extraordinary Profit and Loss 236 Auditors’ Report 70 2. Return on Net Assets and Earning per Share 236 Audited Financial Statements DEFINITIONS AND GLOSSARY OF TECHNICAL TERMS “A Share(s)” the RMB ordinary share(s) issued by the Company in China, which are subscribed for in RMB and listed on the SSE, with a nominal value of RMB1.00 each “AGM” or “Annual General Meeting” the annual general meeting or its adjourned meetings of the Company to be held at 10:00 am on Thursday, 20 June 2019 at Qinhuangdao Sea View Hotel, 25 Donggang Road, Haigang District, Qinhuangdao, Hebei Province, PRC “Articles of Association” the articles of association of the Company “Audit Committee” the audit committee of the Board “Berth” area for mooring of vessels on the shoreline. -
309 Vol. 1 People's Republic of China
E- 309 VOL. 1 PEOPLE'SREPUBLIC OF CHINA Public Disclosure Authorized HEBEI PROVINCIAL GOVERNMENT HEBEI URBANENVIRONMENT PROJECT MANAGEMENTOFFICE HEBEI URBAN ENVIRONMENTAL PROJECT Public Disclosure Authorized ENVIRONMENTALASSESSMENT SUMMARY Public Disclosure Authorized January2000 Center for Environmental Assessment Chinese Research Academy of Environmental Sciences Beiyuan Anwai BEIJING 100012 PEOPLES' REPUBLIC OF CHINA Phone: 86-10-84915165 Email: [email protected] Public Disclosure Authorized Table of Contents I. Introduction..................................... 3 II. Project Description ..................................... 4 III. Baseline Data .................................... 4 IV. Environmental Impacts.................................... 8 V. Alternatives ................................... 16 VI. Environmental Management and Monitoring Plan ................................... 16 VII. Public Consultation .17 VIII. Conclusions.18 List of Tables Table I ConstructionScale and Investment................................................. 3 Table 2 Characteristicsof MunicipalWater Supply Components.............................................. 4 Table 3 Characteristicsof MunicipalWaste Water TreatmentComponents .............................. 4 Table 4 BaselineData ................................................. 7 Table 5 WaterResources Allocation and Other Water Users................................................. 8 Table 6 Reliabilityof Water Qualityand ProtectionMeasures ................................................ -
6. Jing-Jin-Ji Region, People's Republic of China
6. Jing-Jin-Ji Region, People’s Republic of China Michael Lindfield, Xueyao Duan and Aijun Qiu 6.1 INTRODUCTION The Beijing–Tianjin–Hebei Region, known as the Jing-Jin-Ji Region (JJJR), is one of the most important political, economic and cultural areas in China. The Chinese government has recognized the need for improved management and development of the region and has made it a priority to integrate all the cities in the Bohai Bay rim and foster its economic development. This economy is China’s third economic growth engine, alongside the Pearl River and Yangtze River Deltas. Jing-Jin-Ji was the heart of the old industrial centres of China and has traditionally been involved in heavy industries and manufacturing. Over recent years, the region has developed significant clusters of newer industries in the automotive, electronics, petrochemical, software and aircraft sectors. Tourism is a major industry for Beijing. However, the region is experiencing many growth management problems, undermining its competitiveness, management, and sustainable development. It has not benefited as much from the more integrated approaches to development that were used in the older-established Pearl River Delta and Yangtze River Delta regions, where the results of the reforms that have taken place in China since Deng Xiaoping have been nothing less than extraordinary. The Jing-Jin-Ji Region covers the municipalities of Beijing and Tianjin and Hebei province (including 11 prefecture cities in Hebei). Beijing and Tianjin are integrated geographically with Hebei province. In 2012, the total population of the Jing-Jin-Ji Region was 107.7 million. -
FINAL EVALUATION China Thematic Window Youth, Employment and Migration
FINAL EVALUATION China Thematic window Youth, Employment and Migration Programme Title: Protecting and Promoting the Rights of China's Vulnerable Migrants February Author: Hongwei Meng, consultant 2012 Prologue This final evaluation report has been coordinated by the MDG Achievement Fund joint programme in an effort to assess results at the completion point of the programme. As stipulated in the monitoring and evaluation strategy of the Fund, all 130 programmes, in 8 thematic windows, are required to commission and finance an independent final evaluation, in addition to the programme’s mid-term evaluation. Each final evaluation has been commissioned by the UN Resident Coordinator’s Office (RCO) in the respective programme country. The MDG-F Secretariat has provided guidance and quality assurance to the country team in the evaluation process, including through the review of the TORs and the evaluation reports. All final evaluations are expected to be conducted in line with the OECD Development Assistant Committee (DAC) Evaluation Network “Quality Standards for Development Evaluation”, and the United Nations Evaluation Group (UNEG) “Standards for Evaluation in the UN System”. Final evaluations are summative in nature and seek to measure to what extent the joint programme has fully implemented its activities, delivered outputs and attained outcomes. They also generate substantive evidence-based knowledge on each of the MDG-F thematic windows by identifying best practices and lessons learned to be carried forward to other development interventions and policy-making at local, national, and global levels. We thank the UN Resident Coordinator and their respective coordination office, as well as the joint programme team for their efforts in undertaking this final evaluation. -
The Coordinative Development in the Capital Region of China?
Zhai Baohui, Jia, Yuliang; Xu,Qingyun Coordinative development in the capital region China 40th ISoCaRP Congress 2004 A long Way to Go: the coordinative Development in the capital Region of China? Introduction From the analysis of ofgren (2000) we know that many efforts have been concentrated on large metropolitan regions in the Western sphere in a globalized world or giant cities of the developing world (Knox and Taylor, 1995; Sassen, 1991). The main focus has been on competitiveness, as responses to globalization, and urban governance, as a result of this pressure to become more competitive (Gwyndaf, 1999). The routine urban governance has been forced to change from day-to-day managerialism to entrepreneurialism and “boosterism” (Boyle and Hughes, 1994). Lever puts forward five questions to this concern. “Do cities compete? If so, for what do they compete? How do they compete? What are the consequences of competition? And, how do we measure and explain their competitive success?” (ofgren, 2000) To the first question, he identifies two opposing views. One is that cities indeed compete. They compete for mobile investment, population, public funds and large events as such sports and high level meetings. Cities are competing in the ability to create assets that make their local economy thrive. The other is that cities may try to develop favourable conditions for firms, but they are not as such involved in any competition with other cities. It is de facto capital that competes. It is the capital that needs corporate headquarters, financial institutions and markets as well as specialized services, and it is the capital invested in real estate, industrial undertakings, retailing and service. -
Understanding the Regional Transport Contributions of Primary and Secondary PM2.5 Components Over Beijing During a Severe Pollution Episodes
Aerosol and Air Quality Research, 18: 1720–1733, 2018 Copyright © Taiwan Association for Aerosol Research ISSN: 1680-8584 print / 2071-1409 online doi: 10.4209/aaqr.2017.10.0406 Understanding the Regional Transport Contributions of Primary and Secondary PM2.5 Components over Beijing during a Severe Pollution Episodes Wei Wen1,2, Xiaodong He1*, Xin Ma3**, Peng Wei4, Shuiyuan Cheng5, Xiaoqi Wang5, Lei Liu2 1Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China 2 Key Laboratory of Atmospheric Chemistry, China Meteorological Administration, Beijing 100081, China 3 National Meteorological Center, Beijing 100081, China 4 Chinese Research Academy of Environment Science, Beijing 100012, China 5 Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China ABSTRACT This study applied the CAMx model to study the regional transport of various PM2.5 components in Beijing during a severe pollution episodes. The results revealed that during the episodes, Beijing had the average PM2.5 pollution value of –3 –3 119 µg m . It was 1.58 times of the PM2.5 national air quality standard (75 µg m Level II). The wind speed was low (< 2 m s–1) and relative humidity reached 98%. The anticyclone in Eastern China showed weak local flow fields and southerly winds at the surface and strong temperature inversion under 1000 m, which promote pollution accumulation. The 2– – contribution of monthly regional transport to primary PM2.5 components and SO4 , NO3 , and secondary organic aerosol concentrations in Beijing were 29.6%, 41.5%, 58.7%, and 60.6%, respectively. The emissions from Baoding had the greatest effect on the primary components of PM2.5 (6.1%) in Beijing. -
Economic, Social, and Ecological Impact Evaluation of Traffic Network
sustainability Article Economic, Social, and Ecological Impact Evaluation of Traffic Network in Beijing–Tianjin–Hebei Urban Agglomeration Based on the Entropy Weight TOPSIS Method Liang Zhang 1,2 , Xubing Zhang 1,2,*, Shenggu Yuan 3 and Kai Wang 2,4 1 School of Geography and Information Engineering, China University of Geosciences, Wuhan 430078, China; [email protected] 2 Key Laboratory of the Ministry of Natural Resources for Research on Rule of Law, Wuhan 430074, China; [email protected] 3 China Transport Telecommunications and Information Center, Beijing 100011, China; [email protected] 4 School of Geophysics and Spatial Information, China University of Geosciences, Wuhan 430074, China * Correspondence: [email protected]; Tel.: +86-189-7120-0369 Abstract: In recent years, with the rapid development of urban transportation network in China, many problems have been exposed, especially in the Beijing–Tianjin–Hebei (BTH) region. Under the call of sustainable development, it is of great significance to evaluate the economic, social, and ecological (ESE) impact of transportation network in BTH urban agglomeration for promoting the sustainable development of transportation ESE in BTH urban agglomeration. In this paper, 12 indicators in the field of transportation are selected to build the evaluation index system of ESE effects of transportation network in BTH urban agglomeration. By using entropy weight TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) model and the Jenks natural breaks classification method, the ESE impacts of transportation network in 13 cities of BTH from 2013 to Citation: Zhang, L.; Zhang, X.; Yuan, 2017 are analyzed from the temporal and spatial dimensions. -
Air Pollution in China: Mapping of Concentrations and Sources
Air Pollution in China: Mapping of Concentrations and Sources Robert A. Rohde1, Richard A. Muller2 Abstract China has recently made available hourly air pollution data from over 1500 sites, including airborne particulate matter (PM), SO2, NO2, and O3. We apply Kriging interpolation to four months of data to derive pollution maps for eastern China. Consistent with prior findings, the greatest pollution occurs in the east, but significant levels are widespread across northern and central China and are not limited to major cities or geologic basins. Sources of pollution are widespread, but are particularly intense in a northeast corridor that extends from near Shanghai to north of Beijing. During our analysis period, 92% of the population of China experienced >120 hours of unhealthy air (US EPA standard), and 38% experienced average concentrations 3 that were unhealthy. China’s population-weighted average exposure to PM2.5 was 52 µg/m . The observed air pollution is calculated to contribute to 1.6 million deaths/year in China [0.7–2.2 million deaths/year at 95% confidence], roughly 17% of all deaths in China. Introduction Air pollution is a problem for much of the developing world and is believed to kill more people worldwide than AIDS, malaria, breast cancer, or tuberculosis (1-4). Airborne particulate matter (PM) is especially detrimental to health (5-8), and has previously been estimated to cause between 3 and 7 million deaths every year, primarily by creating or worsening cardiorespiratory disease (2-4,6,7). Particulate sources include electric power plants, industrial facilities, automobiles, biomass burning, and fossil fuels used in homes and factories for heating.