EARTH SURFACE PROCESSES AND LANDFORMS Earth Surf. Process. Landforms 44, 918–932 (2019) © 2018 John Wiley & Sons, Ltd. Published online 2 December 2018 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/esp.4544 Ice cap erosion patterns from bedrock 10Be and 26Al, southeastern Tibetan Plateau Ping Fu,1* Arjen P. Stroeven,2 Jonathan M. Harbor,2,3 Jakob Heyman,4 Clas Hättestrand2 and Marc W. Caffee3,5 1 School of Geographical Sciences, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo, 315100 Zhejiang, P.R. China 2 Geomorphology & Glaciology, Department of Physical Geography, Stockholm University, Stockholm, Sweden and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden 3 Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, USA 4 Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden 5 Department of Physics and Astronomy, Purdue University, West Lafayette, USA Received 7 September 2017; Revised 29 October 2018; Accepted 1 November 2018 *Correspondence to: Ping Fu, School of Geographical Sciences, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo, 315100 Zhejiang, P.R. China. E-mail:
[email protected] ABSTRACT: Quantifying glacial erosion contributes to our understanding of landscape evolution and topographic relief production in high altitude and high latitude areas. Combining in situ 10Be and 26Al analysis of bedrock, boulder, and river sand samples, geo- morphological mapping, and field investigations, we examine glacial erosion patterns of former ice caps in the Shaluli Shan of the southeastern Tibetan Plateau. The general landform pattern shows a zonal pattern of landscape modification produced by ice caps of up to 4000 km2 during pre-LGM (Last Glacial Maximum) glaciations, while the dating results and landforms on the plateau surface imply that the LGM ice cap further modified the scoured terrain into different zones.