Geoengineer Polar Glaciers to Slow Sea-Level Rise

Total Page:16

File Type:pdf, Size:1020Kb

Geoengineer Polar Glaciers to Slow Sea-Level Rise COMMENT NEUROSCIENCE Dispatch from PALAEONTOLOGY Sex, power and SUSTAINABILITY How ARCHAEOLOGY The the dark past of deep brain DNA — tracking our ancestors can India manage its Iceman cometh to a stimulation p.306 around the world p.307 mountain of waste? p.308 cinema near you p.310 JOE RAEDLE/GETTY The village of Ilulissat in western Greenland is surrounded by icebergs that have calved from the Jakobshavn Glacier. Geoengineer polar glaciers to slow sea-level rise Stalling the fastest flows of ice into the oceans would buy us a few centuries to deal with climate change and protect coasts, argue John C. Moore and colleagues. he ice sheets of Greenland and reach US$50 trillion a year. Sea walls and global warming. In our view, this is plausible Antarctica will contribute more to flood defences cost tens of billions of dollars because about 90% of ice flowing to the sea sea-level rise this century than any a year to construct and maintain2. from the Antarctic ice sheet3,4, and about half Tother source. By mid-century, a 2 °C increase At this price, geoengineering is competi- of that lost from Greenland travels in narrow, is predicted1 to swell the global oceans by tive. For example, building an artificial island fast ice streams. These streams measure tens around 20 centimetres, on average. By 2100, to host Hong Kong’s international airport, of kilometres or less across. Fast glaciers slide most large coastal cities will face sea levels that which added 1% to the city’s land area, cost on a film of water or wet sediment5. Stemming are more than a metre higher than currently. more than $20 billion. China’s Three Gorges the largest flows would allow the ice sheets If nothing is done, 0.5–5% of the world’s Dam, which spans the Yangtze River to con- to thicken, slowing or even reversing their population will be flooded each year after trol floods and generate power, is thought to contribution to sea-level rise. 2100 (ref. 2). For example, a 0.5-metre rise have cost about $33 billion. Geoengineering of glaciers has received in Guangzhou, China, would displace more We think that geoengineering of glaciers on little attention in journals. Most people than 1 million people; a 2-metre rise would a similar scale could delay much of Greenland assume that it is unfeasible and environ- affect more than 2 million1. Without coastal and Antarctica’s grounded ice from reaching mentally undesirable. We disagree. We protection, the global cost of damages could the sea for centuries, buying time to address understand the hesitancy to interfere with ©2018 Mac millan Publishers Li mited, part of Spri nger Nature. All ri gh15ts r eMARCHserved. 2018 | VOL 555 | NATURE | 303 COMMENT glaciers — as glaciologists, we know the construction of the berm and by the loss of warmer waters from entering. pristine beauty of these places. But we have sediment once the glacier was slowed. Whether such engineering feats would also stood on ice shelves that are now open Building such a berm would tell us whether successfully delay sea-level rise, and for how ocean. If the world does nothing, ice sheets glacial geoengineering is feasible, or if there long, requires a better understanding of will keep shrinking and the losses will accel- would be unanticipated consequences. But many factors. These include how the ocean erate. Even if greenhouse-gas emissions are the project would have only a small impact on circulates below ice shelves; how floating slashed, which looks unlikely, it would take 2100 global sea levels, given that Greenland’s ice fractures and calves icebergs; and how decades for the climate to stabilize. contribution is likely to be just 10–20 centi- glaciers slide and erode at their bases. A Is allowing a ‘pristine’ glacier to waste away metres1. Antarctica will be the largest contrib- thorough study would be needed to deter- worth forcing one million people from their utor, and geoengineering there will require mine the stresses that pinned ice shelves can homes? Ten million? One hundred million? larger and more challenging projects. sustain before they fracture. Models of ice Should we spend vast sums to wall off all the dynamics should determine the most effec- world’s coasts, or can we address the problem 2. SUPPORT ICE SHELVES tive locations for pinning. at its source? Geoengineering is a political Where Antarctica’s ice sheets reach the sea, ice Material could be shipped to Antarctica and societal choice, because people’s reactions flows out as floating shelves. Pinned by rocks from elsewhere in the world, or dredged or depend on how the issue is framed. Buttress- and islands, these platforms hold back the quarried locally. But it would be difficult in ing of glaciers needs a serious look. It should glaciers and limit how much ice reaches the practice for engineers to work around the ice have fewer global environmental impacts sea. As the air and ocean around Antarctica shelves, which grow and shrink as the glaciers, than other proposals being discussed for warm, some ice shelves are becoming thinner, sheets and conditions fluctuate. Sea ice would reducing sea-level rise, such as injecting aero- particularly those fringing the Amundsen also get in the way. Technologies might need to sols into the stratosphere to reflect sunlight Sea. In 2002, scientists were shocked at the be developed to operate beneath floating ice. and cool the planet. collapse of 3,200 square kilometres of the Major disturbances to local ecosystems would To stimulate discussion, we explore three Larsen B ice shelf, which is now only 30% of be expected and would require thorough ways to delay the loss of ice sheets. the size it was during the 1980s7. Half a dozen assessment before and after pinning. other shelves around the Antarctic Peninsula 1. BLOCK WARM WATER have shattered in the past 30 years. 3. DRY SUBGLACIAL STREAMS The Jakobshavn glacier in western Greenland Sheer cliffs are left behind when an ice Fast-sliding ice streams supply 90% of ice is one of the fastest-moving ice masses on sheet collapses. These crumble, accelerating entering the sea. As the ice slides over the gla- Earth. It contributes more to sea-level rise the glacier’s retreat8. The West Antarctic ice cier bed, frictional heat generates about 90% than any other glacier in the Northern sheet is especially vulnerable because its bed of the water at the base of the ice streams5. Hemisphere. Ice loss from Jakobshavn rock lies below sea level and is deeper inland9. This water acts as a lubricant, speeding up the explains around 4% of twentieth-century sea- Warm ocean currents in the Amundsen Sea flow, which in turn generates more heat, and level rise, or about 0.06 millimetres per year6. are melting the bottoms of floating parts of creates more water and slippage. Jakobshavn is retreating at its front. the glaciers, making the sheets more unstable. Glaciers in Greenland and at lower Relatively warm water from the Atlantic is The Pine Island3 and Thwaites4 glaciers latitudes are relatively wet because their sur- flowing over a shallow sill (300 metres deep) in West Antarctica are the largest potential faces melt in summer, and rivers flow beneath and eating away at the glacier’s base. Making sources of sea-level them. In Antarctica, by contrast, there is little the sill shallower would reduce the volume of rise over the next “Scientists were seasonal melting and much less water below warm water and slow the melting. More sea two centuries. Both shocked at the the ice sheet. For example, the base of Pine ice would form. Icebergs would lodge on the glaciers are losing collapse of the Island Glacier releases about 50 cubic metres sill and prop up the glacier. height and flow- Larsen B ice of water per second, which is only about A 100-metre-high wall with sloping sides of ing more quickly shelf.” 10 millimetres per year over the catchment 15–45° could be built across the 5-kilometre than two decades area5. Removing this thin layer of water will fjord in front of Jakobshavn glacier by dredg- ago. Pine Island Glacier reached a flow slow the glacier, reducing frictional heating. ing around 0.1 cubic kilometres of gravel rate of about 4 kilometres per year in 2009, The glacier will stall and its ice will thicken. and sand from Greenland’s continental shelf compared with 2.5 kilometres per year in It is difficult to access the glacier’s bed (see ‘Glacial geoengineering’). This artificial 1996 (ref. 10). Models predict that, by 2150, beneath one kilometre of ice, but there are embankment, or berm, could be clad in con- these two glaciers might disgorge ice ten precedents. The IceCube Neutrino Obser- crete to stop it being eroded. The scale of the times faster than current rates, contributing vatory at the South Pole has used jets of berm would be comparable with large civil- 4 centimetres a year to global sea-level rise8. hot water to drill 60 holes to depths of engineering projects. For example, ten times One solution is to artificially pin the 1,500–2,500 metres in the ice sheet. At Enga- more material — 1 cubic kilometre — was ice shelves in front of the two glaciers by breen, Norway, a network of 5-metre-wide excavated to build the Suez Canal. Hong constructing berms and islands, extended tunnels in the bedrock feeds 30–40 cubic Kong’s airport required around 0.3 cubic from outcrops or built on the sea floor.
Recommended publications
  • Early Break-Up of the Norwegian Channel Ice Stream During the Last Glacial Maximum
    Quaternary Science Reviews 107 (2015) 231e242 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Early break-up of the Norwegian Channel Ice Stream during the Last Glacial Maximum * John Inge Svendsen a, , Jason P. Briner b, Jan Mangerud a, Nicolas E. Young c a Department of Earth Science, University of Bergen and Bjerknes Centre for Climate Research, Postbox 7803, N-5020 Bergen, Norway b Department of Geology, University at Buffalo, Buffalo, NY 14260, USA c Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA article info abstract Article history: We present 18 new cosmogenic 10Be exposure ages that constrain the breakup time of the Norwegian Received 11 June 2014 Channel Ice Stream (NCIS) and the initial retreat of the Scandinavian Ice Sheet from the Southwest coast Received in revised form of Norway following the Last Glacial Maximum (LGM). Seven samples from glacially transported erratics 31 October 2014 on the island Utsira, located in the path of the NCIS about 400 km up-flow from the LGM ice front Accepted 3 November 2014 position, yielded an average 10Be age of 22.0 ± 2.0 ka. The distribution of the ages is skewed with the 4 Available online youngest all within the range 20.2e20.8 ka. We place most confidence on this cluster of ages to constrain the timing of ice sheet retreat as we suspect the 3 oldest ages have some inheritance from a previous ice Keywords: Norwegian Channel Ice Stream free period. Three additional ages from the adjacent island Karmøy provided an average age of ± 10 Scandinavian Ice Sheet 20.9 0.7 ka, further supporting the new timing of retreat for the NCIS.
    [Show full text]
  • Ribbed Bedforms in Palaeo-Ice Streams Reveal Shear Margin
    https://doi.org/10.5194/tc-2020-336 Preprint. Discussion started: 21 November 2020 c Author(s) 2020. CC BY 4.0 License. Ribbed bedforms in palaeo-ice streams reveal shear margin positions, lobe shutdown and the interaction of meltwater drainage and ice velocity patterns Jean Vérité1, Édouard Ravier1, Olivier Bourgeois2, Stéphane Pochat2, Thomas Lelandais1, Régis 5 Mourgues1, Christopher D. Clark3, Paul Bessin1, David Peigné1, Nigel Atkinson4 1 Laboratoire de Planétologie et Géodynamique, UMR 6112, CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans CEDEX 9, France 2 Laboratoire de Planétologie et Géodynamique, UMR 6112, CNRS, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes CEDEX 3, France 10 3 Department of Geography, University of Sheffield, Sheffield, UK 4 Alberta Geological Survey, 4th Floor Twin Atria Building, 4999-98 Ave. Edmonton, AB, T6B 2X3, Canada Correspondence to: Jean Vérité ([email protected]) Abstract. Conceptual ice stream landsystems derived from geomorphological and sedimentological observations provide 15 constraints on ice-meltwater-till-bedrock interactions on palaeo-ice stream beds. Within these landsystems, the spatial distribution and formation processes of ribbed bedforms remain unclear. We explore the conditions under which these bedforms develop and their spatial organisation with (i) an experimental model that reproduces the dynamics of ice streams and subglacial landsystems and (ii) an analysis of the distribution of ribbed bedforms on selected examples of paleo-ice stream beds of the Laurentide Ice Sheet. We find that a specific kind of ribbed bedforms can develop subglacially 20 from a flat bed beneath shear margins (i.e., lateral ribbed bedforms) and lobes (i.e., submarginal ribbed bedforms) of ice streams.
    [Show full text]
  • Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework Due Thursday Nov
    Learning Objectives (LO) Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework due Thursday Nov. 12 What we’ll learn today:! 1. 1. Glaciers and where they occur! 2. 2. Compare depositional and erosional features of glaciers! 3. 3. Earth-Sun orbital parameters, relevance to interglacial periods ! A glacier is a river of ice. Glaciers can range in size from: 100s of m (mountain glaciers) to 100s of km (continental ice sheets) Most glaciers are 1000s to 100,000s of years old! The Snowline is the lowest elevation of a perennial (2 yrs) snow field. Glaciers can only form above the snowline, where snow does not completely melt in the summer. Requirements: Cold temperatures Polar latitudes or high elevations Sufficient snow Flat area for snow to accumulate Permafrost is permanently frozen soil beneath a seasonal active layer that supports plant life Glaciers are made of compressed, recrystallized snow. Snow buildup in the zone of accumulation flows downhill into the zone of wastage. Glacier-Covered Areas Glacier Coverage (km2) No glaciers in Australia! 160,000 glaciers total 47 countries have glaciers 94% of Earth’s ice is in Greenland and Antarctica Mountain Glaciers are Retreating Worldwide The Antarctic Ice Sheet The Greenland Ice Sheet Glaciers flow downhill through ductile (plastic) deformation & by basal sliding. Brittle deformation near the surface makes cracks, or crevasses. Antarctic ice sheet: ductile flow extends into the ocean to form an ice shelf. Wilkins Ice shelf Breakup http://www.youtube.com/watch?v=XUltAHerfpk The Greenland Ice Sheet has fewer and smaller ice shelves. Erosional Features Unique erosional landforms remain after glaciers melt.
    [Show full text]
  • Minimal Geological Methane Emissions During the Younger Dryas-Preboreal Abrupt Warming Event
    UC San Diego UC San Diego Previously Published Works Title Minimal geological methane emissions during the Younger Dryas-Preboreal abrupt warming event. Permalink https://escholarship.org/uc/item/1j0249ms Journal Nature, 548(7668) ISSN 0028-0836 Authors Petrenko, Vasilii V Smith, Andrew M Schaefer, Hinrich et al. Publication Date 2017-08-01 DOI 10.1038/nature23316 Peer reviewed eScholarship.org Powered by the California Digital Library University of California LETTER doi:10.1038/nature23316 Minimal geological methane emissions during the Younger Dryas–Preboreal abrupt warming event Vasilii V. Petrenko1, Andrew M. Smith2, Hinrich Schaefer3, Katja Riedel3, Edward Brook4, Daniel Baggenstos5,6, Christina Harth5, Quan Hua2, Christo Buizert4, Adrian Schilt4, Xavier Fain7, Logan Mitchell4,8, Thomas Bauska4,9, Anais Orsi5,10, Ray F. Weiss5 & Jeffrey P. Severinghaus5 Methane (CH4) is a powerful greenhouse gas and plays a key part atmosphere can only produce combined estimates of natural geological in global atmospheric chemistry. Natural geological emissions and anthropogenic fossil CH4 emissions (refs 2, 12). (fossil methane vented naturally from marine and terrestrial Polar ice contains samples of the preindustrial atmosphere and seeps and mud volcanoes) are thought to contribute around offers the opportunity to quantify geological CH4 in the absence of 52 teragrams of methane per year to the global methane source, anthropogenic fossil CH4. A recent study used a combination of revised 13 13 about 10 per cent of the total, but both bottom-up methods source δ C isotopic signatures and published ice core δ CH4 data to 1 −1 2 (measuring emissions) and top-down approaches (measuring estimate natural geological CH4 at 51 ±​ 20 Tg CH4 yr (1σ range) , atmospheric mole fractions and isotopes)2 for constraining these in agreement with the bottom-up assessment of ref.
    [Show full text]
  • Previously Unsuspected Volcanic Activity Confirmed Under West Antarc…Ice Sheet at Pine Island Glacier | NSF - National Science Foundation 1/30/20, 908 AM
    Previously unsuspected volcanic activity confirmed under West Antarc…Ice Sheet at Pine Island Glacier | NSF - National Science Foundation 1/30/20, 908 AM Home (/) › News (/news/) News Release 18-044 Previously unsuspected volcanic activity confirmed under West Antarctic Ice Sheet at Pine Island Glacier Potential effects of volcanic warming on ice-sheet melting and sea level rise still to be determined The Pine Island Glacier meets the ocean. Credit and Larger Version (/news/news_images.jsp?cntn_id=295861&org=NSF) June 27, 2018 This material is available primarily for archival purposes. Telephone numbers or other contact information may be out of date; please see current contact information at media contacts (/staff/sub_div.jsp? org=olpa&orgId=85). https://www.nsf.gov/news/news_summ.jsp?cntn_id=295861 Page 1 of 4 Previously unsuspected volcanic activity confirmed under West Antarc…Ice Sheet at Pine Island Glacier | NSF - National Science Foundation 1/30/20, 908 AM Tracing a chemical signature of helium in seawater, an international team of scientists funded by the National Science Foundation (NSF) and the United Kingdom's (U.K.) Natural Environment Research Council (NERC) has discovered a previously unknown volcanic hotspot beneath the massive West Antarctic Ice Sheet (WAIS). Researchers say the newly discovered heat source could contribute in ways yet unknown to the potential collapse of the ice sheet. The scientific consensus is that the rapidly melting Pine Island Glacier, the focal point of the study, would be a significant source of global sea level rise should the melting there continue or accelerate. Glaciers such as Pine Island act as plugs that regulate the speed at which the ice sheet flows into the sea.
    [Show full text]
  • Sea Level and Climate Introduction
    Sea Level and Climate Introduction Global sea level and the Earth’s climate are closely linked. The Earth’s climate has warmed about 1°C (1.8°F) during the last 100 years. As the climate has warmed following the end of a recent cold period known as the “Little Ice Age” in the 19th century, sea level has been rising about 1 to 2 millimeters per year due to the reduction in volume of ice caps, ice fields, and mountain glaciers in addition to the thermal expansion of ocean water. If present trends continue, including an increase in global temperatures caused by increased greenhouse-gas emissions, many of the world’s mountain glaciers will disap- pear. For example, at the current rate of melting, most glaciers will be gone from Glacier National Park, Montana, by the middle of the next century (fig. 1). In Iceland, about 11 percent of the island is covered by glaciers (mostly ice caps). If warm- ing continues, Iceland’s glaciers will decrease by 40 percent by 2100 and virtually disappear by 2200. Most of the current global land ice mass is located in the Antarctic and Greenland ice sheets (table 1). Complete melt- ing of these ice sheets could lead to a sea-level rise of about 80 meters, whereas melting of all other glaciers could lead to a Figure 1. Grinnell Glacier in Glacier National Park, Montana; sea-level rise of only one-half meter. photograph by Carl H. Key, USGS, in 1981. The glacier has been retreating rapidly since the early 1900’s.
    [Show full text]
  • Calving Processes and the Dynamics of Calving Glaciers ⁎ Douglas I
    Earth-Science Reviews 82 (2007) 143–179 www.elsevier.com/locate/earscirev Calving processes and the dynamics of calving glaciers ⁎ Douglas I. Benn a,b, , Charles R. Warren a, Ruth H. Mottram a a School of Geography and Geosciences, University of St Andrews, KY16 9AL, UK b The University Centre in Svalbard, PO Box 156, N-9171 Longyearbyen, Norway Received 26 October 2006; accepted 13 February 2007 Available online 27 February 2007 Abstract Calving of icebergs is an important component of mass loss from the polar ice sheets and glaciers in many parts of the world. Calving rates can increase dramatically in response to increases in velocity and/or retreat of the glacier margin, with important implications for sea level change. Despite their importance, calving and related dynamic processes are poorly represented in the current generation of ice sheet models. This is largely because understanding the ‘calving problem’ involves several other long-standing problems in glaciology, combined with the difficulties and dangers of field data collection. In this paper, we systematically review different aspects of the calving problem, and outline a new framework for representing calving processes in ice sheet models. We define a hierarchy of calving processes, to distinguish those that exert a fundamental control on the position of the ice margin from more localised processes responsible for individual calving events. The first-order control on calving is the strain rate arising from spatial variations in velocity (particularly sliding speed), which determines the location and depth of surface crevasses. Superimposed on this first-order process are second-order processes that can further erode the ice margin.
    [Show full text]
  • A Review of Ice-Sheet Dynamics in the Pine Island Glacier Basin, West Antarctica: Hypotheses of Instability Vs
    Pine Island Glacier Review 5 July 1999 N:\PIGars-13.wp6 A review of ice-sheet dynamics in the Pine Island Glacier basin, West Antarctica: hypotheses of instability vs. observations of change. David G. Vaughan, Hugh F. J. Corr, Andrew M. Smith, Adrian Jenkins British Antarctic Survey, Natural Environment Research Council Charles R. Bentley, Mark D. Stenoien University of Wisconsin Stanley S. Jacobs Lamont-Doherty Earth Observatory of Columbia University Thomas B. Kellogg University of Maine Eric Rignot Jet Propulsion Laboratories, National Aeronautical and Space Administration Baerbel K. Lucchitta U.S. Geological Survey 1 Pine Island Glacier Review 5 July 1999 N:\PIGars-13.wp6 Abstract The Pine Island Glacier ice-drainage basin has often been cited as the part of the West Antarctic ice sheet most prone to substantial retreat on human time-scales. Here we review the literature and present new analyses showing that this ice-drainage basin is glaciologically unusual, in particular; due to high precipitation rates near the coast Pine Island Glacier basin has the second highest balance flux of any extant ice stream or glacier; tributary ice streams flow at intermediate velocities through the interior of the basin and have no clear onset regions; the tributaries coalesce to form Pine Island Glacier which has characteristics of outlet glaciers (e.g. high driving stress) and of ice streams (e.g. shear margins bordering slow-moving ice); the glacier flows across a complex grounding zone into an ice shelf coming into contact with warm Circumpolar Deep Water which fuels the highest basal melt-rates yet measured beneath an ice shelf; the ice front position may have retreated within the past few millennia but during the last few decades it appears to have shifted around a mean position.
    [Show full text]
  • Comparison of Remote Sensing Extraction Methods for Glacier Firn Line- Considering Urumqi Glacier No.1 As the Experimental Area
    E3S Web of Conferences 218, 04024 (2020) https://doi.org/10.1051/e3sconf/202021804024 ISEESE 2020 Comparison of remote sensing extraction methods for glacier firn line- considering Urumqi Glacier No.1 as the experimental area YANJUN ZHAO1, JUN ZHAO1, XIAOYING YUE2and YANQIANG WANG1 1College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China 2State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources/Tien Shan Glaciological Station, Chinese Academy of Sciences, Lanzhou, China Abstract. In mid-latitude glaciers, the altitude of the snowline at the end of the ablating season can be used to indicate the equilibrium line, which can be used as an approximation for it. In this paper, Urumqi Glacier No.1 was selected as the experimental area while Landsat TM/ETM+/OLI images were used to analyze and compare the accuracy as well as applicability of the visual interpretation, Normalized Difference Snow Index, single-band threshold and albedo remote sensing inversion methods for the extraction of the firn lines. The results show that the visual interpretation and the albedo remote sensing inversion methods have strong adaptability, alonger with the high accuracy of the extracted firn line while it is followed by the Normalized Difference Snow Index and the single-band threshold methods. In the year with extremely negative mass balance, the altitude deviation of the firn line extracted by different methods is increased. Except for the years with extremely negative mass balance, the altitude of the firn line at the end of the ablating season has a good indication for the altitude of the balance line.
    [Show full text]
  • A Globally Complete Inventory of Glaciers
    Journal of Glaciology, Vol. 60, No. 221, 2014 doi: 10.3189/2014JoG13J176 537 The Randolph Glacier Inventory: a globally complete inventory of glaciers W. Tad PFEFFER,1 Anthony A. ARENDT,2 Andrew BLISS,2 Tobias BOLCH,3,4 J. Graham COGLEY,5 Alex S. GARDNER,6 Jon-Ove HAGEN,7 Regine HOCK,2,8 Georg KASER,9 Christian KIENHOLZ,2 Evan S. MILES,10 Geir MOHOLDT,11 Nico MOÈ LG,3 Frank PAUL,3 Valentina RADICÂ ,12 Philipp RASTNER,3 Bruce H. RAUP,13 Justin RICH,2 Martin J. SHARP,14 THE RANDOLPH CONSORTIUM15 1Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA 2Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA 3Department of Geography, University of ZuÈrich, ZuÈrich, Switzerland 4Institute for Cartography, Technische UniversitaÈt Dresden, Dresden, Germany 5Department of Geography, Trent University, Peterborough, Ontario, Canada E-mail: [email protected] 6Graduate School of Geography, Clark University, Worcester, MA, USA 7Department of Geosciences, University of Oslo, Oslo, Norway 8Department of Earth Sciences, Uppsala University, Uppsala, Sweden 9Institute of Meteorology and Geophysics, University of Innsbruck, Innsbruck, Austria 10Scott Polar Research Institute, University of Cambridge, Cambridge, UK 11Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA 12Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada 13National Snow and Ice Data Center, University of Colorado, Boulder, CO, USA 14Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada 15A complete list of Consortium authors is in the Appendix ABSTRACT. The Randolph Glacier Inventory (RGI) is a globally complete collection of digital outlines of glaciers, excluding the ice sheets, developed to meet the needs of the Fifth Assessment of the Intergovernmental Panel on Climate Change for estimates of past and future mass balance.
    [Show full text]
  • Download Itinerary
    HIGH ARCTIC EXPLORER REVERSE TRIP CODE ACACHA DEPARTURE 02/08/2022, 25/07/2023 DURATION INTRODUCTION 12 Days LOCATIONS BOOK AND SAVE: Book by 30 November to save up to 15% off select cabins and departures* Greenland and Canada Jump aboard the Ocean Endeavour for 11 days and cruise in comfort from Kangerlussuaq to Qaqsuittuq (resolute Bay, Nunavut). This is the high Arctic at the height of summer and you will be rewarded with the history, culture, marine life and glittering scenery of this region. Highlights include a visit to Beechey Island National Historic Site; Tallurutiup Imanga National Marine Protected Area; an Inuit cultural welcome at Mittimatilik; cruise amid icebergs at Jakobshavn Glacier (a UNESCO World Heritage Site) and explore Greenlandâs beautiful west coast. This journey starts in Toronto with a charter flight Northbound and ends with a charter flight southbound to Ottawa. There is the opportunity to do it in reverse from Ottawa to Toronto on certain dates. *Offers aboard the Ocean Endeavour end 30 November 2021 subject to availability. Not combinable with any other promotion. Applies to voyage only; cabins limited. Subject to availability and currency fluctuations. Further conditions apply, contact us for more information. ITINERARY DAY 1: Arrival and Embarkation in Kangerlussuaq Kangerlussuaq is a former U.S. Air Force base and Greenland’s primary flight hub. Here we will be transferred by Zodiac to the Ocean Endeavour. With 190 kilometres of superb scenery, Kangerlussuaq Fjord (Sondre Stromfjord) is one of the longest fjords in the world. We begin our adventure by sailing down this dramatic fjord, crossing the Arctic Circle as we go.
    [Show full text]
  • Ilulissat Icefjord
    World Heritage Scanned Nomination File Name: 1149.pdf UNESCO Region: EUROPE AND NORTH AMERICA __________________________________________________________________________________________________ SITE NAME: Ilulissat Icefjord DATE OF INSCRIPTION: 7th July 2004 STATE PARTY: DENMARK CRITERIA: N (i) (iii) DECISION OF THE WORLD HERITAGE COMMITTEE: Excerpt from the Report of the 28th Session of the World Heritage Committee Criterion (i): The Ilulissat Icefjord is an outstanding example of a stage in the Earth’s history: the last ice age of the Quaternary Period. The ice-stream is one of the fastest (19m per day) and most active in the world. Its annual calving of over 35 cu. km of ice accounts for 10% of the production of all Greenland calf ice, more than any other glacier outside Antarctica. The glacier has been the object of scientific attention for 250 years and, along with its relative ease of accessibility, has significantly added to the understanding of ice-cap glaciology, climate change and related geomorphic processes. Criterion (iii): The combination of a huge ice sheet and a fast moving glacial ice-stream calving into a fjord covered by icebergs is a phenomenon only seen in Greenland and Antarctica. Ilulissat offers both scientists and visitors easy access for close view of the calving glacier front as it cascades down from the ice sheet and into the ice-choked fjord. The wild and highly scenic combination of rock, ice and sea, along with the dramatic sounds produced by the moving ice, combine to present a memorable natural spectacle. BRIEF DESCRIPTIONS Located on the west coast of Greenland, 250-km north of the Arctic Circle, Greenland’s Ilulissat Icefjord (40,240-ha) is the sea mouth of Sermeq Kujalleq, one of the few glaciers through which the Greenland ice cap reaches the sea.
    [Show full text]