Performance of Arctic Cloud Products in the CLARA-A2 AVHRR Dataset from CMSAF

Total Page:16

File Type:pdf, Size:1020Kb

Performance of Arctic Cloud Products in the CLARA-A2 AVHRR Dataset from CMSAF Performance of Arctic cloud products in the CLARA-A2 AVHRR dataset from CMSAF Karl-Göran Karlsson SMHI, Norrköping Presentation at APVE II workshop, 27-28 October 2015, Norrköping 1 EUMETSAT CMSAF project Consortium: 6 partners • Deutscher Wetterdienst (DWD), Germany (Leading entity) • Swedish Meteorological and Hydrological Institute (SMHI), Sweden • Koninklijk Nederlands Meteorologisch Instituut (KNMI), The Netherlands • Meteorological Office, United Kingdom • Finish Meteorological Institute, Finland • Federal Office of Meteorology and Climatology (MeteoSwiss), Switzerland • Royal Meteoroligical Institute, Belgium More info at: www.cmsaf.eu 2 AVHRR climatologies from 30+ years CLARA – CMSAF’s cloud, surface albedo and radiation dataset: New version (CLARA-A2) covering 1982-2014 in production NOAA-19 since February 2009 Metop-A since July 2007 Metop-B since October 2012 Basic cloud products from NWC SAF PPS cloud software (Dybbroe et al., 2005, Karlsson et al., 2013) Courtesy of Andrew Heidinger, NOAA 3 CLARA-A2 Arctic mean cloudiness Achieved sample results for Januari 2008: Consistent results for all satellites! NOAA-15 NOAA-16 NOAA-17 NOAA-18 METOP-A 4 Upgraded results in the Arctic Example for January 2008: CLARA-A1 CLARA-A2 CALIPSO (Plot from Stefan Stapelberg, DWD) The amount of false clouds have been reduced which leads to very low cloud amounts (reflecting that many Arctic clouds are not detectable using AVHRR during the polar night!) 5 Extensive validation from CALIPSO Recent extended validation effort based on CALIPSO-CALIOP cloud masks. Simultaneous (within 3 minutes) observation of the same spot on Earth. For CLARA-A1 we compared to 99 closely matched NOAA-18 orbits 2006-2009. For CLARA-A2 we have now compared to more than 10000 orbits 2006-2014 for all available satellites (NOAA-17, NOAA-18, NOAA-19, METOP-A, METOP-B). Results for NOAA-18 (with channel 3b at 3.7 micron) and METOP-A (with channel 3a at 1.6 micron) will be shown here for the Polar (Arctic+Antarctic) area. 6 CLARA-A2 cloud mask performance over the Arctic and Antarctic regions (above 75°) for NOAA-18 and METOP-A 2006-2014 – POLAR DAY NOAA-18 (3.7 µm) METOP-A (1.6 µm) Difference Number of orbits 2 753 2 366 +387 Matched FOVs 673 651 149 017 + 524 634 Mean error cloud -7.9 % -10.2 % + 2.3 % amount (bias) POD cloudy 79.2 % 78.5 % +0.7 % POD clear 83.1 % 84.7 % -1.6 % FAR cloudy 10.0 % 7.9 % +2.1 % FAR clear 32.6 % 36.5 % - 3.9 % Kuipers score 0.62 0.63 -0.01 Hit Rate 80.5 % 80.4 % +0.1 % CLARA-A2 cloud mask performance over the Arctic and Antarctic regions (above 75°) for NOAA-18 and METOP-A 2006-2014 – POLAR NIGHT NOAA-18 (3.7 µm) METOP-A (3.7 µm) Difference Number of orbits 2 753 2 366 +387 Matched FOVs 843 538 214 013 + 629 525 Mean error cloud -37.4 % -34.7 % - 2.7 % amount (bias) POD cloudy 43.3 % 45.7 % -2.4 % POD clear 94.2 % 92.2 % +2.0 % FAR cloudy 5.7 % 7.3 % -1.6 % FAR clear 57.5 % 56.2 % + 1.3 % Kuipers score 0.37 0.38 - 0.01 Hit Rate 59.0 % 60.3 % -1.3 % Conclusions • Cloudmasks from the CMSAF CLARA-A2 dataset have been matched with more than 10000 CALIPSO orbits and with observations made within 3 minutes from corresponding AVHRR observations in the period 2006-2014. • Over the Polar area results from AVHRRs with channel 3b (NOAA-18) and channel 3a (METOP-A) have been inter-compared for more than 5000 orbits. • Results during Polar day are as good as over non-Polar areas (e.g. bias ≈ -10 %, hitrate ≈ 80 %) for both AVHRR configurations • Results during Polar night are significantly worse (e.g. bias ≈ -35 %, hitrate ≈ 60 %) • Same exercise will now be repeated for corresponding results from the ESA-CLOUD-CCI project including also validation of cloud top height and cloud phase (ice or water). 9 Transition from cloud masks to probabilities Demonstration case of derived AVHRR cloud probabilities Part of an AVHRR GAC orbit from NOAA-17 over Greenland on 4th of June 2009. Left: Colour composite (RGB) with two visual and one thermal channels (AVHRR channels 1,2 and 4). Right: Corresponding cloud analysis expressed in probabilities of a cloudy pixel in greyshades (where black-to- white displays the range 0-100 % cloud probability). (Karlsson and Johansson, Rem. Sens.of Env., 2015) 10 .
Recommended publications
  • Remote​ ​Sensing​ ​(Test)
    Scioly Summer Study Session 2017 ​ ​ ​ ​ ​ ​ ​ ​ Remote Sensing (Test) Topic: Clima​te​ Change Pro​ c​ esses* ___ ​ ​ ​ ​ ​ ​ By user whythelongface (merge) ​ ​ ​ ​ ​ ​ Name(s): _________________________________________ ​ ​ Test format: ​ ​ This test is worth 150 points. There are four sections: ​ ​ ​ ​ ​ ​ ​ ​​ ​ ​ ​ ​ ​ ​ ​ ​​ ​ ​​ 1. Remote Sensing Technology and techniques (50 points) ___ /50 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 2. Data Use and Manipulation (20 points) ___ /20 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 3. Image Interpretation (30 points) ___ /30 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 4. Weather and Climate Processes (50 points) ___ /50 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Total: ___ /150 ​ ​ As of the 2016-2017 season, each person is allowed one double-sided 8.5 × 11” notesheet. Each ​ ​ ​ ​ ​ ​ ​ ​ ​ ​​ ​ ​ ​ ​​ ​ ​ ​ ​​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ partnership is allowed a protractor, ruler, writing implements, and a scientific calculator. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​​ ​ ​​ Graphing calculators are not allowed. The author wishes you best of luck on this test and in the ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 2017-2018 Science Olympiad season. ​ ​ ​ ​ ​ ​ *The topic for the 2017-2018 season is still unknown at the time this test is being written, so it will focus on the same topic as that ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ of the 2016-2017 season. ​ ​ ​ ​ ​ ​ Part 1: Remote Sensing Technology ​ ​ ​ ​ ​ ​ ​ ​ Multiple Choice (1 point each) ​ ​ ​ ​ ​ ​
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • Cloudsat CALIPSO
    www.nasa.gov andSpaceAdministration National Aeronautics & CloudSat CALIPSO Clean air is important to everyone’s health and well-being. Clean air is vital to life on Earth. An average adult breathes more than 3000 gallons of air every day. In some places, the air we breathe is polluted. Human activities such as driving cars and trucks, burning coal and oil, and manufacturing chemicals release gases and small particles known as aerosols into the atmosphere. Natural processes such as for- est fires and wind-blown desert dust also produce large amounts of aerosols, but roughly half of the to- tal aerosols worldwide results from human activities. Aerosol particles are so small they can remain sus- pended in the air for days or weeks. Smaller aerosols can be breathed into the lungs. In high enough con- centrations, pollution aerosols can threaten human health. Aerosols can also impact our environment. Aerosols reflect sunlight back to space, cooling the Earth’s surface and some types of aerosols also absorb sunlight—heating the atmosphere. Because clouds form on aerosol particles, changes in aerosols can change clouds and even precipitation. These effects can change atmospheric circulation patterns, and, over time, even the Earth’s climate. The Air We Breathe The Air We We need better information, on a global scale from satellites, on where aerosols are produced and where they go. Aerosols can be carried through the atmosphere-traveling hundreds or thousands of miles from their sources. We need this satellite infor- mation to improve daily forecasts of air quality and long-term forecasts of climate change.
    [Show full text]
  • Summary of the Key Issues in Space-Based Measurements
    Summary of the Key Issues in Space-based Measurements: Identification of Future Needs and Opportunities Jean-Christopher LAMBERT Belgian Institute for Space Aeronomy (IASB-BIRA) Brussels, Belgium with contributions by 8ORM Participants, CEOS, and NDACC Satellite WG 8th ORM, WMO/UNEP, Geneva, CH, May 2-4, 2011 Summary of the Key Issues in Space-based Measurements: Identification of Future Needs and Opportunities 1. Satellite missions 2. Follow-up of 7ORM issues 3. Data quality strategy 4. Suggestions and recommendations 8th ORM, WMO/UNEP, Geneva, CH, May 2-4, 2011 Catalogues and details on satellite missions NDACC Satellite WG Web Site http://www.oma.be/NDSC_SatWG/Home.html Committee on Earth Observation Satellites http://ceos.org WMO Satellite & Requirements Database http://192.91.247.60/sat/index.htm 8th ORM, WMO/UNEP, Geneva, CH, May 2-4, 2011 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 I 1999 UV/VIS/NIR 8-2020) VIS/IR 1998 multi-sensor 1997 1996 1995 UV IR MW 1994 I 1993 I 1992 1991 I I 1990 I 1989 Spectral range: I I 1988 I I 1987 I I 1986 I I 1985 I I 1984 I I 1983 1982 Sun/Moon occultation stellar occultation 1981 multi-target I 1980 1979 1978 I nadir limb nadir/limb I Nimbus 7 METEOR 3 ADEOS 1 Earth Probe Nimbus 7 NOAA-9 NOAA-11 NOAA-14 NOAA-16 NOAA-17 NOAA-N/18 NOAA-N1/19 STS STS 87 & 107 NPP Sounding strategy: NPOESS SATELLITE MISSIONS FOR ATMOSPHERIC COMPOSITIONFeng-Yun-3A (197 Feng-Yun-3B Feng-Yun-3x SOUNDER MISSION Nimbus 7 AEM-B TOMS ERBS METOR 3M STS-64 CALIPSO
    [Show full text]
  • Cloudsat-CALIPSO Launch
    NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CloudSat-CALIPSO Launch Press Kit April 2006 Media Contacts Erica Hupp Policy/Program (202) 358-1237 NASA Headquarters, Management [email protected] Washington Alan Buis CloudSat Mission (818) 354-0474 NASA Jet Propulsion Laboratory, [email protected] Pasadena, Calif. Emily Wilmsen Colorado Role - CloudSat (970) 491-2336 Colorado State University, [email protected] Fort Collins, Colo. Julie Simard Canada Role - CloudSat (450) 926-4370 Canadian Space Agency, [email protected] Saint-Hubert, Quebec, Canada Chris Rink CALIPSO Mission (757) 864-6786 NASA Langley Research Center, [email protected] Hampton, Va. Eliane Moreaux France Role - CALIPSO 011 33 5 61 27 33 44 Centre National d'Etudes [email protected] Spatiales, Toulouse, France George Diller Launch Operations (321) 867-2468 NASA Kennedy Space Center, [email protected] Fla. Contents General Release ......................................................................................................................... 3 Media Services Information ........................................................................................................ 5 Quick Facts ................................................................................................................................. 6 Mission Overview ....................................................................................................................... 7 CloudSat Satellite ....................................................................................................................
    [Show full text]
  • Cloudsat Overview
    CloudSat Overview CloudSat will provide, from space, the first global survey of cloud profiles and cloud physical properties, with seasonal and geographical variations, needed to evaluate the way clouds are parameterized in global models, thereby contributing to improved predictions of weather, climate and the cloud-climate feedback problem. CloudSat will measure the vertical structure of clouds and precipitation from space primarily through 94 GHz radar reflectivity measurements, but also by using a combination of observations from the EOS-PM Constellation of satellites (A-Train). CloudSat will fly in on-orbit formation with the Aqua and CALIPSO satellites, providing a unique, multi-satellite observing system particularly suited for studying the atmospheric processes of the hydrological cycle. 1. Science Objectives • Evaluate the representation of clouds in weather and climate prediction models. CloudSat will provide a global survey of the vertical structure of cloud systems: This vertical structure is fundamentally important for understanding how clouds affect both their local and large-scale atmospheric and radiative environments. • Evaluate the relationship between cloud liquid water and ice content and the radiative properties of clouds. CloudSat will estimate the profiles of cloud liquid water and ice water content. These are the quantities predicted by cloud-process and global-scale models alike and determine practically all important cloud properties, including precipitation and cloud optical properties. CloudSat will provide coincident profile information on the bulk cloud microphysical properties matched to cloud optical properties. Optical properties contrasted against cloud liquid water and ice contents provide a critical test of key parameterizations that enable calculation of flux profiles and radiative heating rates throughout the atmospheric column.
    [Show full text]
  • Study of Persistent Pollution in Hefei During Winter Revealed by Ground-Based Lidar and the CALIPSO Satellite
    sustainability Article Study of Persistent Pollution in Hefei during Winter Revealed by Ground-Based LiDAR and the CALIPSO Satellite Zhiyuan Fang 1,2,3, Hao Yang 1,2,3, Ye Cao 1,2,3, Kunming Xing 1,3, Dong Liu 1,3, Ming Zhao 1,3,* and Chenbo Xie 1,3,* 1 Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China; [email protected] (Z.F.); [email protected] (H.Y.); [email protected] (Y.C.); [email protected] (K.X.); [email protected] (D.L.) 2 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China 3 Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China * Correspondence: [email protected] (M.Z.); [email protected] (C.X.); Tel.: +86-158-0091-7395 (M.Z.); +86-151-5597-3263 (C.X.) Abstract: LiDAR and CALIPSO satellites are effective tools for detecting air pollution, and by employing PM2.5 observation data, ground-based LiDAR measurements, CALIPSO satellite data, meteorological data, and back-trajectory analysis, we analyzed the process of pollution (moderate pollution, heavy pollution, excellent weather, and dust transmission weather) in Hefei, China from 24 to 27 January 2019 and analyzed the meteorological conditions and pollutants causing heavy pollution. Observation data from the ground station showed that the concentrations of PM10 and 3 PM2.5 increased significantly on 25 January; the maximum value of PM10 was 175 µg/m , and 3 the maximum value of PM2.5 was 170 µg/m .
    [Show full text]
  • EOSDIS DAAC Summary Table of Functions
    EOSDIS DAAC Summary Table Name Location Data Management Expertise Atmospheric NASA Langley o Spaceborne data: CERES, MISR, CALIPSO, o Provides sensor-specific search tools Sciences Data Research ISCCP, SAGE III, MOPITT, TES and from field as well as more general tools and Center (ASDC) Center and airborne campaigns including DISCOVER- services, such as atmosphere product AQ, ATTREX, AirMISR, INTEX-A&B subsetting o Responsible for processing all science data o Provides unique expertise on Earth products for CERES (on TRMM, Terra, Aqua, Radiation Budget, solar radiation, and SNPP) and MISR (on Terra) instruments atmosphere composition, o MEaSUREs Program datasets tropospheric chemistry and aerosols o Connectivity to LaRC science teams Alaska Satellite Geophysical o Spaceborne data: o Provides specialized support in SAR Facility (ASF) Institute at the Seasat, RADARSAT-1 processing and enhanced data DAAC University of Advanced Land Observing Satellite (ALOS) products for science researchers Alaska, PALSAR, o Provides science support for Polar Fairbanks European Remote Sensing Satellite-1, -2 processes and land vegetation (ERS-1 and -2), measurements associated with SAR Japanese Earth Resources Satellite-1 (JERS- instruments 1) o Airborne mission data: Airborne SAR (AIRSAR), Jet Propulsion Laboratory Uninhabited Aerial Vehicle SAR (UAVSAR) o MEaSUREs Program datasets Crustal NASA Goddard o Data and derived products from a global o Provides specialized data services in Dynamics Data Space Flight network of observing stations equipped with space geodesy and solid Earth Information Center one or more of the following measurement dynamics System (CDDIS) techniques: o Connectivity to NASA’s Space Geodesy • Satellite Laser Ranging (SLR) and Lunar Network of observing systems Laser Ranging (LLR) • Very Long Baseline Interferometry (VLBI) • Global Navigation Satellite System (GNSS) • Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) o MEaSUREs Program datasets Goddard Earth NASA Goddard o Process AIRS data into standard products.
    [Show full text]
  • A ANNEX a Record Notes
    A ANNEX A Record Notes A.1 Coordination Notes C002--Subject to coordination with the Western Area Frequency Coordinator located at the Naval Air Warfare Center, Weapons Division, China Lake, CA, prior to use within a 322 kilometer radius of Pt. Mugu or in California south of Latitude 37 30' North. C003--This frequency assignment in one of the bands 1435-1525, 2310-2320 and 2345-2390 MHz was coordinated prior to authorization with the Western Area Frequency Coordinator (WAFC) who also coordinated it, as appropriate, with the Aerospace and Flight Test Radio Coordinating Council. Use of this frequency under the authority of this assignment is subject to such further coordination with the WAFC as necessary to ensure compatibility with existing uses. C004--Subject to coordination with the Eastern Area Frequency Coordinator located at Patrick AFB, FL, prior to use within the area bounded by 24 N 31 30'N and 77 W 83 W. C005--This frequency assignment in one of the bands 1435-1525, 2310-2320 and 2345-2390 MHz was coordinated prior to authorization with the Eastern Area Frequency Coordinator, Patrick AFB, FL, who also coordinated it, as appropriate, with Aerospace and Flight Test Radio Coordinating Council. Use of this frequency under the authority of this assignment is subject to such further coordination with the Eastern AFC, Patrick AFB, FL, as necessary to ensure compatibility with existing uses. C006--Subject to coordination with the Area Frequency Coordinator located at White Sands Missile Range, NM, prior to use in the State of New Mexico or other U.S.
    [Show full text]
  • Detection of Anthropogenic Dust Using CALIPSO Lidar Measurements J
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Atmos. Chem. Phys. Discuss., 15, 10163–10198, 2015 www.atmos-chem-phys-discuss.net/15/10163/2015/ doi:10.5194/acpd-15-10163-2015 © Author(s) 2015. CC Attribution 3.0 License. This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available. Detection of anthropogenic dust using CALIPSO lidar measurements J. Huang1, J. Liu1, B. Chen1, and S. L. Nasiri2 1Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China 2Department of Atmospheric Science, Texas A&M University, College Station, TX, USA Received: 5 March 2015 – Accepted: 10 March 2015 – Published: 7 April 2015 Correspondence to: J. Huang ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. 10163 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract Anthropogenic dusts are those produced by human activities on disturbed soils, which are mainly cropland, pasture, and urbanized regions and are a subset of the total dust load which includes natural sources from desert regions. Our knowledge of anthro- 5 pogenic dusts is still very limited due to a lack of data on source distribution and magnitude, and on their effect on radiative forcing which may be comparable to other anthropogenic aerosols. To understand the contribution of anthropogenic dust to the total global dust load and its effect on radiative transfer and climate, it is important to identify them from total dust.
    [Show full text]
  • Index of Astronomia Nova
    Index of Astronomia Nova Index of Astronomia Nova. M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS, 883 DOI 10.1007/978-3-319-03416-4, © Springer International Publishing Switzerland 2014 Bibliography Books are classified in sections according to the main themes covered in this work, and arranged chronologically within each section. General Mechanics and Geodesy 1. H. Goldstein. Classical Mechanics, Addison-Wesley, Cambridge, Mass., 1956 2. L. Landau & E. Lifchitz. Mechanics (Course of Theoretical Physics),Vol.1, Mir, Moscow, 1966, Butterworth–Heinemann 3rd edn., 1976 3. W.M. Kaula. Theory of Satellite Geodesy, Blaisdell Publ., Waltham, Mass., 1966 4. J.-J. Levallois. G´eod´esie g´en´erale, Vols. 1, 2, 3, Eyrolles, Paris, 1969, 1970 5. J.-J. Levallois & J. Kovalevsky. G´eod´esie g´en´erale,Vol.4:G´eod´esie spatiale, Eyrolles, Paris, 1970 6. G. Bomford. Geodesy, 4th edn., Clarendon Press, Oxford, 1980 7. J.-C. Husson, A. Cazenave, J.-F. Minster (Eds.). Internal Geophysics and Space, CNES/Cepadues-Editions, Toulouse, 1985 8. V.I. Arnold. Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics (60), Springer-Verlag, Berlin, 1989 9. W. Torge. Geodesy, Walter de Gruyter, Berlin, 1991 10. G. Seeber. Satellite Geodesy, Walter de Gruyter, Berlin, 1993 11. E.W. Grafarend, F.W. Krumm, V.S. Schwarze (Eds.). Geodesy: The Challenge of the 3rd Millennium, Springer, Berlin, 2003 12. H. Stephani. Relativity: An Introduction to Special and General Relativity,Cam- bridge University Press, Cambridge, 2004 13. G. Schubert (Ed.). Treatise on Geodephysics,Vol.3:Geodesy, Elsevier, Oxford, 2007 14. D.D. McCarthy, P.K.
    [Show full text]
  • Role of Landsat in Revolutionizing the Management of Natural Resources
    Role of Landsat in Revolutionizing the Management of Natural Resources Prof. UR Rao Former Chairman, ISRO, India 40 Years of Landsat, June 6, 2012 Evolution of Remote Sensing Satellites TIROS Aerial Survey Landsat Series of Satellites Landsat-1: 1972-78 Landsat-2: 1975-82 Landsat-3: 1978-83 Landsat-1,2,3 RBV & MSS First successful weather satellite (Television Infrared Observation Satellites ) Landsat-4: 1982-93 Launched by NASA on April 1, 1960 Landsat-5: 1984-2011 MSS & TM Landsat-4,5 Aerial view of Grove Area (Coconut Root Wilt Disease Study) Landsat-7: 1999 Till date ETM+ Landsat-7 Source: NASA Source: ISRO Source: NASA Evolution of Remote Sensing Satellites Source: CEOS 1972-19811972-1981 1982-19911982-1991 1992-20011992-2001 2002-20112002-2011 Landsat -4,5 Landsat-7 IKONOS RISAT-1 ENVISAT SPOT – 1/2 FY – 1A IRS – 1C Landsat-1 IRS – 1A / 1B SPOT-5 AQUA RAPIDEYE Landsat-1, 2, 3 – USA Landsat-4,5 – USA LANDSAT-7 – USA AQUA – USA Nimbus-6 – USA NOAA-1 – USA QUIKSAT – USA RISAT-1 – INDIA TIROS-M – USA DMSP-7 – USA JASON – USA & FRANCE HY-1A – CHINA Lageos-1 – Italy GOES – USA IRS-1C, 1D – INDIA FEDSAT – AUSTRALIA Meteosat-1 – Europe IRS-1A – INDIA FY-2A – CHINA ENVISAT – EUROPE GMS -3 – JAPAN CBERS1 – CHINA & BRAZIL BILSAT – TURKEY …. SPOT – FRANCE SPOT-5 – FRANCE NIGERIASAT – NIGERIA …. FY-1A – CHINA STELLA – FRANCE ALOS – JAPAN ERS -1 – EUROPE JERS-1 – JAPAN CALIPSO – FRANCE METEOR-2N21 – RUSSIA OCEAN1 – RUSSIA TOPSAT – UK …. RADARSAT-1 – CANADA COSMOSKYMED – ITALY ADEOS – JAPAN THEOS – THAILAND …. SICH-1 – UKRAINE RAPIDEYE – GERMANY SAC-A – ARGENTINA GOSAT – JAPAN ….
    [Show full text]