Early History of X Rays by ALEXI ASSMUS

Total Page:16

File Type:pdf, Size:1020Kb

Early History of X Rays by ALEXI ASSMUS Early History of X Rays by ALEXI ASSMUS The discovery of X rays in 1895 was the beginning of a revolutionary change in our understanding of the physical world. N THE WINTER of the year of his fiftieth birthday, and the year I following his appointment to the leadership of the University of Würzburg, Rector Wilhelm Conrad Roentgen noticed a barium platinocyanide screen fluorescing in his laboratory as he generated cathode rays in a Crookes tube some distance away. Leaving aside for a time his duties to the university and to his students, Rector Roentgen spent the next six weeks in his labora- tory, working alone, and sharing nothing with his colleagues. 10 SUMMER 1995 Wilhelm Conrad Roentgen (1845–1923). (Courtesy of AIP Emilio Segré Visual Archives) Three days before Christmas he that jolted the fin- brought his wife into his laborato- de-siècle disci- ry, and they emerged with a photo- pline out of its graph of the bones in her hand and of mood of finality, the ring on her finger. The Würzburg of closing down Physico-Medical Society was the first the books with to hear of the new rays that could ever more precise penetrate the body and photograph measurements, of its bones. Roentgen delivered the losing itself in de- news on the 28th of December 1895. bates over statistical Emil Warburg relayed it to the Berlin mechanics, or of try- Physical Society on the 4th of Janu- ing to ground all ary. The next day the Wiener Press physical phenomena in carried the news, and the day fol- mathematically precise lowing word of Roentgen’s discovery fluctuations of the ether. began to spread by telegraph around All three discoveries, X rays, the world. uranium rays, and the elec- On the 13th of January, Roentgen tron, followed from one of the presented himself to the Kaiser and major experimental traditions in the was awarded the Prussian Order of second half of the nineteenth the Crown, Second Class. And on the century, the study of the discharge 16th of January the The New-York of electricity in gases. All three Times announced the discovery as contributed to a profound transfor- a new form of photography, which mation of physics. In the 20th cen- revealed hidden solids, penetrated tury, the discipline has been ground- wood, paper, and flesh, and exposed ed in the study of elementary Forms of tube used by Roentgen the bones of the human frame. “Men particles. in 1895–1896 for the production of science in this city are awaiting As with the invention of in- of X rays. with the utmost impatience the candescent light arrival of English technical journals bulbs, the study which will give them the full par- of electrical dis- ticulars of Professor Roentgen’s dis- charge through covery of a method of photographing gases was made opaque bodies,” The New-York possible by the Times began, and it concluded by pre- development of dicting the “transformation of mod- improved vacu- ern surgery by enabling the surgeon um technology to detect the presence of foreign in the 1850s. Ear- bodies.” (Jan. 16, 1896, p. 9) ly on, English The public was enthralled by this scientists were new form of photography and curi- investigating the ous to know the nature of the new patterns of light rays. Physicians put it to immediate and dark that ap- use. Physicists sat up and took no- peared in sealed tice. The discovery of X rays was the lead-glass tubes. first in a series of three discoveries The patterns in German Museum, Munich BEAM LINE 11 Roentgen’s apparatus for studying the ionization of air by X rays, 1906. transparent to ultra-violet light. When Heinrich Hertz found that he could pass the rays through metal foil, a fellow German scientist, Philip Lenard, began to study them more carefully. Lenard designed a tube with a thin aluminum window through which the rays could emerge, and he measured how far German Museum, Munich they could travel and still induce these partially evacuated tubes were fluorescence. Defined in this way, stimulated by a voltage drop between the range of the cathode rays was six a cathode and an anode: typically to eight centimeters. Lenard’s ex- there was a dark space, called periments inspired Roentgen to won- Crookes’ dark space; then a glow, der if the rays in an attenuated form called negative light; then another really traveled farther, and he dark space, this one called Faraday’s; planned experiments to see if a and a final glow of positive light. If sensitive electroscope would mea- the air in the tube was exhausted un- sure a discharge at four times the til the first dark space expanded to distance Lenard had identified. fill the entire tube and all glows dis- This line of work was outside appeared, then the rays emitted from Roentgen’s usual research pursuits, the cathode could be investigated. which had by this time gained him The rays cast shadows, and were great stature in German science. Son deflected by magnetic fields, but of a cloth manufacturer and mer- appeared to be immune to the ef- chant from the Rhine province, fects of static electric forces. Roentgen was not a particularly As was to be characteristic of the diligent student in his youth. He new ray physics to come—the phys- eventually made his way to the ics of cathode rays, X rays, alpha rays, Polytechnic in Zurich, where he beta rays, gamma rays, and N rays— obtained a diploma in mechanical the nature of the cathode rays was in engineering in 1868 and a doctor- dispute, the British favoring a stream ate one year later. In Zurich he of particles, those on the Continent became an assistant to August Kundt preferring to think of them as some and moved along with him to the sort of disturbance of the ether. (The University of Würzburg, and then on British position, and the research pro- to the Physical Institute at Stras- gram developed by J.J. Thomson at bourg. His first move on his own was the Cavendish Laboratory to study to the chair of physics at Giessen ionization in gases, would result in in Hesse in 1879, from which he the discovery of the electron. But our received many offers to go elsewhere. story does not take us that way). The path upward in the German A strong reason for believing that university system was to follow calls the cathode rays were particles was to universities of higher and higher Sir Joseph John Thomson, 1856–1940. the observation that they would stature, and finally to obtain an (Courtesy of the AIP Niels Bohr Library) not pass through matter that was institute of one’s own. Roentgen 12 SUMMER 1995 refused the calls until the Universi- centimeters that Lenard had found ty of Würzburg offered him the to be the maximum distance for Directorship of their Physical Insti- which cathode rays maintain their tute. In 1894 he was elected Rector power to induce fluorescence. Roent- at Würzburg. In his inaugural ad- gen recognized the effect as wor- dress, given the year before his dis- thy of his undivided attention and covery of X rays, Roentgen stated devoted the next six weeks to its that the “university is a nursery of uninterrupted study. scientific research and mental edu- Historians have speculated about cation” and cautioned that “pride in why Roentgen was the first to rec- Phillip Lenard, 1862–1947. (Courtesy of one’s profession is demanded, but not ognize the significance of this effect. Ullstein Bilderdienst and the AIP Niels professional conceit, snobbery, or The equipment, a cathode ray tube Bohr Library) academic arrogance, all of which and a fluorescing screen, had been in grow from false egoism.”* use for decades. In 1894 J.J. Thomson Roentgen’s pride could rest in the had seen fluorescence in German- over forty papers he had published glass tubing several feet from the from Strasbourg, Giessen, and discharge tube. Others had noted Würzburg. These early interests fogged photographic plates. But ranged widely—crystals, pyroelec- before Lenard’s work, the object of trical and piezoelectrical phenomena, study was always the effects inside and the effects of pressure on liquids the tube itself, and stray ultra-ultra- and solids—but did not yet include violet light could be used to explain electrical discharges in gases. He had the fogging of photographic plates. taken his turn at measuring the Lenard’s great interest was in prov- Demonstration by Crookes that cathode specific heat ratios of gases using a ing, in contradiction to the British, rays travel in straight lines: a) cathode; sensitive thermometer of his own the ethereal nature of cathode rays, b) aluminum cross and anode; d) dark making. He was an exact experi- and he was the first to study the shadow; c) fluorescent image. menter who often made his own apparatus—a skill learned during his training as an engineer in Zurich— and he was able to measure ex- tremely small effects, surpassing even Faraday’s measurement of the rotation of polarized light in gases. Roentgen turned to a new interest in October of 1895: the study of cath- ode rays. In the course of repeating the experiments of Hertz and Lenard, he happened to notice a glowing flu- orescent screen set off quite some distance from the Crookes’ tube he was operating. The screen sat much farther away than the six to eight *Quoted in “Wilhelm Conrad Roentgen,” Dictionary of Scientific Biography (New York: Scribner’s, 1975), p.
Recommended publications
  • Cathode-Ray Tube Displays for Medical Imaging
    DIGITAL IMAGING BASICS Cathode-Ray Tube Displays for Medical Imaging Peter A. Keller This paper will discuss the principles of cathode-ray crease the velocity of the electron beam for tube displays in medical imaging and the parameters increased light output from the screen; essential to the selection of displays for specific 4. a focusing section to bring the electron requirements. A discussion of cathode-ray tube fun- beam to a sharp focus at the screen; damentals and medical requirements is included. 9 1990bu W.B. Saunders Company. 5. a deflection system to position the electron beam to a desired location on the screen or KEY WORDS: displays, cathode ray tube, medical scan the beam in a repetitive pattern; and irnaging, high resolution. 6. a phosphor screen to convert the invisible electron beam to visible light. he cathode-ray tube (CRT) is the heart of The assembly of electrodes or elements mounted T almost every medical display and its single within the neck of the CRT is commonly known most costly component. Brightness, resolution, as the "electron gun" (Fig 2). This is a good color, contrast, life, cost, and viewer comfort are analogy, because it is the function of the electron gun to "shoot" a beam of electrons toward the all strongly influenced by the selection of a screen or target. The velocity of the electron particular CRT by the display designer. These beam is a function of the overall accelerating factors are especially important for displays used voltage applied to the tube. For a CRT operating for medical diagnosis in which patient safety and at an accelerating voltage of 20,000 V, the comfort hinge on the ability of the display to electron velocity at the screen is about present easily readable, high-resolution images 250,000,000 mph, or about 37% of the velocity of accurately and rapidly.
    [Show full text]
  • Appendix F. Glossary
    Appendix F. Glossary 2DEG 2-dimensional electron gas A/D Analog to digital AAAR American Association for Aerosol Research ADC Analog-digital converter AEM Analytical electron microscopy AFM Atomic force microscope/microscopy AFOSR Air Force Office of Scientific Research AIST (Japan) Agency of Industrial Science and Technology AIST (Japan, MITI) Agency of Industrial Science and Technology AMLCD Active matrix liquid crystal display AMM Amorphous microporous mixed (oxides) AMO Atomic, molecular, and optical AMR Anisotropic magnetoresistance ARO (U.S.) Army Research Office ARPES Angle-resolved photoelectron spectroscopy ASET (Japan) Association of Super-Advanced Electronics Technologies ASTC Australia Science and Technology Council ATP (Japan) Angstrom Technology Partnership ATP Adenosine triphosphate B Magnetic flux density B/H loop Closed figure showing B (magnetic flux density) compared to H (magnetic field strength) in a magnetizable material—also called hysteresis loop bcc Body-centered cubic BMBF (Germany) Ministry of Education, Science, Research, and Technology (formerly called BMFT) BOD-FF Bond-order-dependent force field BRITE/EURAM Basic Research of Industrial Technologies for Europe, European Research on Advanced Materials program CAD Computer-assisted design CAIBE Chemically assisted ion beam etching CBE Chemical beam epitaxy 327 328 Appendix F. Glossary CBED Convergent beam electron diffraction cermet Ceramic/metal composite CIP Cold isostatic press CMOS Complementary metal-oxide semiconductor CMP Chemical mechanical polishing
    [Show full text]
  • Von Richthofen, Einstein and the AGA Estimating Achievement from Fame
    Von Richthofen, Einstein and the AGA Estimating achievement from fame Every schoolboy has heard of Einstein; fewer have heard of Antoine Becquerel; almost nobody has heard of Nils Dalén. Yet they all won Nobel Prizes for Physics. Can we gauge a scientist’s achievements by his or her fame? If so, how? And how do fighter pilots help? Mikhail Simkin and Vwani Roychowdhury look for the linkages. “It was a famous victory.” We instinctively rank the had published. However, in 2001–2002 popular French achievements of great men and women by how famous TV presenters Igor and Grichka Bogdanoff published they are. But is instinct enough? And how exactly does a great man’s fame relate to the greatness of his achieve- ment? Some achievements are easy to quantify. Such is the case with fighter pilots of the First World War. Their achievements can be easily measured and ranked, in terms of their victories – the number of enemy planes they shot down. These aces achieved varying degrees of fame, which have lasted down to the internet age. A few years ago we compared1 the fame of First World War fighter pilot aces (measured in Google hits) with their achievement (measured in victories); and we found that We can estimate fame grows exponentially with achievement. fame from Google; Is the same true in other areas of excellence? Bagrow et al. have studied the relationship between can this tell us 2 achievement and fame for physicists . The relationship Manfred von Richthofen (in cockpit) with members of his so- about actual they found was linear.
    [Show full text]
  • A Brief History of Nuclear Astrophysics
    A BRIEF HISTORY OF NUCLEAR ASTROPHYSICS PART I THE ENERGY OF THE SUN AND STARS Nikos Prantzos Institut d’Astrophysique de Paris Stellar Origin of Energy the Elements Nuclear Astrophysics Astronomy Nuclear Physics Thermodynamics: the energy of the Sun and the age of the Earth 1847 : Robert Julius von Mayer Sun heated by fall of meteors 1854 : Hermann von Helmholtz Gravitational energy of Kant’s contracting protosolar nebula of gas and dust turns into kinetic energy Timescale ~ EGrav/LSun ~ 30 My 1850s : William Thompson (Lord Kelvin) Sun heated at formation from meteorite fall, now « an incadescent liquid mass » cooling Age 10 – 100 My 1859: Charles Darwin Origin of species : Rate of erosion of the Weald valley is 1 inch/century or 22 miles wild (X 1100 feet high) in 300 My Such large Earth ages also required by geologists, like Charles Lyell A gaseous, contracting and heating Sun 푀⊙ Mean solar density : ~1.35 g/cc Sun liquid Incompressible = 4 3 푅 3 ⊙ 1870s: J. Homer Lane ; 1880s :August Ritter : Sun gaseous Compressible As it shrinks, it releases gravitational energy AND it gets hotter Earth Mayer – Kelvin - Helmholtz Helmholtz - Ritter A gaseous, contracting and heating Sun 푀⊙ Mean solar density : ~1.35 g/cc Sun liquid Incompressible = 4 3 푅 3 ⊙ 1870s: J. Homer Lane ; 1880s :August Ritter : Sun gaseous Compressible As it shrinks, it releases gravitational energy AND it gets hotter Earth Mayer – Kelvin - Helmholtz Helmholtz - Ritter A gaseous, contracting and heating Sun 푀⊙ Mean solar density : ~1.35 g/cc Sun liquid Incompressible = 4 3 푅 3 ⊙ 1870s: J.
    [Show full text]
  • Glossary of Scientific Terms in the Mystery of Matter
    GLOSSARY OF SCIENTIFIC TERMS IN THE MYSTERY OF MATTER Term Definition Section acid A substance that has a pH of less than 7 and that can react with 1 metals and other substances. air The mixture of oxygen, nitrogen, and other gasses that is consistently 1 present around us. alchemist A person who practices a form of chemistry from the Middle Ages 1 that was concerned with transforming various metals into gold. Alchemy A type of science and philosophy from the Middle Ages that 1 attempted to perform unusual experiments, taking something ordinary and turning it into something extraordinary. alkali metals Any of a group of soft metallic elements that form alkali solutions 3 when they combine with water. They include lithium, sodium, potassium, rubidium, cesium, and francium. alkaline earth Any of a group of metallic elements that includes beryllium, 3 metals magnesium, calcium, strontium, barium, and radium. alpha particle A positively charged particle, indistinguishable from a helium atom 5, 6 nucleus and consisting of two protons and two neutrons. alpha decay A type of radioactive decay in which a nucleus emits 6 an alpha particle. aplastic anemia A disorder of the bone marrow that results in too few blood cells. 4 apothecary The person in a pharmacy who distributes medicine. 1 atom The smallest component of an element that shares the chemical 1, 2, 3, 4, 5, 6 properties of the element and contains a nucleus with neutrons, protons, and electrons. atomic bomb A bomb whose explosive force comes from a chain reaction based on 6 nuclear fission. atomic number The number of protons in the nucleus of an atom.
    [Show full text]
  • Scientific References for Nobel Physics Prizes
    1 Scientific References for Nobel Physics Prizes © Dr. John Andraos, 2004 Department of Chemistry, York University 4700 Keele Street, Toronto, ONTARIO M3J 1P3, CANADA For suggestions, corrections, additional information, and comments please send e-mails to [email protected] http://www.chem.yorku.ca/NAMED/ 1901 - Wilhelm Conrad Roentgen "in recognition of the extraordinary services he has rendered by the discovery of the remarkable rays subsequently named after him." Roentgen X-ray Roentgen, W.C. Ann. Physik 1898, 64 , 1 Stanton, A. Science 1896, 3 , 227; 726 (translation) 1902 - Hendrik Antoon Lorentz and Pieter Zeeman "in recognition of the extraordinary service they rendered by their researches into the influence of magnetism upon radiation phenomena." Zeeman effect Zeeman, P., Verhandlungen der Physikalischen Gesellschaft zu Berlin 1896, 7 , 128 Zeeman, P., Nature 1897, 55 , 347 (translation by A. Stanton) 1903 - Antoine Henri Becquerel "in recognition of the extraordinary service he has rendered by his discovery of spontaneous radioactivity." Becquerel, A.H. Compt. Rend. 1896, 122 , 420; 501; 559; 689; 1086 Becquerel, A.H. Compt. Rend. 1896, 123 , 855 Becquerel, A.H. Compt. Rend. 1897, 124 , 444; 800 Becquerel, A.H. Compt. Rend. 1899, 129 , 996; 1205 Becquerel, A.H. Compt. Rend. 1900, 130 , 327; 809; 1583 Becquerel, A.H. Compt. Rend. 1900, 131 , 137 Becquerel, A.H. Compt. Rend. 1901, 133 , 977 1903 - Pierre Curie and Marie Curie, nee Sklodowska "in recognition of the extraordinary services they have rendered by their joint researches on the radiation phenomena discovered by Professor Henri Becquerel." Curie unit of radiation Curie, P; Desains, P., Compt. Rend.
    [Show full text]
  • Henry Ford NERS/BIOE 481 Lecture 01 Introduction
    NERS/BIOE 481 Lecture 01 Introduction Michael Flynn, Adjunct Prof Nuclear Engr & Rad. Science Henry Ford Health System [email protected] [email protected] RADIOLOGY RESEARCH I.A – Imaging Systems (6 charts) A) Imaging Systems 1) General Model 2) Medical diagnosis 3) Industrial inspection NERS/BIOE 481 - 2019 2 I.A.1 - General Model – xray imaging Xrays are used to examine the interior content of objects by recording and displaying transmitted radiation from a point source. DETECTION DISPLAY (A) Subject contrast from radiation transmission is (B) recorded by the detector and (C) transformed to display values that are (D) sent to a display device for (E) presentation to the human visual system. NERS/BIOE 481 - 2019 3 I.A.2 - Medical Radiographs Traditional Modern Film-screen Digital Radiograph Radiograph NERS/BIOE 481 - 2019 4 I.A.1 - General Model – radioisotope imaging Radioisotope imaging differs from xray imaging only with repect to the source of radiation and the manner in which radiation reaches the detector DETECTION DISPLAY A B Pharmaceuticals tagged with radioisotopes accumulate in target regions. The detector records the radioactivity distribution by using a multi-hole collimator. NERS/BIOE 481 - 2019 5 I.A.2 - Medical Radisotope image Radioisotope image depicting the perfusion of blood into the lungs. Images are obtained after an intra-venous injection of albumen microspheres labeled with technetium 99m. Anterior Posterior NERS/BIOE 481 - 2019 6 I.A.3 - Industrial Radiography – homeland security Aracor Eagle High energy x-rays and a linear detector are used to scan large vehicles for border inspection NERS/BIOE 481 - 2019 7 I.A.3 - Industrial radiography – battery CT CT image of a lithium battery (Duracell CR2) “Tracking the dynamic morphology of active materials Finegan during operation of et.al., lithium batteries is Advanced essential for Science, identifying causes 2016 (3).
    [Show full text]
  • Nuclear Fragmentation Reactions: from Basic Research to Medical Applications Igor N
    Nuclear fragmentation reactions: from basic research to medical applications Igor N. Mishustin Frankfurt Institute for Advanced Studies (FIAS), J.W. Goethe Universität, Frankfurt am Main National Research Center “Kurchatov Institute”, Moscow Part 1: Introduction: Nuclear break-up processes Basic Research Statistical description of nuclear break-up Multifragmentation of nuclei Nuclear Liquid-Gas phase transition Applications Propagation of heavy ions through extended medium Cancer therapy with ion beams Transmutation of radioactive waste Conclusions Introduction: Nuclear break-up processes, historical remarks Anticipation of nuclear “explosions” Nobel prize in Physics (1922) “for his services in the investigation of the structure of atoms and of Niels Bohr (1885 – 1962) the radiation emanating from them" Evaporation/fission of compound nucleus t=0 fm/c t>1000 fm/c p A CN low excitation fission Compound Nucleus (CN) is an equilibrated hot nucleus whose excitation energy is distributed over many microscopic d.o.f. (introduced by Niels Bohr in 1936-39) Sequential evaporation model—Weiskopf 1937, Statistical fission model—Bohr-Wheeler 1939, Frenkel 1939 Nuclear break-up: multifragmentation t=0 fm/c t>100 fm/c p A pA collision spectator A or B spectator A moderate excitation peripheral spectator AB collision B slow expansion equilibrated system at freeze-out Power-low fragment mass distribution around critical point, Y(A)~A-τ Can be well understood within an equilibrium statistical approach Early 80s: Randrup&Koonin, D.H.E. Gross et al, Bondorf-Mishustin-Botvina, Hahn&Stoecker; Later: S. Das Gupta et al., Gulminelli et al, Raduta et al,... Explosive disintegration of nuclei t ≈ R/v < 50 fm/c t = 0 fm/c f hot foreball central AA collision compression+heating E>50 AMeV collective flow fast expansion of fragments Typically, exponential fragment mass distributions, Y(A)~exp(-bA) The stronger is flow-the smaller are fragments-mechanical rupture Dynamical modeling is required: QMD, IQMD, NMD, AMD, ..
    [Show full text]
  • Lawrence Bragg's “Brainwave” Drives Father-Son Collaboration
    www.mrs.org/publications/bulletin HISTORICAL NOTE Lawrence Bragg’s “Brainwave” Drives Father-Son Collaboration In 1912, some 17 years after the serendip- and quickly began to learn what he could itous discovery of x-rays by Wilhelm on the subject. Röntgen, a debate raged as to the wave or Until this point in his life, at age 42, particle nature of this radiation phenome- William later recalled, “It had never non. William Henry Bragg, a 50-year-old entered my head that I should do any professor of physics at Leeds University in research work.” His curiosity aroused by England, came down firmly on the side of his reading on radiation, he soon obtained particles, citing the bullet-like nature of the some radium samples and began the rays, and how they were preferentially experiments that were to make him a lead- scattered in the forward direction when ing figure in radiation theory in a few colliding with matter. Max von Laue of years’ time. He quickly developed novel Germany, having produced elegant spot- hypotheses about the nature of radioactiv- diffraction photographs of CuS by aiming ity. The penetrating power of x-rays, and x-rays at crystal samples, used the diffrac- the fact that they are not deflected by a tion behavior as evidence for the wave magnetic field, were accounted for by the argument. Experiments by Charles G. “neutral pair hypothesis,” which stated Barkla that demonstrated the polarization that x-rays consisted of “an electron which of x-rays confirmed the wave theory in the has assumed a cloak of darkness in the minds of many scientists.
    [Show full text]
  • (Owen Willans) Richardson
    O. W. (Owen Willans) Richardson: An Inventory of His Papers at the Harry Ransom Center Descriptive Summary Creator: Richardson, O. W. (Owen Willans), 1879-1959 Title: O. W. (Owen Willans) Richardson Papers Dates: 1898-1958 (bulk 1920-1940) Extent: 112 document boxes, 2 oversize boxes (49.04 linear feet), 1 oversize folder (osf), 5 galley folders (gf) Abstract: The papers of Sir O. W. (Owen Willans) Richardson, the Nobel Prize-winning British physicist who pioneered the field of thermionics, contain research materials and drafts of his writings, correspondence, as well as letters and writings from numerous distinguished fellow scientists. Call Number: MS-3522 Language: Primarily English; some works and correspondence written in French, German, or Italian . Note: The Ransom Center gratefully acknowledges the assistance of the Center for History of Physics, American Institute of Physics, which provided funds to support the processing and cataloging of this collection. Access: Open for research Administrative Information Additional The Richardson Papers were microfilmed and are available on 76 Physical Format reels. Each item has a unique identifying number (W-xxxx, L-xxxx, Available: R-xxxx, or M-xxxx) that corresponds to the microfilm. This number was recorded on the file folders housing the papers and can also be found on catalog slips present with each item. Acquisition: Purchase, 1961 (R43, R44) and Gift, 2005 Processed by: Tessa Klink and Joan Sibley, 2014 Repository: The University of Texas at Austin, Harry Ransom Center Richardson, O. W. (Owen Willans), 1879-1959 MS-3522 2 Richardson, O. W. (Owen Willans), 1879-1959 MS-3522 Biographical Sketch The English physicist Owen Willans Richardson, who pioneered the field of thermionics, was also known for his work on photoelectricity, spectroscopy, ultraviolet and X-ray radiation, the electron theory, and quantum theory.
    [Show full text]
  • 1 X-Ray Diffraction Masatsugu Sei Suzuki Department Of
    x-ray diffraction Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: January 13, 2012) Sir William Henry Bragg OM, KBE, PRS] (2 July 1862 – 10 March 1942) was a British physicist, chemist, mathematician and active sportsman who uniquely shared a Nobel Prize with his son William Lawrence Bragg - the 1915 Nobel Prize in Physics. The mineral Braggite is named after him and his son. http://en.wikipedia.org/wiki/William_Henry_Bragg ________________________________________________________________________ Sir William Lawrence Bragg CH OBE MC FRS (31 March 1890 – 1 July 1971) was an Australian-born British physicist and X-ray crystallographer, discoverer (1912) of the Bragg law of X-ray diffraction, which is basic for the determination of crystal structure. He was joint winner (with his father, Sir William Bragg) of the Nobel Prize for Physics in 1915. http://en.wikipedia.org/wiki/William_Lawrence_Bragg 1 1. x-ray source Fig. Schematic diagram for the generation of x-rays. Metal target (Cu or Mo) is bombarded by accelerating electrons. The power of the system is given by P = I(mA) V(keV), where I is the current of cathode and V is the voltage between the anode and cathode. Typically, we have I = 30 mA and V = 50 kV: P = 1.5 kW. We use two kinds of targets to generate x-rays: Cu and Mo. The wavelength of CuK1, CuK2 and CuK lines are given by K1 1.540562 Å. K 2 = 1.544390 Å, K = 1.392218 Å. The intensity ratio of CuK1 and CuK2 lines is 2:1. The weighed average wavelength K is calculated as 2 K 1 K 2 = 1.54184 Å.
    [Show full text]
  • Lsu-Physics Iq Test 3 Strikes You're
    LSU-PHYSICS IQ TEST 3 STRIKES YOU'RE OUT For Physics Block Party on 9 September 2016: This was run where all ~70 people start answering each question, given out one-by-one. Every time a person missed an answer, they made a 'strike'. All was done with the Honor System for answers, plus a fairly liberal statement of what constitutes a correct answer. When the person accumulates three strikes, then they are out of the game. The game continue until only one person was left standing. Actually, there had to be one extra question to decide a tie-break between 2nd and 3rd place. The prizes were: FIRST PLACE: Ravi Rau, selecting an Isaac Newton 'action figure' SECOND PLACE: Juhan Frank, selecting an Albert Einstein action figure THIRD PLACE: Siddhartha Das, winning a Mr. Spock action figure. 1. What is Einstein's equation relating mass and energy? E=mc2 OK, I knew in advance that someone would blurt out the answer loudly, and this did happen. So this was a good question to make sure that the game flowed correctly. 2. What is the short name for the physics paradox depicted on the back of my Physics Department T-shirt? Schroedinger's Cat 3. Give the name of one person new to our Department. This could be staff, student, or professor. There are many answers, for example with the new profs being Tabatha Boyajian, Kristina Launey, Manos Chatzopoulos, and Robert Parks. Many of the people asked 'Can I just use myself?', with the answer being "Sure". 4. What Noble Gas is named after the home planet of Kal-El? Krypton.
    [Show full text]